
On the design of IIR filters

Robert G. Jenssen

May 8, 2024

(
1 + 9−46×7

)3285

See https://erich-friedman.github.io/mathmagic/0804.html

Copyright © 2017–2024 Robert G. Jenssen

This work is licensed under the Creative Commons Attribution 4.0 International License.
View a copy of the license at https://creativecommons.org/licenses/by/4.0/legalcode

2

https://erich-friedman.github.io/mathmagic/0804.html
https://creativecommons.org/licenses/by/4.0/legalcode

Contents

I State Variable description of digital filters 23

1 A review of the State Variable description of digital filters 25

1.1 The z-transform . 25

1.2 Filter difference equation . 26

1.3 Filter transfer function . 27

1.4 Filter signal flow graph . 27

1.5 State variable description of a signal flow graph . 29

1.6 Controllability . 30

1.7 Observability . 31

1.8 Coordinate Transformations . 31

1.9 State variable descriptions and the transfer function . 31

1.9.1 Transformation of a transfer function to a state variable description . 32

1.9.2 Transformation of a transfer function to a state variable description by continued fraction expansion . . . 33

1.9.3 Transformation of a state variable description to a transfer function . 35

1.9.4 Sensitivity of the state variable description of a transfer function . 38

1.10 Time domain description . 38

1.11 Unit Pulse Response . 38

1.12 Factored state variable descriptions . 39

1.12.1 Factored state variable filters with fractional delays . 39

1.12.2 Construction of the factored state variable description . 40

1.13 Block processing and decimation filters . 43

2 Frequency transformations of Digital Filters 46

2.1 Frequency Transformation of the Transfer Function . 47

2.2 Frequency Transformations of State Variable Filters . 48

2.3 An example: frequency transformations of a 5-th order elliptic filter . 50

3

3 Round-off noise in state variable filters 53

3.1 Quantisation noise in digital filters . 53

3.2 Limit-cycle oscillations in digital filters . 54

3.3 State variable filters and wide sense stationary inputs . 54

3.3.1 The filter state covariance matrix . 54

3.3.2 The output response to white noise in a state variable . 55

3.3.3 Scaling State Variable Filters To Avoid Overflow . 56

3.4 Estimation of output round-off noise in state variable filters . 57

3.4.1 Rounding-to-minus-infinity quantisation noise . 59

3.5 Minimization of round-off noise in the calculation of the state vector . 59

3.6 Coefficient sensitivity . 61

3.7 Factored state variable filters and wide sense stationary inputs . 61

3.8 Frequency transformations and round-off noise . 62

4 State variable filter realisation as a cascade of second order sections 63

4.1 Second Order State Variable Filters Optimised for Overflow and Round-Off Noise 63

4.2 Design equations for optimised second order state variable filters . 63

4.3 Block optimal second order cascade filter realisations . 66

4.4 An example of a second-order state-variable cascade filter . 66

4.4.1 Comparison of calculated noise gains . 66

4.4.2 Simulation results . 67

4.4.3 Comparison with an N=10 example . 69

4.5 Coefficient sensitivity and round-off noise of first-order and second-order all-pass filter sections 70

4.5.1 Searching for realisations of all-pass filter transfer functions . 71

4.5.2 Maximum phase gradient and round-off noise of some first-order all-pass filter sections 72

4.5.3 Maximum phase gradient and round-off noise of some second-order all-pass filter sections 74

5 Filter synthesis by the Schur decomposition 92

5.1 The Schur algorithm . 92

5.1.1 Computation of Schur polynomials . 92

5.1.2 Orthonormality of Schur Polynomials . 93

5.1.3 Polynomial Expansion Algorithm . 95

5.1.4 Power calculation using the Schur algorithm . 95

5.2 Derivation of Digital Lattice Filters . 95

4

5.2.1 Derivation of FIR, All-Pole and All-Pass Lattice Filters . 96

5.3 Derivation of the One-Multiplier IIR Lattice Filter . 98

5.4 Derivation of the Normalised Lattice Filter . 100

5.5 Derivation of the Scaled Normalised Lattice Filter . 101

5.5.1 Example: synthesis of a 3rd order Butterworth lattice filter . 102

5.6 State Variable Descriptions for Schur Lattice Filters . 104

5.6.1 State variable description of the Schur FIR lattice filter . 104

5.6.2 State variable description of the one-multiplier IIR lattice filter . 105

5.6.3 State variable description of a pipelined one-multiplier Schur lattice filter 106

5.6.4 State variable description of a doubly-pipelined one-multiplier Schur lattice filter 108

5.6.5 State variable description of an all-pass doubly-pipelined one-multiplier Schur lattice filter 109

5.6.6 State variable description of the scaled-normalised IIR lattice filter . 110

5.7 Roundoff Noise Calculation in Schur Lattice Filters . 113

5.7.1 Round-off noise of the normalised-scaled lattice filter . 113

5.7.2 Round-off noise of the one multiplier lattice filter . 120

5.7.3 Round-off noise of the pipelined one multiplier lattice filter . 123

5.8 Examples of pipelining Schur lattice filters . 124

5.8.1 Pipelining a 4th order Schur normalised-scaled lattice filter . 124

5.8.2 Pipelining a 6th-order Schur one-multiplier lattice filter . 125

5.8.3 Frequency transformations of pipelined Schur lattice filters . 127

5.9 Summary . 130

6 Orthogonal state variable filters 131

6.1 Definition of orthogonal state variable filters . 131

6.2 The Lattice Orthogonal All-Pass Filter Section . 132

6.3 Noise gain of orthogonal filters . 132

6.4 Realisation of arbitrary filters from orthogonal sub-filters . 133

6.4.1 An example of structural variations . 135

7 Feedforward and feedback of state quantisation error in state variable filters 136

7.1 Problem formulation . 136

7.2 Minimisation of round-off noise with δ = I and η = 0 . 138

5

II Constrained optimisation of the IIR filter frequency response 141

8 IIR filter design using Sequential Quadratic Programming with the transfer function defined by pole and zero
locations 143

8.1 Problem statement . 143

8.1.1 Solution of the constrained quasi-Newton optimisation problem . 144

8.1.2 Choice of active constraints . 145

8.1.3 Linearisation of peak constraints . 146

8.1.4 Ensuring the stability of the IIR filter . 147

8.1.5 Selecting an initial filter design . 147

8.2 Examples of IIR filter design with SQP and constrained pole and zero locations 151

8.2.1 Introductory comments on the IIR filter design examples . 151

8.2.2 Tarczynski et al. Example 2 . 154

8.2.3 Deczky’s Example 3 . 157

8.2.4 Deczky’s Example 1 . 166

8.2.5 Low-pass R=2 decimation filter . 171

8.2.6 Band-pass R=2 decimation filter . 182

8.2.7 Hilbert transform R=2 decimation filter . 189

8.2.8 R=2 differentiator filter . 193

8.2.9 Low-pass differentiator filter . 197

8.2.10 Pink noise filter . 203

8.2.11 Minimum phase R=2 low-pass filter . 206

8.2.12 Non-linear phase FIR low-pass filter . 209

8.2.13 Minimum phase FIR bandpass filter . 211

9 IIR filter design using Second Order Cone Programming 215

9.1 Second Order Cone Programming . 215

9.2 Design of IIR filters with SOCP . 215

9.3 Using the SeDuMi SOCP solver . 217

9.4 An example of SOCP design of an IIR filter expressed in gain-zero-pole format with SeDuMi 217

9.5 SOCP design of a non-linear phase FIR low-pass filter . 226

9.6 Comparison of FIR and IIR low-pass filters having approximately flat pass-band group delay with symmetric
FIR filters . 230

9.7 SOCP MMSE design of a bandpass R=2 filter expressed in gain-zero-pole format with SeDuMi 232

9.8 SOCP MMSE design of a multi-band-pass filter expressed in gain-zero-pole format with SeDuMi 236

6

10 IIR filter design with a pre-defined structure 239

10.1 Design of an IIR filter composed of second-order sections . 239

10.1.1 Linear constraints on the stability of second-order filter sections . 239

10.1.2 Linear constraints on limit-cycle oscillations in second-order filter sections 240

10.1.3 Design of an IIR filter composed of second order sections with SeDuMi 241

10.1.4 Some notes on the design of an IIR filter composed of second order sections with SeDuMi 246

10.2 Design of an IIR filter as the sum of two all-pass filters . 247

10.2.1 Design of an IIR filter as the sum of two all-pass filters each composed of second-order sections 247

10.2.2 Design of an IIR filter as the sum of an all-pass filter composed of second-order sections and a delay . . . 255

10.2.3 Design of an IIR filter as the sum of two all-pass filters each represented in pole-zero form 258

10.2.4 Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero form 278

10.2.5 Design of an IIR filter as the polyphase decomposition into two all-pass filters each represented in pole-
zero form . 287

10.3 Design of an IIR Schur lattice filter . 291

10.3.1 Design of an IIR one-multiplier Schur lattice low-pass filter using SOCP 291

10.3.2 Design of an IIR one-multiplier Schur lattice low-pass filter using SQP 294

10.3.3 Design of an IIR Schur normalised-scaled lattice low-pass filter using SQP 297

10.3.4 Design of an IIR low-pass differentiator filter with a Schur one-multiplier lattice correction filter using
SOCP . 299

10.3.5 Design of an IIR low-pass filter with parallel Schur one-multiplier all-pass lattice filters using SOCP . . . 300

10.3.6 Design of an IIR low-pass filter with a delay in parallel with a Schur one-multiplier all-pass lattice filter
using SOCP . 303

10.3.7 Design of a parallel IIR Schur approximately normalised scaled all-pass lattice low-pass filter using SOCP 305

10.3.8 Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass filter using SOCP 307

10.3.9 Design of an IIR one-multiplier Schur lattice band-pass filter using SQP 309

10.3.10 Design of an IIR normalised-scaled Schur lattice band-pass filter using SQP 314

10.3.11 Design of an IIR one-multiplier Schur lattice Hilbert filter using SOCP 317

10.3.12 Design of an IIR one-multiplier Schur lattice Hilbert filter using SQP 319

10.3.13 Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass Hilbert filter using SOCP 321

10.3.14 Design of a parallel IIR Schur approximately normalised scaled all-pass lattice band-pass Hilbert filter
using SOCP . 323

10.3.15 Design of a parallel IIR Schur one-multiplier all-pass lattice multi-band-pass filter using SOCP 325

10.4 Design of IIR filters with a sharp transition band by frequency response masking 330

10.4.1 Review of Frequency Response Masking digital filters . 330

7

10.4.2 Design of an FRM digital filter with an IIR model filter consisting of a cascade of second-order sections
using SOCP . 333

10.4.3 Design of an FRM digital filter with an IIR model filter represented in gain-pole-zero form using SOCP
and PCLS optimisation . 339

10.4.4 Design of an FRM digital filter with an allpass model filter represented in gain-pole-zero form using
SOCP and PCLS optimisation . 345

10.4.5 Design of an FRM digital filter with an IIR model filter consisting of parallel allpass filters 350

10.4.6 Design of an FRM low-pass digital filter with an all-pass Schur lattice model filter in parallel with a delay
using SOCP and PCLS optimisation . 356

10.4.7 Design of an FRM half-band digital filter with an allpass Schur lattice model filter using SOCP and PCLS
optimisation . 360

10.4.8 Design of an FRM Hilbert digital filter with an allpass Schur lattice model filter using SOCP and PCLS
optimisation . 366

III Design of IIR filters with integer coefficients 371

11 Signed-digit representation of filter coefficients 374

11.1 Lim’s method for allocating signed-digits to filter coefficients . 375

11.2 Ito’s method for allocating signed-digits to filter coefficients . 376

11.3 Signed-digit allocation of the coefficients of a Schur one-multiplier lattice filter 377

11.4 Signed-digit allocation of the coefficients of a symmetric FIR band-pass filter 385

12 Exhaustive search for integer and signed-digit filter coefficients 391

13 Searching for integer and signed-digit filter coefficients with the bit-flipping algorithm 392

13.1 Bit-flipping search for the signed-digit coefficients of a direct-form bandpass IIR filter 394

13.2 Bit-flipping search for the signed-digit coefficients of a normalised-scaled lattice bandpass IIR filter 396

13.3 Bit-flipping search for the signed-digit coefficients of a one-multiplier lattice bandpass IIR filter 398

13.4 Bit-flipping search for the signed-digit coefficients of a one-multiplier parallel-allpass lattice bandpass IIR filter . 401

13.5 Bitflipping search for the signed-digit coefficients of a minimum-phase bandpass FIR filter 404

13.6 Bit-flipping search for the signed-digit coefficients of a direct-form symmetric bandpass FIR filter 407

14 Branch-and-bound search for signed-digit coefficients 410

14.1 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a direct-form symmetric bandpass FIR filter . 412

14.2 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a lattice band-pass IIR filter 414

14.3 Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a lattice band-pass IIR filter 417

14.4 Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a one-multiplier pipelined lattice band-pass
filter . 420

8

14.5 Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a one-multiplier pipelined lattice low-pass
filter . 423

14.6 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass one-multiplier lattice
low-pass IIR filter . 425

14.7 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass normalised-scaled lattice
low-pass IIR filter . 428

14.8 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a parallel all-pass lattice IIR elliptic low-pass
filter . 431

14.9 Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a parallel all-pass lattice IIR elliptic low-
pass filter . 433

14.10Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass IIR filter 436

14.11Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass Hilbert
IIR filter . 439

14.12Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass Hilbert
IIR filter . 443

14.13Branch-and-bound search for the coefficients of an FRM low-pass filter implemented with 12-bits and an average
of 3-signed-digits . 447

14.14Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FRM Hilbert filter 451

14.15Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR Hilbert filter 455

14.16Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR Hilbert band-pass filter 457

15 Successive coefficient relaxation search for signed-digit filter coefficients 459

15.1 SOCP-relaxation search for the signed-digit coefficients of a direct-form symmetric bandpass FIR filter 459

15.2 SQP-relaxation search for the signed-digit coefficients of a lattice bandpass IIR filter 462

15.3 SQP-relaxation search for the signed-digit coefficients of a lattice lowpass IIR filter 465

15.4 SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass lattice low-pass IIR filter 469

15.5 SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass lattice band-pass IIR filter 472

15.6 SOCP-relaxation search for the signed-digit coefficients of a lattice Hilbert IIR filter 475

15.7 SOCP-relaxation search for the signed-digit coefficients of a one-multiplier lattice low-pass differentiator IIR filter478

15.8 SOCP relaxation search for the 12-bit, 3-signed-digit coefficients of an FRM low-pass filter 480

15.9 SOCP relaxation search for the 16-bit, 3-signed-digit coefficients of an FRM low-pass filter 483

15.10SOCP-relaxation search for the signed-digit coefficients of an FRM Hilbert IIR filter with an all-pass lattice
model filter . 486

15.11SOCP-relaxation search for the signed-digit coefficients of a direct-form FIR Hilbert filter 489

15.12POP relaxation search for the signed-digit coefficients of a one-multiplier lattice bandpass filter 491

15.13SOCP-relaxation search for the signed-digit coefficients of a lattice FIR filter 494

9

16 Semi-definite programming search for integer and signed-digit filter coefficients 499

16.1 SDP optimisation of the signed-digit coefficients of a direct-form symmetric FIR filter 500

16.2 SDP optimisation of the signed-digit coefficients of an FIR Hilbert filter . 503

16.3 SDP optimisation of the signed-digit coefficients of an FIR Hilbert band-pass filter 505

16.4 SDP-relaxation search for the signed-digit coefficients of a lattice bandpass IIR filter 507

16.5 SDP-relaxation search for the signed-digit coefficients of a parallel allpass lattice elliptic low-pass IIR filter . . . 511

16.6 SDP-relaxation search for the signed-digit coefficients of a parallel allpass lattice bandpass Hilbert IIR filter . . . 514

17 Comparison of filter coefficient search methods for a 5th order elliptic filter with 6-bit integer and 2-signed-digit
coefficients 518

17.1 Searching with the bit-flipping algorithm . 518

17.2 Searching with the Nelder-Mead simplex algorithm . 525

17.3 Searching with the simulated annealing algorithm . 531

17.4 Searching with the differential evolution algorithm . 538

17.5 Summary of the search algorithm comparison . 544

IV Appendixes 545

A Review of Complex Variables 547

A.1 Complex Functions . 547

A.2 Limit . 547

A.3 The Cauchy-Riemann Equations . 547

A.4 Line integrals in the complex plane . 548

A.5 Cauchy’s Integral Theorem . 549

A.6 Cauchy’s Integral Formula . 549

A.7 Derivatives of an analytic function . 550

A.8 Laurent’s Theorem . 550

A.9 Residues . 550

A.10 Cauchy’s Argument Principle . 551

A.11 Rouché’s Theorem . 551

10

B Review of selected results from linear algebra 552

B.1 Norm of a matrix . 552

B.2 Trace of a matrix . 552

B.3 Rank, range, span and null-space of a matrix . 553

B.4 Matrix determinants . 553

B.4.1 Definitions . 553

B.4.2 Matrix exponential . 554

B.5 Positive-definite matrixes . 554

B.6 Schur complement . 554

B.6.1 Schur complement of a matrix . 555

B.6.2 Schur complement of a positive definite matrix . 556

B.7 Convex vector spaces . 557

B.7.1 Definitions on convex sets . 557

B.7.2 The separating hyperplane theorem . 557

B.7.3 The S-procedure . 558

B.7.4 The log det A penalty function . 559

C Review of Chebyshev’s polynomials 560

C.1 Recurrence relations . 562

C.2 Differentiation and integration of the Chebyshev polynomials . 562

C.3 Chebyshev differential equations . 563

C.4 Orthogonality of the Chebyshev polynomials . 563

C.5 Approximation of functions by Clenshaw’s recurrence . 563

D Review of Legendre’s elliptic integrals and Jacobi’s elliptic functions 566

D.1 Doubly periodic functions . 566

D.2 Legendre’s elliptic integrals . 566

D.3 Computation of Legendre’s elliptic integrals . 567

D.4 Jacobi’s theta functions . 569

D.5 Computation of Jacobi’s theta functions . 569

D.6 Jacobi’s elliptic functions . 570

D.7 Inverses of Jacobi’s elliptic functions . 571

D.8 Elementary identities for the elliptic integrals and elliptic functions . 571

D.9 Related functions . 572

D.10 Octave implementations . 573

11

E Review of Lanczos tridiagonalisation of an unsymmetric matrix 575

F Review of Lagrange Interpolation 577

F.1 The barycentric Lagrange polynomial . 577

F.2 Node distributions . 578

G IIR filter amplitude, phase and group-delay frequency responses 580

G.1 IIR filter responses . 581

G.1.1 IIR filter amplitude response . 581

G.1.2 IIR filter phase response . 582

G.1.3 IIR filter group-delay response . 582

G.2 Partial derivatives of the IIR filter responses . 582

G.2.1 Partial derivatives of the IIR filter amplitude response . 582

G.2.2 Partial derivatives of the IIR filter phase response . 583

G.2.3 Partial derivatives of the IIR filter group-delay response . 584

G.3 Second partial derivatives of the IIR filter response . 584

G.3.1 Second partial derivatives of the IIR filter amplitude response . 584

G.3.2 Second partial derivatives of the IIR filter phase response . 587

G.3.3 Second partial derivatives of the IIR filter group-delay response . 588

G.4 Octave implementations . 589

H Gradient of the IIR filter amplitude response with respect to frequency 590

I Allpass filter frequency response 592

I.1 Allpass filter phase response . 592

I.2 Allpass filter group delay response . 593

J Gradients of the state variable filter frequency response 595

J.1 Gradients of the state variable filter complex frequency response . 595

J.2 State variable filter squared-magnitude response . 595

J.3 State variable filter phase response . 596

J.4 State variable filter group-delay response . 596

12

K Constrained non-linear optimisation 598

K.1 Newton’s method for a quadratic function . 598

K.2 Lagrange multipliers . 598

K.3 The dual problem . 599

K.4 Karush-Kuhn-Tucker conditions for constrained optimisation . 599

K.5 Constrained optimisation using Newton’s method . 600

K.6 Local convergence . 601

K.7 Quasi-Newton methods . 601

K.7.1 Updating the Hessian approximation with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula . . . 602

K.7.2 A modified Cholesky factorisation of the Hessian . 602

K.7.3 Wright’s modification for degenerate constraints . 604

K.7.4 Bertsekas’ modification to the Hessian . 605

K.8 Penalty and barrier methods . 605

K.8.1 Penalty functions . 606

K.8.2 Barrier functions . 607

K.9 Finding the step size . 608

K.9.1 Line search with the Golden-Section . 608

K.9.2 Inexact step-size selection . 609

K.9.3 Lanczos step-size selection . 610

K.10 Initial solution with the Goldfarb-Idnani algorithm . 611

K.11 Implementation examples . 617

L Fourier transform of the Gaussian function 620

L.1 Preliminary results . 620

L.1.1 Integral of the Gaussian function . 620

L.1.2 Fourier transform of the derivative of a function . 620

L.2 Derivation of the Fourier transform of the Gaussian function in the frequency domain 621

13

M Design of IIR digital filter transfer functions 622

M.1 Design of discrete time filters with the bilinear transform . 622

M.1.1 Design of Butterworth IIR filters . 623

M.2 Low passband sensitivity IIR filters . 625

M.2.1 Structural Boundedness . 625

M.2.2 Filter realisation as the sum of all-pass functions . 626

M.2.3 A note on the numerical calculation of the spectral factor . 628

M.2.4 Examples of parallel all-pass filter synthesis . 628

M.3 Design of Elliptic IIR filters with a reduced number of multipliers . 636

M.3.1 Elliptic filter design with the Landen transformation . 636

M.3.2 Design of elliptic filters with minimal-Q . 637

M.4 Saramäki’s method for the design of IIR filters with zeros on the unit circle . 642

M.4.1 Optimisation of a low-pass filter with denominator order higher . 643

M.4.2 Optimisation of a low-pass filter with denominator order lower . 645

M.4.3 Surma-aho and Saramäki method of unconstrained optimisation of an initial IIR filter 648

M.5 Johansson and Saramäki design of all-pass complementary IIR filters . 654

N Design of FIR digital filter transfer functions 661

N.1 Low passband sensitivity FIR lattice filters . 661

N.1.1 Lattice decomposition of an FIR digital filter . 661

N.1.2 Finite-wordlength properties of the lattice FIR filter . 662

N.1.3 State variable description of the complementary FIR lattice filter . 663

N.1.4 Design of the complementary FIR digital filter . 664

N.1.5 Example: the minium-phase complementary filter of an FIR bandpass filter 669

N.1.6 Estimating the MA coefficients of a filtered noise sequence . 673

N.1.7 Design of a complementary FIR lattice band-pass Hilbert filter . 678

N.2 Design of FIR digital filters with unconstrained optimisation of the piece-wise mean-squared error of the response 682

N.2.1 Zero-phase transfer functions of symmetric FIR filters . 682

N.2.2 Piece-wise mean-squared-error of the response of an FIR filter . 684

N.2.3 Examples of the design of FIR filters with unconstrained optimisation 685

N.3 PCLS design of symmetric FIR digital filters with Lagrange multipliers . 692

N.3.1 Examples of the design of constrained least-squared error symmetric FIR filters with optimisation by the
method of Lagrange multipliers . 692

N.4 PCLS design of non-symmetric FIR filters with SOCP . 701

14

N.4.1 Frequency response and gradients of a non-symmetric FIR filter . 701

N.4.2 Examples of the PCLS design of non-symmetric FIR filters with SOCP optimisation 702

N.5 Constrained mini-max error optimisation of FIR digital filters . 706

N.5.1 The alternation theorem . 706

N.5.2 Hofstetter’s algorithm for mini-max FIR filter approximation . 707

N.5.3 Parks-McClellan algorithm for mini-max FIR filter approximation . 720

N.6 Design of FIR filters with maximally-linear pass-bands and equi-ripple stop-bands using the Parks-McClellan
algorithm . 731

N.6.1 Design of FIR low-pass filters with maximally-flat pass-bands and equi-ripple stop-bands 731

N.6.2 Design of FIR band-pass filters with maximally-flat pass-bands and equi-ripple stop-bands 735

N.6.3 Design of maximally-linear FIR low-pass differentiators with equi-ripple stop-bands 738

N.7 Closed-form design of maximally-linear FIR filters . 743

N.7.1 Closed-form design of maximally-flat low-pass FIR filters . 743

N.7.2 Closed-form design of maximally-flat FIR half-band filters . 755

N.7.3 Closed-form design of maximally-flat FIR Hilbert filters . 757

N.7.4 Closed-form design of maximally-linear FIR low-pass differentiators 759

N.8 Linear Matrix Inequality(LMI) design of symmetric FIR filters . 764

N.8.1 The Markov-Lukacs theorem . 764

N.8.2 Trigonometric curves . 764

N.8.3 Moment matrix of trigonometric curves . 765

N.8.4 A Markov-Lukacs theorem for trigonometric curves . 765

N.8.5 The conic hull of Ca,b . 766

N.8.6 Optimisation of the dual of a convex quadratic objective function . 767

N.8.7 Example of LMI design of a low pass symmetric FIR filter . 768

N.8.8 Example of LMI design of a band-pass symmetric FIR filter . 771

N.9 Design of half-band FIR filters . 776

N.9.1 Vaidyanathan’s “TRICK” for the design of FIR half-band filters . 776

N.9.2 Design of equi-ripple FIR half-band filters . 777

N.10 Design of equi-ripple FIR filters with Zolotarev polynomials . 787

N.10.1 The Zolotarev polynomials . 787

N.10.2 Narrow-band FIR filter design with the Zolotarev polynomials . 795

N.10.3 Almost equi-ripple low-pass FIR filter design with the Zolotarev polynomials 806

N.11 Design of FIR filters as a tapped cascade of sub-filters . 814

N.11.1 Transformations of linear-phase FIR filters . 814

N.11.2 Frequency-domain constraints on the prototype and sub-filter . 815

N.11.3 Filter design . 817

N.11.4 Filter design examples . 819

15

O Application of the Kalman-Yakubovic̆-Popov lemma to digital filter design 824

O.1 The continuous-time KYP lemma . 824

O.1.1 A generalised S-procedure . 825

O.1.2 A finite-frequency continuous-time KYP lemma . 826

O.2 Iwasaki and Hara’s generalised KYP lemma for discrete-time systems . 829

O.2.1 Frequency transformations in the complex plane . 829

O.2.2 A generalised discrete-time KYP lemma . 830

O.2.3 Examples of FIR filter design with the generalised KYP lemma . 835

O.2.4 Rantzer’s transformation of the KYP lemma from discrete-time to continuous-time 844

O.2.5 Finsler’s lemma transformation of the generalised KYP lemma . 845

O.2.6 The dual of the KYP lemma . 846

O.3 Generalisation of the KYP lemma to the union of disjoint frequency intervals 848

O.3.1 Union of frequency intervals . 848

O.3.2 Generalised KYP lemma over a union of frequency intervals . 854

O.3.3 Examples of FIR filter design with the generalised KYP lemma extended to the union of disjoint fre-
quency bands . 856

O.4 Design of one-multiplier Schur lattice filters with the KYP lemma . 861

O.4.1 Preliminaries . 861

O.4.2 Sequential approximation of BMI constraints . 862

O.4.3 Design of Schur lattice filters with BMI constraints derived from the KYP lemma 864

Colophon 869

Bibliography 887

16

List of Algorithms

1.1 Procedure for reordering the nodes of a primitive signal flow graph. 28
1.2 Derivation of the state variable description of a signal flow graph. 29
1.3 Transformation of a transfer function to a state variable description. 32
1.4 Continued fraction expansion of a rational transfer function. 33
1.5 Transformation of state variable description to direct form. 35
1.6 Le Verrier’s algorithm for finding the resolvent of the state transition matrix, A [193, Algorithm 8A.12]. 36
1.7 La Budde’s algorithm for finding the characteristic polynomial of A [200, Algorithm 2]. 37
3.1 Recursive calculation of the covariance matrix. 55
3.2 Minimisation of the noise gain. 60
3.3 Optimisation of the noise gain. 60
4.1 Construction of optimised second order state variable filters[193, Figure 9.14.1]. 64
4.2 Bomar second order optimised state variable filter sections [25, Equation 17]. (See also [193, Figure 9.12.1].) . . 65
4.3 Bomar Type III second order optimised state variable filter sections [25, Equation 23]. 65
5.1 Schur polynomial expansion (see Parhi [116, Section 12.2.3]). 95
5.2 One-multiplier lattice sign assignment [4, Page 496]. 99
5.3 Construction of a state variable description of the Schur FIR lattice filter. 104
5.4 Construction of a state variable description of the Schur one-multiplier lattice filter. 105
5.5 Construction of a state variable description of the pipelined Schur one-multiplier lattice filter. 107
5.6 Construction of a state variable description of the doubly-pipelined Schur one-multiplier lattice filter. 109
5.7 Construction of a state variable description of the all-pass doubly-pipelined Schur one-multiplier lattice filter. . . 110
5.8 Construction of a state variable description of the Scaled-Normalised Lattice. 111
5.9 Construction of a state variable description of the pipelined Schur one-multiplier lattice filter with denominator

coefficients in z−2 only. 126
7.1 Minimisation of round off noise in error feedback/feedforward state variable filters. (See Williamson [47, Theo-

rem 5.2]). 138
8.1 Exchange algorithm for multiband FIR filter of Selesnick, Lang and Burrus [91, p.498]. 146
8.2 Compute the powers of a matrix. (See Golub and van Loan [58, Algorithm 11.2.2].) 149
11.1 Conversion of 2’s complement numbers to the canonical signed-digit representation (Parhi [116, Section 13.6.1]). 375
11.2 Modified signed-digit allocation heuristic of Ito et al. [208]. 376
D.1 Carlson’s algorithm for computing the RF function [16, Algorithm 1] . 568
D.2 Carlson’s algorithm for computing the RC function [16, Algorithm 2] . 568
D.3 Carlson’s algorithm for computing the RJ function [16, Algorithm 3] . 568
D.4 Carlson’s algorithm for computing the RD function [16, Algorithm 4] . 569
E.1 Lanczos tridiagonalisation of an unsymmetric matrix. 576
K.1 The sequential quadratic programming method . 601
K.2 Cholesky factorisation of an n× n positive-definite symmetric matrix, W . 603
K.3 Line search using the Armijo rule. 609
K.4 Line search using Wolfe conditions. 610
K.5 Line search using the Goldstein conditions. 610
K.6 The Goldfarb-Idnani dual algorithm [40]. 612
M.1 Filter realisation as the sum of all-pass functions. 628
M.2 Surma-aho and Saramäki method for finding an initial IIR filter in gain-pole-zero form [113, pp. 958-959]. . . . 648
N.1 Construction of a state variable description of the complementary FIR lattice filter. 663
N.2 Parks-McClellan FIR filter design [169, Section 7.4.3] [239, 94]. 721
N.3 Vlček et al.’s backwards recursion for the calculation of the impulse response of an odd-length, symmetric,

maximally-flat, low-pass FIR filter [148, Table 1]. 747
N.4 Zahradník and Vlček’s algorithm [182, Table 1] for the evaluation of the coefficients, al, of Un. 781
N.5 Vlček and Unbehauen’s backwards recursion for Zp,q (w) =

∑n
m=0 bmw

m (w) [146, Table IV], [147]. 790
N.6 Modified Vlček and Unbehauen backwards recursion for Zp,q (w) =

∑n
m=0 amTm (w) [146, Table V], [147]. . . 791

N.7 Recursion of Zahradník, Šusta et al. for the calculation of the scaled coefficients of the expansion, in Chebyshev
polynomials of the first kind, of the product of the n factors, (w − wm), of a polynomial [184, Table I]. 802

17

N.8 Vlček and Zahradník’s algorithm for the evaluation of the impulse response, h (m), of an “almost equi-ripple”
low-pass FIR filter [155, Tables 4 and 5]. 807

18

Introduction

An IIR filter can approximate a desired amplitude response with fewer coefficients than an FIR filtera. The design of IIR filters
is more difficult than the design of FIR filters. FIR filters are inherently stable. An FIR filter design problem can be formulated
as a convex optimisation problem with a global solution (see, for example, Wu et al. [217]). The coefficient-response surface of
an IIR filter rational polynomial transfer function is more complicated than that of an FIR polynomial transfer function. An IIR
filter design procedure must find a locally optimal solution that satisfies the specifications and the coefficients of the IIR transfer
function must be constrained to ensure that the IIR filter is stable. This report describes my experiments in the design of IIR
digital filters with constraints on the amplitude, phase and group delay responses. I intended to show that it is possible to design
an “acceptable” or “good-enough” IIR digital filter with coefficients that use a limited number of shift-and-add operations and so
do not require software or hardware multiplications.

My experiments are programmed in the Octave language [108]b. Octave is an “almost” compatible open-source-software clone
of the commercial MATLAB package [242]. The minimum-mean-squared-error (MMSE) approximation to the required response
is found by either a sequential-quadratic-programming (SQP) solver or by the SeDuMi second-order-cone-programming (SOCP)
solver originally written by Sturm [225]. The stability of the filter is ensured by constraining the pole locations of the filter
transfer function when expressed in gain-pole-zero form [3, 135] or by constraining the reflection coefficients of a tapped all-
pass lattice filter implementation [4, 116]. A valid initial solution for the MMSE solver is found by “eye” or by using the
WISE method of Tarczynski et al. [11]. A peak-constrained-least-squares (PCLS) solution is found by the exchange algorithm of
Selesnick et al. [91]. The lattice filter implementation with integer coefficients has good round-off noise and coefficient sensitivity
performance. For coefficient word lengths greater than 10-bits the coefficients are allocated signed-digits by the algorithm of
Lim et al. [258] or that of Ito et al. [208] and branch-and-bound or relaxation search is used to find an acceptable response. For
lesser coefficient word-lengths simulated-annealing of the signed-digit rounded coefficients gives the best results.

The state variable description of digital filters Part I is a review of the state variable description of digital filters. The state
variable description models the internal structure and round-off noise performance of the digital filter. Chapter 5 shows the state
variable description of the tapped all-pass lattice filter. This part summarises chapters 8 to 10 of the book “Digital Signal Pro-
cessing” by Roberts and Mullis [193] and chapter 12 of “VLSI Digital Signal Processing Systems:Design and Implementation”
by Parhi [116].

Optimising the IIR filter frequency response Part II reviews constrained optimisation of the IIR filter transfer function.

One formulation of the filter optimisation problem is to minimise the weighted squared error of the frequency response:

minimise EH (x) =
ˆ
W (ω) |H (x, ω)−Hd (ω)|2 dω

subject to H is stable
(1)

where x is the coefficient vector of the filter, EH is the weighted sum of the squared error, W (ω) is the frequency weighting,
H (x, ω) is the filter frequency response and Hd (ω) is the desired filter frequency response. The solution proceeds by choosing
an initial coefficient vector and calling the SQP solver to find the coefficient vector that optimises a second-order approximation
to EH . The solution is repeated until the difference between successive errors or successive coefficient vectors is sufficiently
small.

Alternatively, the optimisation problem can be expressed as a weighted mini-max problem:

minimise max W (ω) |H (x, ω)−Hd (ω)|
subject to H is stable

(2)

aSection 9.6 compares the frequency responses of FIR and IIR implementations of a low-pass filter with approximately flat pass-band group delay.
bThe Colophon describes my local Octave build.

19

Similarly, in this case, given an initial coefficient vector, the solution proceeds by calling the SOCP solver to find the coefficient
vector that minimises the maximum error of a first-order approximation to H .

Constraints on the IIR filter response are applied by the Peak-Constrained-Least-Squares (PCLS) exchange algorithm of Se-
lesnick, Lang and Burrus [91]. Appendix N.4 describes the use of the PCLS method of Selesnick et al. to design symmetric FIR
filters with constraints on the filter amplitude response.

Chapter 8 applies the Sequential Quadratic Programming (SQP) method to the optimisation of the frequency of an IIR filter.
The SQP method is reviewed in Appendix K. That review makes extensive use of the books by Nocedal and Wright [109],
Ruszczynski [9] and Bertsekas [43]. I chose to write my own SQP solver in Octave. In Chapter 8, I follow Deczky [3] and
Richards [135] and optimise the filter response with respect to the gain and pole and zero locations of the filter rather than the
coefficients of the transfer function polynomial. When the transfer function is expressed in gain-pole-zero form the stability
of the filter is ensured by constraining the radius of the poles of the filter. Calculation of the response and gradient from the
coefficients of the transfer function polynomials is simpler but the stability constraint on the transfer function denominator is
more complex and may exclude valid alternative designs. Appendix G, derives expressions for the amplitude, phase and delay
responses and gradients of an IIR filter in terms of the gain-pole-zero coefficients. The SQP method requires that at each step the
optimisation problem is initialised with the second-order derivatives (ie: the Hessian matrix) of the response with respect to the
coefficients.

Chapter 9 is based on the description of IIR filter design using Second-Order-Cone-Programming (SOCP) by Lu and Hi-
namoto [246]. SOCP is a subclass of convex programming [212]. See the review articles by Alizadeh and Goldfarb [54] and
Lobo et al. [144] for a description of applications of SOCP. Unlike SQP, SOCP optimisation does not require the the Hessian of
the response. In this report I use the public domain SeDuMi SOCP solver originally written by Jos Sturm [225].

Chapter 10 considers optimisation of the filter transfer function of several filter structures. The simplest IIR filter structure is the
“direct form” implementation of the filter transfer function. This filter structure rarely has good round-off noise and coefficient
sensitivity when the coefficients are truncated. Regalia et al. [171] and Vaidyanathan et al. [179] show that an IIR digital filter
composed of two all-pass filters connected in parallel has desirable coefficient sensitivity and round-off noise performance.
Renfors and Saramäki [142, 143], describe IIR digital filterbanks as a “polyphase” combination of all-pass digital filters. Gray
and Markel [4] and Parhi [116, Chapter 12] describe the synthesis of digital filters as tapped lattice structures. The lattice filter
is stable if the lattice coefficients, kl, have |kl| < 1. Johansson and Wanhammar [79], Milić and Ćertić [122] and Lu and
Hinamoto [246] describe efficient, sharp transition-band IIR filter designs using the frequency masking approach described for
FIR filters by Lim [256].

Truncating the IIR filter coefficients Part III considers algorithms for optimising the frequency response of the IIR filter with
truncated or quantised rather than exact or floating-point coefficients. The truncated coefficients are represented as N-bit 2’s
complement or M-signed-digit numbers. The signed-digit representation reduces the complexity and power requirements of the
filter. Lim et al. [258] and Ito et al. [208] describe methods of allocating the number of signed-digits used by each coefficient.
This part considers methods of searching the space of truncated coefficients for the best filter response. A brute force, exhaustive,
search is likely to take too much time. Part III considers methods of searching for the best filter response with truncated filter
coefficients. Figure 1 shows the response of a 20’th order tapped Schur lattice bandpass filter with denominator coefficients
only in z−2 and 31 non-zero coefficients. The figure compares the filter responses for the floating-point coefficients and 10-bit
signed-digit coefficients with an average of 3 signed-digits allocated to each coefficient by the method of Ito et al. [208]. After
successive SQP-relaxation optimisations of the signed-digit coefficient values, 63 signed-digits and 33 shift-and-add operations
are required to implement the coefficient multiplications. Chapter 17, shows the results of searching for the truncated coefficients
of a 5th order elliptic filter having various structures and 6-bit coefficients with the bitflipping algorithm of Krukowski and
Kale [7], and the simplex, differential evolution and simulated annealing routines from the Octave-Forge optim package [163].

Reproducing my results The Octave scripts referred to in this report generate long sequences of floating point operations. I
recommend reading “What Every Computer Scientist Should Know About Floating-point Arithmetic” by Goldberg [71] and “The
perfidious polynomial” by Wilkinson [95]. In the latter, Wilkinson reminisces about programming polynomial root finding on
early computers. He comments that “explicit polynomial equations with ill-conditioned roots are remarkably common” but that
if “one already knows the roots, then the polynomial can be evaluated without any loss of accuracy.” As an example, Figure 2
shows the results of calling the Octave roots function to find the roots of the binomial polynomial of order 20 with the expression
roots (bincoeff (20,0:20)). In fact the roots are all −1. Figure 3 repeats the example with the oct-file qzsolve, an
implementation using 128-bit floating-point numbers based on gsl_poly_complex_solve from the GNU GSL library[70]c.

THE RESULTS SHOWN IN THIS REPORT WERE OBTAINED ON MY SYSTEM RUNNING WITH A PARTICULAR COMBINA-
TION OF CPU ARCHITECTURE, OPERATING SYSTEM, LIBRARY VERSIONS, COMPILER VERSION AND OCTAVE VER-
SION. YOUR SYSTEM WILL ALMOST CERTAINLY BE DIFFERENT. YOU MAY NEED TO MODIFY A SCRIPT TO RUN ON
YOUR SYSTEM.

cThe MPSolve multi-precision polynomial solver [39] finds the expected roots. The package includes an Octave interface.

20

0 0.1 0.2 0.3 0.4 0.5
-2

-1.5
-1

-0.5
0

0.5

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : ftpl=0.09,ftpu=0.21,tp=16,tpr=0.2

Pa
ss

ba
nd

(d
B

)
exact

3-s-d Ito and SQP

0 0.1 0.2 0.3 0.4 0.5
15.9

15.95
16

16.05
16.1

D
el

ay
(s

am
pl

es
)

0 0.1 0.2 0.3 0.4 0.5
-50
-48
-46
-44
-42
-40
-38
-36

St
op

ba
nd

(d
B

)

Frequency

Figure 1: Comparison of the pass-band and stop-band amplitude responses and group delay responses for a Schur one-multiplier
lattice bandpass filter with floating-point coefficients and with 10 bit integer coefficients found by allocating an average of 3-
signed-digits to each coefficient using the heuristic of Ito et al. and performing SQP-relaxation optimisation.

-1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

roots(bincoeff(20,0:20))

Figure 2: Plot of the roots of the binomial polynomial of order 20 calculated by the Octave roots function.

21

-1.1 -1.05 -1 -0.95 -0.9
-0.1

-0.05

0

0.05

0.1

qzsolve(bincoeff(20,0:20))

Figure 3: Plot of the roots of the binomial polynomial of order 20 calculated by the qzsolve oct-file function using 128-bit floating
point numbers.

22

Part I

State Variable description of digital filters

23

24

Chapter 1

A review of the State Variable description of
digital filters

This chapter briefly summarises parts of the text Digital Signal Processing by Roberts and Mullis [193]. Appendix A reviews the
necessary complex variables theory.

1.1 The z-transform

The bi-lateral z-transform of a sequence f is

F (z) = Z {f} =
∞∑

k=−∞
f (k) z−k

where z is a complex variable. The region of convergence (ROC) of the series is that part of the z-plane for which∑
k

∣∣f (k) z−k
∣∣ <∞

If f is causal then the z-transform is one-sided:

F (z) =
∞∑

k=0
f (k) z−k

The Cauchy integral theorem, shown in Appendix A.5, can be used to invert the z-transform. Start by selecting a circular contour,
C, centred at the origin and lying in the ROC. Multiply each side of the z-transform by zn−1 and integrate along C:

‰
C

zn−1F (z) dz =
∞∑

k=−∞

‰
C

f (k) zn−1−kdz

Cauchy’s integral lemma states
‰

C

zndz =
{

2πı n = −1
0 n ̸= −1, integral

so the terms in the sum vanish except for k = n and

f (n) = 1
2πı

‰
C

zn−1F (z) dz

For rational z-transforms the contour integrals are usually evaluated by finding the residues of the integrand. See Appendix A.

The inversion integral can be used to derive Parseval’s theorem for the z-transform of two sequences. Following Roberts and
Mullis [193, Section 3.4], let f and g be causal sequences with z-transforms F (z) andG (z), respectively. Define the z-transform
of the product as

Z {f � g} =
∞∑

k=0
f (k) g (k) z−k

25

Substituting the inversion integral for f

Z {f � g} = 1
2πı

∞∑
k=0

‰
C

g (k) sk−1F (s) z−kds

= 1
2πı

‰
C

s−1F (s)
∞∑

k=0
g (k)

[
zs−1]−k

ds

= 1
2πı

‰
C

s−1F (s)G
(z
s

)
ds

If |z| = 1 lies in the ROC of the integrand then

Z {f � g} = 1
2πı

‰
C

s−1F (s)G
(

1
s

)
ds

If f = g then we have the discrete form of Parseval’s theorem:

Z {f � f} =
∞∑

k=0
f2 (k) z−k

= 1
2πı

‰
C

z−1F (z)F
(
z−1) dz

If C is the contour |z| = 1 then, after expanding terms in eıθ:

∞∑
k=0

f2 (k) = 1
2π

ˆ π

−π

∣∣F (eıθ
)∣∣ dθ

1.2 Filter difference equation

The standard difference equation (SDE) of a digital filter is

n∑
l=0

aly (k − l) =
m∑

l=0
blu (k − l) , a0 = 1 and k ≥ 0 (1.1)

If ⋆ represents the convolution operation and u (k) and y (k) are the input and output sequences, respectively, then the difference
equation is:

a ⋆ y = b ⋆ u

If y0 is a solution of the homogenous equation (HE), y ⋆ a = 0, then

a ⋆
(
y + y0) = b ⋆ u

The polynomial a (z) is known as the characteristic polynomial of the HE. The n roots λ1, . . . , λn of a define the solutions of
the HE since

n∑
l=0

alz
k−l = zka (z)

and if λ is a root of a (z) then

n∑
l=0

alλ
k−l = λka (λ) = 0 (1.2)

If the roots are distinct then there are n solutions of the form yl (k) = λk
l , 1 ≤ l ≤ n and solutions of the HE are of the form

y0 (k) =
n∑

l=1
clλ

k−l
l

26

The case of repeated roots can be treated by differentiating Equation 1.2. Roots of multiplicity m generate m solutions yl (k) =
kl−1λk−l+1, 1 ≤ l ≤ m.

Every solution of the HE is a linear combination of these solutions

y0 (k) =
n∑

l=1
clyl (k)

The constants cl are usually chosen so that the filter is stable and causal.

The unit-pulse response sequence of the filter, h, is found by setting the input u = δ

n∑
l=0

alh (k − l) =
n∑

l=0
blδ (k − l) , a0 = 1 and k ≥ 0 (1.3)

Further, if h is causal, then it is of the form

h (k) =

0, k < 0
b0, k = 0∑n

l=1 clyl (k) , k > 0

The initial conditions h (1) , . . . , h (n) that determine the cl are obtained by direct evaluation of Equation 1.3.

Finally, if the filter is Bounded-Input-Bounded-Output (BIBO) stable then

∞∑
l=−∞

|h (k)| <∞

For the case of distinct roots, h has the form

h (k) =
n∑

l=1
clλ

k
l , k > 0

If the unit-pulse response is causal, then BIBO stability requires that |λl| < 1, l = 1, . . . , n.

1.3 Filter transfer function

The filter transfer function is related to the z-transform of the filter difference equation, Equation 1.1, by

H (z) = b (z)
a (z) =

∑m
l=0 blz

−l∑n
l=0 alz−l

The transfer function, H (z), can also be written

H (z) = g

∏n
l=1 (z − zl)∏n
l=1 (z − pl)

The pl are the roots of a (z) and are called the poles of H (z). The zl are the roots of b (z) and are called the zeros of H (z).
g = H (0) is a gain factor.

1.4 Filter signal flow graph

Signal flow graphs are primitive if:

1. All branch gains are either constant or a unit delay (z−1)

2. There are no delay free loops in the graph

3. There are a finite number of nodes and branches

27

Algorithm 1.1 Procedure for reordering the nodes of a primitive signal flow graph.

1. Examine each unit delay. If there is an incoming branch at the output then isolate the output of the unit delay by inserting
a unit gain branch as shown in Figure 1.1

2. Label all input nodes and all unit delay output nodes with 0

3. All nodes that can be calculated from nodes labelled 0 are labelled 1

4. If any nodes are unlabelled increment the label and repeat until all nodes are labelled

Figure 1.1: Isolating a unit delay from an incoming branch.

Figure 1.2: Second order direct form filter.

The implementation of primitive signal flow graphs requires node reordering, shown in Algorithm 1.1.

For example, Figure 1.2 shows the signal flow graph of a second order direct form filter. The nodes are labelled according to
Algorithm 1.1:

• S0: u, v2, v3

• S1: v1 = u− a1v2 − a2v3

• S2: y = b0v1 + b1v2 + b2v3

with updates:

• v2 ← v1

• v3 ← v2

In the z-domain:

y (z) = b0z
2 + b1z

1 + b2

u (z) = z2 + a1z + a0

The transfer function is:

H (z) = b0z
2 + b1z + b2

z2 + a1z + a0

28

Algorithm 1.2 Derivation of the state variable description of a signal flow graph.

1. Replace each unit delay with the equivalent path shown in Figure 1.4

2. Remove the unit delays thereby creating new outputs x′i and inputs xi. Note that x′i (k) ≜ xi (k + 1)

3. Eliminate all nodes that are not inputs or outputs

4. Replace the unit delays

n
′
th order direct form filters can be generated recursively by:

Ak (z) = z−1 [ak +Ak+1 (z)]
Bk (z) = z−1 [bk +Bk+1 (z)]

where An+1 (z) = Bn+1 (z) = 0. The filter structure recursion is initialised with:

y (z) = b0v +B1 (z) v
u (z) = v + a0A1 (z) v

so that:

H (z) = b0 +B1 (z)
1 + a0A1 (z)

See Figure 1.3.

(a) Left hand side termination.

(b) kth internal section.

Figure 1.3: Recursive generation of direct form filters.

1.5 State variable description of a signal flow graph

The state variable description of a signal flow graph is derived by Algorithm 1.2.

Figure 1.2 shows the signal flow graph for a second order direct form filter.

29

Figure 1.4: Unit delay equivalent.

Figure 1.5: Signal flow graph of a state variable filter.

The time domain state variable equations for this filter are:[
x (k + 1)
y (k)

]
=
[
A B
C D

] [
x (k)
u (k)

]
(1.4)

where:

A =
[

0 1
−a2 −a1

]
B =

[
0
1

]
C =

[
b2 − a2b0, b1 − a1b0

]
D = b0

The z-domain state variable equations for this filter are:[
zX
Y

]
=
[
A B
C D

] [
X
U

]
(1.5)

Figure 1.5 shows the signal flow graph for the state variable filter of Equation 1.5. The matrix A is called the state transition
matrix.

If the arrows in Figure 1.5 are reversed and the inputs to each node become the outputs then the state-variable description of the
transposed signal flow graph is: [

A B
C D

]⊤
=
[
A⊤ C⊤

B⊤ D

]⊤
(1.6)

1.6 Controllability

The matrix pair (A,B) is said to be controllable if-and-only-if det
[
B AB · · · An−1B

]
̸= 0.

The n-by-n matrix
[
B AB · · · An−1B

]
is called the controllability matrix.

If the matrix pair (A,B) is controllable then the system

x (0) = 0
x (k + 1) = Ax (k) +Bu (k)

can be driven to any specified vector x (n).

30

Proof : From above

x (n) =
n∑

l=1
Al−1Bu (n− l)

=
[
B AB · · · An−1B

]

u (n− 1)
u (n− 2)

...
u (0)

The input u (k), 0 ≤ k < n, producing x (n) can be found by inverting the controllability matrix.

1.7 Observability

The matrix pair (A,C) is said to be observable if the matrix
[
C CA · · · CAn−1] is invertible (for a single output

variable).

If the matrix pair (A,C) is observable then the state x (0) can be uniquely determined from (u (k) , y (k)) for 0 ≤ k < n.

Proof : From the matrix equations for x (k)and y(k)
y (0)
y (1)

...
y (n− 1)

 =

C
CA

...
CAn−1

x (0) +

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAn−2B CAn−3B · · · D

u (0)
u (1)

...
u (n− 1)

The right-hand term reduces to an n-by-1 column vector. x (0) is found by inverting the observability matrix.

1.8 Coordinate Transformations

Let T be an n-by-n non-singular matrix and q (k) = T−1x (k) then the state variable equations have the same form except that
{A,B,C,D} ←

{
T−1AT, T−1B,CT,D

}
. In matrix form:[

A′ B′

C ′ D′

]
=
[
T−1AT T−1B

CT D

]
=
[
T 0
0 1

]−1 [
A B
C D

] [
T 0
0 1

]

1.9 State variable descriptions and the transfer function

From the z-domain state variable matrix shown in Equation 1.5

X (z) = (zI −A)−1
BU

so

Y (z) = C (zI −A)−1
BU +DU

and the transfer function is

H (z) = D + C (zI −A)−1
B (1.7)

The transfer function of the transpose of the signal flow diagram shown in 1.5 is the same as that of the original diagram.

The similarity transformation, {A,B,C,D} ←
{
T−1AT, T−1B,CT,D

}
, leaves the transfer function, H (z), unchangeda:

H (z) = D + C (zI −A)−1
B (1.8)

aRecall that (AB)−1 = B−1A−1

31

= D + CTT−1 (zI −A)−1 (
T−1)−1

T−1B (1.9)

= D + CT
[
T−1 (zI −A)T

]−1
T−1B (1.10)

= D + CT
(
zI − T−1AT

)−1
T−1B (1.11)

The poles of H (z) are the eigenvalues of A. The zeros of H (z) are related to the n+ 1 components in C and D via a system of
linear equations. This system of equations is invertible if the controllability matrix

[
B AB · · · An−1B

]
is non-singular.

The term (zI −A)−1 is called the matrix resolvent. The determinant p (z) = det (zI −A) is called the characteristic polynomial
of A.

The transfer function can be written

H (z) = b0z
n + b1z

n−1 + · · ·+ bn−1z + bn

zn + a1zn−1 + . . . an−1z + an
(1.12)

The denominator of H (z) is the characteristic polynomial of A. The unit impulse response is related to the coefficients of the
numerator and denominator polynomials of H (z) by

1 0 · · · 0

a1 1 · · ·
...

...
...

. . . 0
an an−1 · · · 1

h0
h1
...
hn

 =

b0
b1
...
bn

1.9.1 Transformation of a transfer function to a state variable description

Algorithm 1.3 converts a rational transfer function to the equivalent direct form state variable descriptionb. An Octave imple-
mentation is shown in the file tf2Abcd.m.

Algorithm 1.3 Transformation of a transfer function to a state variable description.
Given a transfer function

H (z) = b̂ (z)
â (z)

= b0z
n + b1z

n−1 + · · ·+ bn

zn + a1zn−1 + · · ·+ an

the direct form state variable description is

H (z) = D + C(zI −A)−1B

where

A =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an −an−1 · · · −a1

B =

[
0 0 · · · 0 1

]⊤
C =

[
bn − b0an · · · b1 − b0a1

]
D = b0

PROOF of Algorithm 1.3: Firstly, show the identity

(zI −A) Ψ (z) = â (z)B

with Ψ (z) =
[

1 z · · · zn−1]⊤ uniquely defines the matrix:

A =

α1,1 α1,2 · · · α1,n

α2,1 α22 · · · α2,n

...
...

. . .
...

αn,1 αn,2 · · · αn,n

bAppendix 1.9.2 shows the continued fraction expansion of a rational transfer function into state variable form.

32

and the column vector: B =
[
β1 · · · βn

]⊤
. For row i:

zi − βi

zn +
n∑

j=1
aiz

n−j

 =
n∑

j=1
αi,jz

j−1

If i ̸= n, then, equating coefficients, βi = 0, so αi,i+1 = 1 and αi,j = 0 if i ̸= j + 1. If i = n then βi = 1 and

−
n∑

j=1
ajz

n−j =
n∑

j=1
αn,jz

j−1

so

αn,1 = −an

...
αn,n = −a1

Now find vector C =
[
c1 c2 · · · cn

]
and scalar D = δ that satisfy

Dâ (z) + CΨ = b̂ (z)

Expanding

δ

zn +
n∑

j=1
ajz

n−j

+
n∑

j=1
cjz

j−1 =
n∑

j=0
bjz

n−j

Equating coefficients

δ = b0

cj = bn−j+1 − b0an−j+1 1 ≤ j ≤ n

1.9.2 Transformation of a transfer function to a state variable description by continued fraction
expansion

See Roberts and Mullis [193, Problems 8.16, 10.13 to 10.16] and Mitra and Sherwood [216]. Algorithm 1.4 calculates the
continued fraction expansion of a rational transfer function.

Algorithm 1.4 Continued fraction expansion of a rational transfer function.

Given a rational transfer function H (z) = b̂(z)
â(z) =

∑N

j=0
bjzN−j

zN +
∑N

j=1
ajzN−j

find the continued fraction expansion:

â1 (z) = â (z)
b̂1 (z) = b̂ (z)− b0â1 (z)

for do k = 1, . . . , N
Find qk (z) and b̂k+1 (z) so that âk (z) = qk (z) b̂k (z)− b̂k+1 (z)
âk+1 (z) = b̂k (z)

end for

The continued fraction expansion of a state variable filter is shown in Figure 1.6. Figure 1.6a shows the signal flow graph for a
first order approximation to a state variable filter. The state variable equations for Figure 1.6a are:

zX1 = α0X1 + bU +G1X1

Y = cX1 + dU

The corresponding transfer function, G (z), is:

G (z) = d+ bc

z − α0 −G1 (z)

Figure 1.6b shows the addition of a second section for G1 (z) with:

zX2 = α1X2 + γ1X1 + bU +G2X2

33

(a) Signal flow graph of a first order approximation to a state variable filter.

(b) Signal flow graph of a second order approximation to a state variable filter.

(c) Signal flow graph of a continued fraction expansion of a state variable filter.

Figure 1.6: Continued fraction expansion of a state variable filter.

Y1 = β1X2

G1 (z) = β1γ1

z − α1 −G2 (z)

Finally, in Figure 1.6c, for a filter of order N :

GN−1 (z) = βN−1γN−1

z − αN−1

The state variable equations for Figure 1.6c are:

x1 (k + 1) = α0x1 + β1x2 + bu

x2 (k + 1) = γ1x1 + α1x2 + β2x3

...
xN−1 (k + 1) = γN−2xN−2 + αN−2xN−1 + βN−1xN

xN (k + 1) = γN−1xN−1 + αN−1xN

y (k) = cx1 + du

or:

[
A B
C D

]
=

α0 β1 0 0 0 · · · 0 b
γ1 α1 β2 0 0 · · · 0 0
0 γ2 α2 β3 0 · · · 0 0
0 0 γ3 α3 0 · · · 0 0
...

...
...

...
. . .

...
...

...
0 0 · · · 0 γN−2 αN−2 βN−1 0
0 0 · · · 0 0 γN−1 αN−1 0
c 0 · · · 0 0 0 0 d

The tridiagonal state transition matrix means that the state variable description is “pipelined”. The continued fraction expan-
sion apparently has N additional parameters compared to the direct form but, by construction, the ratios αi

γi
and βi

γi
are fixed.

34

Furthermore, only a diagonal similarity transform maintains the tridiagonal filter structure so only state rescaling is possible.
Golub and Van Loan [58, Section 9.4.3] describe unsymmetric Lanczos tridiagonalisation of an arbitrary matrix, summarised in
Appendix E. The Octave function lanczos_tridiag implements Lanczos tridiagonalisation.

The Octave function contfrac implements Algorithm 1.4 and returns the equivalent state variable description. The Octave script
contfrac_test.m implements the continued fraction expansion of a 5th order elliptic low-pass filter with cutoff frequency 0.05fS .
The noise gains of the continued fraction filter and the corresponding minimum noise and direct-form state variable filter imple-
mentations are 127, 0.928 and 583e3 respectivelyc.

1.9.3 Transformation of a state variable description to a transfer function

This section describes three methods for finding the transfer function of a state variable description.

Using the controllability matrix

Algorithm 1.5 uses the controllability matrix to find the characteristic polynomial of the state transition matrix, A. The transfer
function follows from Equation 1.7.

Algorithm 1.5 Transformation of state variable description to direct form.
If

1. the matrix pair (A,B) is controllable so that det
[
B AB A2B · · · An−1B

]
̸= 0.

2. the characteristic function of the state transition matrix, A, is det (zI −A) = a0z
n + a1z

n−1 + . . .+ an with a0 = 1.

3. the state vectors are:

{
x (0) = 0
x (k + 1) = Ax (k) +Bak

then

1. x (n+ 1) = 0

2. If T =
[
x (n) x (n− 1) · · · x (1)

]
then

T−1AT =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an −an−1 · · · −a1

T−1B =

0
...
0
1

PROOF of Algorithm 1.5: By repeated application, the state vectors, x, at time k + 1 are:

x (k + 1) =
k∑

i=0
Ak−iBai

and

x (n+ 1) =
(

n∑
i=0

An−iai

)
B

The Cayley-Hamilton theorem states that a matrix is a solution of its own characteristic polynomial so the expression in the
parentheses is zero. Factorising

T =
[
x (n) x (n− 1) · · · x (1)

]
cSee Chapter 3.

35

=
[
An−1B An−2B · · · B

]

1 0 · · · 0

a1 1
. . .

...
...

...
. . . 0

an−1 an−2 · · · 1

If the matrix pair (A,B) is controllable then T is invertible. Now consider the state variables q (k) of the direct form filter with
the transfer function denominator polynomial zn + a1z

n−1 + · · ·+ an and make the input to the filter be the coefficients of this
denominator polynomial (recall that by definition q (k) = T−1x (k)):

q (0) = 0

q (1) =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an −an−1 · · · −a1

0
...
0
0

+

0
...
0
1

 =

0
...
0
1

q (2) =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an −an−1 · · · −a1

0
...
0
1

+

0
...
0
1

 a1 =

0
...
1
0

...

q (n) =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−an −an−1 · · · −a1

0
...
0
1

+

0
...
0
1

 an =

1
0
...
0

q (n+ 1) = 0

Form the matrix with columns consisting of the states {q (n+ 1) , . . . , q (2)}:

[
q (n+ 1) q (n) · · · q (2)

]
=

0 1 · · · 0
... · · ·

. . .
...

0 · · · 0 1
0 · · · 0 0

= T−1AT

1 0 · · · 0

0 1 · · ·
...

...
...

. . . 0
0 · · · 0 1

+

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
an an−1 · · · a1

The result follows.

Le Verrier’s algorithm

In practice, I have found that the simplest method of finding (zI − A)−1 (sometimes referred to as the matrix resolvent) is by
matrix inversion. An alternative, slower, but more accurate method for finding the resolvent of a matrix is Le Verrier’s algo-
rithm [193, Algorithm 8A.12] shown in Algorithm 1.6. Note that Le Verrier’s algorithm calculates the characteristic polynomial

Algorithm 1.6 Le Verrier’s algorithm for finding the resolvent of the state transition matrix, A [193, Algorithm 8A.12].

To find p (z) =
∑n

k=0 z
n−kak and (zI −A)−1 = 1

p(z)
∑n−1

k=0 z
n−1−kĀk perform the following recursion:

a0 = 1 , Ā0 = I
for k = 1, . . . , n do

ak = − 1
k trace

(
AĀk−1

)
Āk = AĀk−1 + akI

end for

of A as a by-product. In this case the characteristic polynomial of the state-transition matrix is the denominator polynomial of

36

the transfer function, which is known. The recursion in Āk is justified by rearranging the expansion of the resolvent shown in
Algorithm 1.6 and then equating coefficients of z:

n∑
k=0

zn−kakI = (zI −A)
n−1∑
k=0

zn−1−kĀk

= znĀ0 +
n−1∑
k=1

zn−k
(
Āk −AĀk−1

)
−AĀn−1

La Budde’s algorithm for finding the characteristic polynomial of an upper Hessenberg matrix

Wilkinson [96, Section 57, Chapter 6], Rehman [210, Chapter 6], and Rehman and Ipsen [200] describe La Budde’s algorithm
for the calculation of the characteristic polynomial of an upper Hessenberg matrix, reproduced here as Algorithm 1.7 [200,
Algorithm 2]. Rehman [210, Appendix B] provides a MATLAB implementation, labudde.md. Rehman shows that the numerical
performance of La Budde’s method compares favourably with the eigenvalue method, p (z) =

∏n
k=1 (z − λk), where the λk are

the (possibly repeated) eigenvalues of A. When the characteristic polynomial is known, the resolvent can be calculated with the
matrix recursion of Le Verrier’s algorithm.

Algorithm 1.7 La Budde’s algorithm for finding the characteristic polynomial of A [200, Algorithm 2].

Given: H =

α1 h1,2 · · · · · · h1,n

β2 α2 h2,3
...

.
...

. hn−1,n

0 βn αn

, the n× n upper Hessenberg reduction of A, find a1 . . . an:

a
(1)
1 = −α1

a
(2)
1 = a

(1)
1 − α2

a
(2)
2 = α1α2 − h1,2β2

for k = 3, . . . , n do
a

(k)
1 = a

(k−1)
1 − αk

for l = 2, . . . , k − 1 do
a

(k)
l = a

(k−1)
l − αka

(k−1)
l−1 −

∑l−2
m=1 hk−m,kβk · · ·βk−m+1a

(k−m−1)
l−m−1 − hk−l+1,kβk · · ·βk−l+2

end for
a

(k)
k = −αka

(k−1)
k−1 −

∑k−2
m=1 hk−m,kβk · · ·βk−m+1a

(k−m−1)
k−m−1 − h1,kβk · · ·β2

end for
ak = a

(n)
k , 1 ≤ k ≤ n

The first stage of La Budde’s method reduces the non-symmetric matrix, A, to upper Hessenberg form, H (see Golub and van
Loan [58, Section 7.4]). The determinant of a matrix is unchanged by replacing a row of the matrix by linear combinations with
other rows, soH andA have the same characteristic polynomial. Rehman and Ipsen [200, pp.10-11] justify La Budde’s algorithm
as follows (lightly edited for consistency with my notation):

La Budde’s method computes the characteristic polynomial of an upper Hessenberg matrix, H , by successively
computing the characteristic polynomials of leading principal submatrices Hk of order k. Denote the characteristic
polynomial of Hk by pk (z) = det (zI −Hk) , 1 ≤ k ≤ n, where p (z) = pn (z). The recursion for computing
p (z) is [96, Section 6.57.1]

p0 (z) = 1
p1 (z) = z − α1

pk (z) = (z − α1)pk−1 (z)−
k−1∑
m=1

hk−m,kβk · · ·βk−m+1pk−m−1 (z) (1.13)

where 2 ≤ k ≤ n. The recursion for pk (z) =
∑k

m=0 z
k−ma

(k)
m is obtained by developing the determinant of

zI −Hk along the last row of Hk. Each term in the sum contains an element in the last column of Hk and a product
of subdiagonal elements. Equating like powers of z in Equation 1.13 gives recursions for individual coefficients ak.

dI have edited labudde.m to make it compatible with Octave

37

1.9.4 Sensitivity of the state variable description of a transfer function

Thiele [126] analyses the sensitivity of the frequency response of linear state variable digital filters with respect to the coefficients.
Differentiation of the resolvent, R = (zI −A)−1, is simplified by the matrix identity:

RR−1 = I

dR

dρ
R−1 +R

dR−1

dρ
= 0

dR

dρ
= −RdR

−1

dρ
R

where ρ represents the components of the matrix R. With this identity, the gradients of H (z) are found by differentiating
Equation 1.7:

∂H (z)
∂z

= −C (zI −A)−2
B

∂H (z)
∂α

= C (zI −A)−1 ∂A

∂α
(zI −A)−1

B

∂H (z)
∂β

= C (zI −A)−1

∂H (z)
∂γ

= (zI −A)−1
B

∂H (z)
∂δ

= I

where α, β, γ and δ represent the components of A, B, C and D respectively.

1.10 Time domain description

If the input sequence is zero then in the time-domain, given x (k0)

x (k + 1) = Ax (k) , k > k0

The matrix powers of A tend to 0 as k approaches infinity if-and-only-if the eigenvalues λk of A satisfy

|λk| < 1 , k = 1, . . . , n

This is equivalent to the stability condition that the poles of H (z) lie inside the unit circle in the z-plane since the eigenvalues of
A are the roots of the polynomial â (z) = det (zI −A) which is the denominator polynomial of the transfer function H (z). If
the matrix A is stable then

x (k) =
∞∑

l=1
Al−1Bu (k − l)

1.11 Unit Pulse Response

The input and output sequences are related by the convolution, y = h ⋆ u. The state variable form is:

y (k) = Cx (k) +Du (k)

=
∞∑

l=1
CAl−1Bu (k − l) +Du (k)

=
∞∑

l=−∞
h (l)u (k − l)

For these to agree

h (k) =

0 k < 0
D k = 0
CAk−1B k > 0

38

(a) Signal flow graph of a factored state variable filter.

(b) Signal flow graph of a retimed factored state variable filter.

Figure 1.7: Factored state variable filters. (See [193, Figure 8.4.6].)

1.12 Factored state variable descriptions

See Roberts and Mullis [193, Section 8.4]. Equation 1.4 assumes that the left-hand side is calculated concurrently. If that is
not the case, then the factored state variable description is more appropriate. This models individual computations that are done
separately but in a fixed cyclic order. The number of factors is the number of delay free paths in the PSFG description. For L
factors:

q0 (k) =
[
x (k)
u (k)

]
qi (k) = Fiqi−1 (k) , 1 ≤ i ≤ L[

x (k + 1)
y (k)

]
= qL (k)

The corresponding state variable description is [
A B
C D

]
= FLFL−1 . . . F1

1.12.1 Factored state variable filters with fractional delays

Figure 1.7a shows the signal flow graph of a factored state variable filter with L factors. The longest delay free path has length
L. The factors F1 and FL are:

F1 =
[
F11 F12

]
FL =

[
FL1
FL2

]

Figure 1.7b shows the result of retiming the filter with a delay of z−1/L after each factor. The loop gain and therefore the transfer
function H (z) are unchanged. The longest delay free path is now 1.

The factored and retimed filter has a reduced delay free path at the expense of a higher sub-sampling clock rate.

39

Figure 1.8: Signal flow graph of two cascaded state variable filters.

1.12.2 Construction of the factored state variable description

To construct a FSVD from a PSFG, first find the sets {S0, S1, . . . , SL} of node variables and let vk be a vector representing the
nodes in Sk. In particular:

v0 =

x1
x2
...
xn

u

where the xk are the outputs of the unit delays. Each variable in Sk is a linear combination of the variables in

{S0 ∪ S1 ∪ . . . ∪ Sk−1}

so there is a coefficient matrix Gk for which:

vk = Gk

vk−1
vk−2

...
v0

 1 ≤ k ≤ L

Finally let G0 be a matrix that picks out the next-state and outputs:
x′1
x′2
...
x′n
y

 = G0

vL

vL−1
...
v0

and the FSVD is: [
x′

y

]
= G0

[
GL

I

] [
GL−1
I

]
· · ·
[
G1
I

] [
x
u

]

Factoring cascaded state variable filters

As an example, Figure 1.8 shows two state variable filters connected in cascade.

The node variable sets are:

S0 = {x1, x2, u}
S1 = {w, x′1}
S2 = {y, x′2}

where:

w
x′1
x1
x2
u

 =

C1 0 D1
A1 0 B1
I 0 0
0 I 0
0 0 I

 x1
x2
u

40

y
x′2
w
x′1
x1
x2
u

=

D2 0 0 C2 0
B2 0 0 A2 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

w
x′1
x1
x2
u

 x′1
x′2
y

 =

 0 0 0 I 0 0 0
0 I 0 0 0 0 0
I 0 0 0 0 0 0

y
x′2
w
x′1
x1
x2
u

The factored state variable equations are: x′1
x′2
y

 =

 0 I 0
B2 0 A2
D2 0 C2

 C1 0 D1
A1 0 B1
0 I 0

 x1
x2
u

=

 A1 0 B1
B2C1 A2 B2D1
D2C1 C2 D2D1

 x1
x2
u

Factoring a feedback connection of state variable filters

Roberts and Mullis [193, Problem 8.9] show a feedback connection of two MIMO state-variable systems:

x′1 = A1x1 +
[
B1 B2

] [u1
u2

]
[
y1
y2

]
=
[
C1
C2

]
x1 +

[
D11 D12
D21 D22

] [
u1
u2

]
and

x′2 = A2x2 +
[
b1 b2

] [w1
w2

]
[
v1
v2

]
=
[
c1
c2

]
x2 +

[
d11 d12
d21 d22

] [
w1
w2

]
The feedback connections are u2 = v1 and w1 = y2. A delay-free loop is avoided by setting D22 = 0 or d11 = 0. Choosing the
latter, the state equations are, after substitution:

x′1 = A1x1 +B1u1 +B2v1

y1 = C1x1 +D11u1 +D12v1

y2 = C2x1 +D21u1 +D22v1

x′2 = A2x2 + b1y2 + b2w2

v1 = c1x2 + d12w2

v2 = c2x2 + d21y2 + d22w2

The node variable sets are:

S0 = {x1, x2, u1, w2}
S1 = {v1}
S2 = {x′1, y1, y2}

41

S3 = {x′2, v2}

where:
v1
x1
x2
u1
w2

 =

0 c1 0 d12
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

x1
x2
u1
w2

x′1
y1
y2
v1
x1
x2
u1
w2

=

B2 A1 0 B1 0
D12 C1 0 D11 0
D22 C2 0 D21 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

v1
x1
x2
u1
w2

x′2
v2
x′1
y1
y2
v1
x1
x2
u1
w2

=

0 0 b1 0 0 A2 0 b2
0 0 d21 0 0 c2 0 d22
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

x′1
y1
y2
v1
x1
x2
u1
w2

x′1
x′2
y1
v2

 =

0 0 I 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0

x′2
v2
x′1
y1
y2
v1
x1
x2
u1
w2

The factored state variable description is:

x′1
x′2
y1
v2

 =

0 0 I 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0

0 0 b1 0 0 A2 0 b2
0 0 d21 0 0 c2 0 d22
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

x′1
y1
y2
v1
x1
x2
u1
w2

=

I 0 0 0 0
0 0 b1 A2 b2
0 I 0 0 0
0 0 d21 c2 d22

B2 A1 0 B1 0
D12 C1 0 D11 0
D22 C2 0 D21 0

0 0 I 0 0
0 0 0 0 I

0 c1 0 d12
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

x1
x2
u1
w2

=

A1 B2c1 B1 B2d12
b1C2 b1D22c1 +A2 b1D21 b1D22d12 + b2
C1 D12c1 D11 D12d12

d21C2 d21D22c1 + c2 d21D21 d21D22d12 + d22

x1
x2
u1
w2

42

1.13 Block processing and decimation filters

See Roberts and Mullis [193, Section 10.2]. Block processing digital filters are multi-input, multi-output (MIMO) filters which
are equivalent to a single-input, single-output (SISO) filter. MIMO filters have the following advantages:

• parallel computation increases the output data rate

• output noise is reduced and other finite register effects are improved when compared to the corresponding SISO filter

• the number of multiplies per output is reduced when compared to the corresponding SISO filter.

In general, for a state variable filter with state updates every P samples:[
x (k + P)
y′ (k)

]
=
[
A′ B′

C ′ D′

] [
x (k)
u′ (k)

]
where:

u′ (k) =

u (k)

u (k + 1)
...

u (k + P − 1)

y′ (k) =

y (k)

y (k + 1)
...

y (k + P − 1)

and:

A′ = AP

B′ =
[
AP−1B AP−2B · · · B

]
C ′ =

C
CA

...
CAP−1

D′ =

D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

...
...

...
. . .

...
CAP−2B · · · · · · CB D

For example, if the block length is P = 2: x (k + 1)

y (k)
u (k + 1)

 =

 A B 0
C D 0
0 0 I

 x (k)
u (k)

u (k + 1)

 , first update (1.14)

 x (k + 2)
y (k)

y (k + 1)

 =

 A 0 B
0 I 0
C 0 D

 x (k + 1)
y (k)

u (k + 1)

 , second update (1.15)

The factored state variable description of the block-length 2 filter is: x (k + 2)
y (k)

y (k + 1)

 =

 A 0 B
0 I 0
C 0 D

 A B 0
C D 0
0 0 I

 x (k)
u (k)

u (k + 1)

 =

 A2 AB B
C D 0
CA CB D

 x (k)
u (k)

u (k + 1)

Roberts and Mullis [193, Table 10.2.1] list the number of multipliers-per-output for three classes of N -th order, block length P
block processing state variable filters, reproduced in Table 1.1. If the filter is decimating then only a single output, y(k), needs
to be calculated in each block and the number of multipliers-per-output is reduced accordingly.

43

Filter structure Number of multipliers per output Optimal block length, P

Full state variable filter N2

P + 2N + P +1
2 N

√
2

m-th order cascaded sections
(

m
P + 2 + P +1

2m

)
N m

√
2

m-th order parallel sections
(

m
P + 2 + P−1

2m

)
N + 1 m

√
2

Table 1.1: The number of multipliers for three classes of N -th order block processing filters. (See [193, Table 10.2.1].)

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Block length 1

Block length 12

Figure 1.9: Simulated response of an 8-th order elliptic filter with 8-bit precision coefficients for block lengths of 1 and 12. The
block length 12 filter is implemented as an oct-file.

The Octave function sv2block converts a block length 1 state variable filter to a block length P state variable filter. The Octave
function svf implements a MIMO state variable filter that can be applied to block filtering by rearranging the input and output
matrixes appropriately. The Octave function Abcd2cc generates an oct-file implementation of a block processing state variable
filter. The Octave script Abcd2cc_test.m tests the oct-file implementation of an 8-th order elliptic filter with block length 12
and 8 bit coefficients. Figure 1.9 shows the overall simulated response and Figure 1.10 compares the passband responses. The
pass-band response of the block length 12 filter is more accurate than that of the block length 1 filter. The noise gaine of the
block filter with truncated coefficients is accurately estimated by dividing the noise gain of the untruncated block length 1 filter
by P . Use of the noise gain of the untruncated filter reflects the improvement in round-off noise performance obtained by block
processing. The accuracy of the estimate of the noise gain of the truncated block length 1 filter improves when the number of
bits is increased to 10. From Table 1.1, the number of multipliers per output is 81 for the block length 1 filter and 27.83 for the
block length 12 filter.

eSee Chapter 3.

44

0 0.01 0.02 0.03 0.04 0.05 0.06
-2

-1

0

1

2

3

4

5

Frequency

A
m

pl
itu

de
(d

B
)

Block length 1

Block length 12

Figure 1.10: Simulated passband response of a 8-th order elliptic filter with 8-bit precision coefficients for block lengths of 1 and
12. The block length 12 filter is implemented as an oct-file.

45

Chapter 2

Frequency transformations of Digital Filters

See Roberts and Mullis [193, Section 6.7]. A generalised band-pass filter has a frequency response function H
(
eıθ
)

which
is zero in each stop-band and one in each pass-band. Given a prototype low-pass filter H (z) we wish to design a frequency
transformation F (z) such that the composition G (z) = H (F (z)) is a filter with the properties:

1. F (z) should map the unit circle into itself, ie: F
(
eıϕ
)

= eıθ(ϕ), so that G
(
eıϕ
)

= H
(
eıθ(ϕ)).

2. If H (z) is stable and minimum phase, then G (z) is stable and minimum phase. If λ is a pole (or zero) G (z), then F (λ)
is a pole (or zero) of H (z). Thus if |λ| < 1 implies |F (λ)| < 1 then these properties are preserved.

Consequently, the complex function F (z) is a frequency transformation if

1. |z| > 1⇔ |F (z)| > 1

2. |z| = 1⇔ |F (z)| = 1

3. |z| < 1⇔ |F (z)| < 1

Products F1 (z)F2 (z) of frequency transformations are frequency transformations. Compositions F1 (F2 (z)) of frequency
transformations are also frequency transformations. If F (z) is a frequency transformation, then 1/F (z) is a stable all-pass filter.
In the composition G (z) = H (F (z)) the unit delay z−1 is replaced with the all-pass filter [F (z)]−1. For IIR filter design F (z)
must be a rational function. A first order frequency transformation has the form:

F (z) = ± z − α
1− α∗z |α|2 < 1

This is a frequency transformation since

|F (z)|2 = (z − α) (z∗ − α∗)
(1− α∗z) (1− αz∗)

= 1 + zz∗ − 1 + αα∗ − αα∗zz∗

1− αz∗ − α∗z + αα∗zz∗

= 1 +

[
|z|2 − 1

] [
1− |α|2

]
|1− α∗z|2

Order n frequency transformations are known as Blaschke products

F (z) = ±
m∏

i=1

(
z − αi

1− α∗i z

)
= ±p (z)

p̃ (z)

where

p (z) =
n∑

i=o

piz
−i = p0z

−n
n∏

i=1
(z − αi)

has roots |αi| < 1 and p̃ (z) = z−np
(
z−1).

46

Figure 2.1: Frequency warping function (after Roberts and Mullis [193, Figure 6.7.2]).

Suppose the prototype H (z) has cut-off frequency θ = π/2 and G (z) has the pass band edges shown in Figure 2.1 (where G (z)
is low-stop).

F (z) must map the band edges as shown by the frequency warp θ (ϕ). There are two cases:

low-pass:

F (1) = 1
θ (0) = 0
θk = θ (ϕk) =

(
k − 1

2
)
π

low-stop:

F (1) = −1
θ (0) = π

θk = θ (ϕk) =
(
k + 1

2
)
π

Roberts and Mullis [193, Figure 6.7.3] show an algorithm for calculating the parameters of the frequency transformation F (z).
This algorithm is implemented by the Octave [108] function phi2p.

2.1 Frequency Transformation of the Transfer Function

See Roberts and Mullis [193, Problem 6.26]. Given a low-pass prototype:

H (z) = β (z)
α (z)

=
∑L

k=0 αkz
−k∑L

k=0 βkz−k

and a frequency transformation function

F (z) = p (z)
p̃ (z)

where p (z) =
∑M

k=0 pkz
−k and p̃ (z) = z−Mp

(
z−1), find the filter

G (z) = H (σF (z)) = b (z)
a (z)

47

where σ = 1 for low-pass and σ = −1 for low-stop.

First expand a (z) and b (z) in α (z), β (z) and p (z):

a (z)
b (z) =

∑LM
k=0 akz

−k∑LM
k=0 bkz−k

=
∑L

k=0 αk [σp (z) /p̃ (z)]−k∑L
k=0 βk [σp (z) /p̃ (z)]−k

=
∑L

k=0 αk

[
σz−Mp

(
z−1)]k [p (z)]L−k∑L

k=0 βk [σz−Mp (z−1)]k [p (z)]L−k

A common factor of [p (z)]L has been introduced. Next chooseN ≥ LM+1 and define the following Discrete Fourier Transform
pairs: [

p0 · · · pM 0 · · · 0
] DF T←→

[
P (0) P (1) · · · P (N − 1)

]
[
a0 · · · aLM 0 · · · 0

] DF T←→
[
A (0) A (1) · · · A (N − 1)

]
[
b0 · · · bLM 0 · · · 0

] DF T←→
[
B (0) B (1) · · · B (N − 1)

]
where

A (n) =
N−1∑
k=0

akW
−nk
N

= a (Wn
N)

=
L∑

k=0
αkσ

kW−knM
N e−2k arg{P (n)} {P (n)}L

= α
(
eıθn

)
{P (n)}L

and

θn = 2πnM
N

+
(

1− σ
2

)
π + 2 arg {P (n)}

Here WN = eı 2π
N and arg means “angle of”. Similarly:

B (n) = β
(
eıθn

)
{P (n)}L

This algorithm is implemented by the Octave function tfp2g.m.

2.2 Frequency Transformations of State Variable Filters

See Mullis and Roberts [34, Section III]. Given a (usually low-pass) prototype filter H (z) parameterised by the state variable
description {A, b, c, d} construct the filter G (z) = H (F (z)) where

F (z) = ±
m∏

i=1

(
z − α∗i
1− αiz

)
, |αi| < 1

where ∗ means complex conjugate transpose.

If the order of H (z) is n then the order of G (z) is mn. The map z → F (z) preserves the disk |z| < 1, the circle |z| = 1 and
the set |z| > 1 since

1−
∣∣∣∣ z − α∗1− αz

∣∣∣∣2 =

(
1− |z|2

)(
1− |α|2

)
|1− αz|2

Therefore if H (z) is stable (minimum phase) then G (z) is stable (minimum phase). We want to find the matrices A,B,C,D
such that

D + C (zI − A)−1
B = G (z) = H (F (z))

48

Let matrices {α, β, γ, δ} parameterise the filter 1/F (z) so that

1
F (z) = δ + γ (zI − α)−1

β

Note that 1/F (z)is a stable, all-pass filter.

A heuristic construction of H (F (z)) follows. The filter 1/F (z) replaces each delay branch in in the original filter, H (z), so
for a m× n matrix S (k)

S (k + 1) = αS (k) + β [Ax (k) + bu (k)]⊤

x (k) = S⊤ (k) γ⊤ + δ [Ax (k) + bu (k)]
y (k) = cx (k) + du (k)

Eliminating x (k) gives

S (k + 1) = αS (k) + βγS (k)
[
A (I − δA)−1

]⊤
+ β

[
(I − δA)−1

b
]⊤

u (k)

y (k) = γS (k)
[
c (I − δA)−1

]⊤
+
[
d+ δc (I − δA)−1

b
]
u (k)

Define V (X) as the vector formed by stacking the columns of X and define G ⊗ F as the Kronecker producta, {GijF}, of the
matrixes G and F . Then:

V (S (k + 1)) = AV (S (k)) + Bu (k)
y (k) = CV (S (k)) + Du (k)

where

A = I ⊗ α+A (I − δA)−1 ⊗ βγ

B = (I − δA)−1
b⊗ β

C = c (I − δA)−1 ⊗ γ

D = d+ δc (I − δA)−1
b

and

H (F (z)) = D + C (zI − A)−1
B (2.1)

Mullis and Roberts [34, Appendix A] give a direct proof. Start with the identity:

(fI −A) b⊗ β = f

[
b⊗ β −Ab⊗ β

(
1
f

)]
Where, for convenience the scalar F (z) = f . So

b⊗ β = f
[
(fI −A)−1

b⊗ β −A (fI −A)−1
b⊗ β

(
δ + γ (zI − α)−1

β
)]

= f [I ⊗ (zI − α)− δA⊗ (zI − α)−A⊗ βγ] ·
[
(fI −A)−1

b⊗ (zI − α)−1
β
]

= [(I − δA)⊗ (zI − α)−A⊗ βγ] ·
[
f (fI −A)−1

b⊗ (zI − α)−1
β
]

aDefine V (X) as the vector formed by stacking the columns of X . Suppose the matrix product F XG⊤is defined. This represents a linear transformation
applied to X. When this transformation is arranged as a vector

V
(

F XG⊤
)

= [G⊗ F] V (X)

where G ⊗ F is defined as the Kronecker product, {GijF}, of matrices G and F . The Kronecker product is defined for any two matrices and satisfies the
following:

[A⊗B] [C ⊗D] = (AC)⊗ (BD)
(A + B)⊗ (C + D) = A⊗ C + A⊗D + B ⊗ C + B ⊗D

[A⊗B]−1 = A−1 ⊗B−1

[A⊗B]⊤ = A⊤ ⊗B⊤

By convention Kronecker products are performed after ordinary matrix products and before matrix addition.

49

Therefore

B = (I − δA)−1
b⊗ β

=
[
I ⊗ (zI − α)− (I − δA)−1

A⊗ βγ
]
·
[
f (fI −A)−1

b⊗ (zI − α)−1
β
]

= (zI − A)
[
f (fI −A)−1

b⊗ (zI − α)−1
β
]

so, substituting (zI − A)−1
B

D + C (zI − A)−1
B =

[
d+ δc (I − δA)−1

b
]

+
[
c (I − δA)−1 ⊗ γ

]
·
[
f (fI −A)−1

b⊗ (zI − α)−1
β
]

= d+ δc (I − δA)−1
b+ f

[
c (I − δA)−1 (fI −A)−1

b
]
·
[
γ (zI − α)−1

β
]

= d+ c (I − δA)−1
[
δ (fI −A) + f

(
1
f
− δ
)
I

]
(fI −A)−1

b

= d+ c (fI −A)−1
b

= H (f)
= H (F (z))

This algorithm is implemented by the Octave function tfp2Abcd.

2.3 An example: frequency transformations of a 5-th order elliptic filter

The Octave script tfp2g_test.m shows examples of frequency transformations of a 5th order elliptic low-pass filter. Figure 2.2
shows the prototype filter. Figure 2.3 shows the result of a low-pass to low-pass transformation. Figure 2.4 shows the result of a
low-pass to high-pass transformation. Figure 2.5 shows the result of a low-pass to band-pass transformation. Figure 2.6 shows
the result of a low-pass to triple band-stop transformation.

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

Frequency

Figure 2.2: Prototype 5-th order elliptic low-pass filter.

50

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

Frequency

Figure 2.3: Low-pass to low-pass transformation of a 5-th order elliptic low-pass filter.

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

Frequency

Figure 2.4: Low-pass to high-pass transformation of a 5-th order elliptic low-pass filter.

51

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

Frequency

Figure 2.5: Low-pass to band-pass transformation of a 5-th order elliptic low-pass filter.

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

Frequency

Figure 2.6: Low-pass to triple band-stop transformation of a 5-th order elliptic low-pass filter.

52

Chapter 3

Round-off noise in state variable filters

This chapter is based on Chapter 9 of Roberts and Mullis [193].

3.1 Quantisation noise in digital filters

The binary number generated by an ADC is assumed to be a fixed point number. Most often this number is represented in 2’s
complement format because that is easily implemented. The 2’s complement representation of a real number, r, in a finite length
register of B bits is:

[r]Q = ∆
(
−b0 +

B−1∑
m=1

bm2−m

)

where:

∆ ≤ r < ∆
b0 = 1 for r ≤ 0
b0 = 0 for r ≥ 0

Here ∆ is the maximum voltage represented and b0 is the sign bit. The quantization step size is q = ∆2−B+1. If the quantiser
rounds to the nearest integer multiple of q then the error in the representation of r can be considered to be uncorrelated from
sample to sample and uniformly distributed in the range

(
− q

2 ,
q
2
)

with variancea σ2
e = q2

12 . This assumes that the frequency
spectrum of the input, u (k), of the quantiser is reasonably broad and that the probability density function of u (k) is broad
relative to q so that several quantization levels are crossed between samples of u (k). The signal-to-noise ratio obtained depends
on the statistics of both the quantization noise and the signal that is quantised, u (k). If u (k) is uniformly distributed over the
range [−∆,∆] then the variance of u (k) is σ2

u = 1
3 and the required number of bits, B, to obtain a signal to noise ratio of SNQ

is b = log2 SNQ

2 .

2’s complement arithmetic does rounding-toward-zero rounding, also called magnitude truncation. The quantisation error is
uniformly distributed in the range (−q, q) with variance σ2

e = q2

3 . For positive inputs the error is negative and for negative
inputs the error is positive. This distribution corresponds to a step input of q

2 at the state round off noise error input to the filter.
Modern digital signal processing ICs use a few gates to provide a rounding-to-nearest arithmetic mode. If this is not present
software rounding may be required to give adequate noise performance. The results presented in the following sections assume
the rounding-to-nearest quantiser. Note that the 2’s complement overflow characteristic has the useful property that immediate
overflows in an accumulator cancel whenever the resulting sum is in range. An example will demonstrate the effect of the
rounding-to-minus-infinity quantiser.

aThe probability density function of the quantisation error of r, e, is pe (x) = q−1 and the mean error is µe = 0. The variance of the error is the second
central moment of the pdf:

σe = E{[e− µe]2} =
ˆ ∞

−∞
(x− µe)2 pe (x) dx =

ˆ q/2

−q/2

x2

q
dx =

q2

12

53

3.2 Limit-cycle oscillations in digital filters

See Roberts and Mullis [193, Section 9.3]. If numbers are represented as 2’s complement integers and there is no provision
for explicitly detecting and correcting overflows then, depending on how the filter is scaled, there is a possibility that internal
registers will overflow. What happens then depends on:

• the nature of the input

• the filter realization

• the number representation used in the filter

• the overflow characteristic used in the filter

The direct form filter has the minimum number of multipliers for a second order filter. However, with a 2’s complement overflow
characteristic the output of the filter after an overflow can, depending on the poles of the filter, become independent of the input
sequence. This condition is called overflow oscillation. A second order direct form filter is free of overflow oscillations provided:

|α1|+ |α2| ≤ 1

where 1 + α1z
−1 + α2z

−2 is the denominator of the transfer function. Many other realizations are free of overflow oscillations
by design.

3.3 State variable filters and wide sense stationary inputs

3.3.1 The filter state covariance matrix

Assume a causal filter H (z) driven by white, wide-sense stationary unit variance white noise inputs, u (k). The covariance
matrix of the filter state is:

K = E
{
x (k)x⊤ (k)

}
= E

{
x (k + 1)x⊤ (k + 1)

}
= E

{
(Ax (k) +Bu (k)) (Ax (k) +Bu (k))⊤

}
= E

{
Ax (k)x⊤ (k)A⊤ +Bu (k)u⊤ (k)B⊤

}
= AKA⊤ +BB⊤

This is known as a discrete Lyapunov equation. Alternatively, since

x (k) =
∞∑

l=0
AlBu (k − l − 1)

the state covariance matrix is

K =
∞∑

m=0

∞∑
l=0

AlBruu (l −m) (AmB)⊤

For unit variance white inputs

K =
∞∑

l=0

(
AlB

) (
AlB

)⊤
Algorithm 3.1 is a simple recursive calculation of the covariance matrix implemented in the Octave function dlyap_recursive.

Alternative methods for calulating the covariance matrix are:

• find the auto-correlation sequence of the characteristic equation of the state transition matrix with the inverse-Levinson
recursion. See Roberts and Mullis [193, Section 9.11, p. 393]. The Octave function dlyap_levinson implements this
solution.

• use Hammarling’s solution of the discrete Lyapunov equation [213]. The Octave Control package contains the dlyap func-
tion that calls functions from an open-source version of the SLICOT library [53] to implement Hammarling’s algorithm.

54

Algorithm 3.1 Recursive calculation of the covariance matrix.
F ← A
K ← BB⊤

repeat
K ← FKF⊤ +K
F ← F 2

until F = 0

3.3.2 The output response to white noise in a state variable

The unit pulse response is a cross-correlation of the input and output

h (k) = E {y (k + l)u (l)}

The autocorrelation sequence for the output is

ryy (k) = E {y (k + l) y (l)}

=
∞∑

l=0
h (k + l)h (l)

Using a state variable description

h (k) =

0 k < 0
D k = 0
CAk−1B k > 0

DFT
⇔

H
(
eıθ
)

= D + C
(
eıθI −A

)−1
B

Since

ryy (k) DFT
⇔

Syy (θ) =
∣∣H (eıθ

)∣∣2
we can express the output autocorrelation sequence directly from {A,B,C,D}. The output autocorrelation sequence is

ryy (k) = E
{
y (k + l) y⊤ (l)

}
= E

{
(Cx (k + l) +Du (k + l)) (Cx (l) +Du (l))⊤

}
= E

{
Cx (k + l)x⊤ (l)C⊤ +Du (k + l)x⊤ (l)C⊤ + Cx (k + l)u⊤ (l)D⊤ +Du (k + l)u⊤ (l)D⊤

}
The first term is

E
{
x (k + l)x⊤ (l)

}
= E

(∞∑

m=0
AmBu (k + l −m− 1)

)(∞∑
m′=0

Am′
Bu (l −m′ − 1)

)⊤
=
∞∑

m=0

∞∑
m′=0

(AmB)
(
Am′

B
)⊤

ruu (k −m−m′)

=
∞∑

m=0
AkAmB (AmB)⊤

= AkK

where we have used the fact that ruu (k −m+m′) = δ (k −m+m′). The cross-correlation between the state and a white
noise input is

E {x (k + l)u (l)} = E

∞∑

j=0
AjBu (k + l − j − 1)u (l)

=
∞∑

j=0
AjBδ (k − j − 1)

=
{
Ak−1B k > 0
0 k ≤ 0

55

(This is also the unit-pulse response from the input to internal states.) The present state is uncorrelated with future inputs so the
term containing is u (k + l)x⊤ (k) is zero. Finally,

ryy (k) = CAkKC⊤ + CAk−1BD⊤

= CAkKC⊤ + h (k)D⊤

The energy in the unit-pulse response is given by

ryy (0) = E
{
y2 (k)

}
=
∞∑

l=0
h2 (l)

= 1
2π

ˆ π

−π

∣∣∣H (eıθ
)2
∣∣∣ dθ

= D2 + CKC⊤

3.3.3 Scaling State Variable Filters To Avoid Overflow

Round off noise is the dominant component of output error in digital filters only when overflows in internal registers are negli-
gible. Overflows are avoided by properly scaling the realization. For a fixed point number representation the range of internal
variables is:

|v (k)| ≤ ∆

The magnitude of ∆ depends on the quantization step size and the number of bits. The unit pulse response from the input, u (k)
to an internal variable, v (k), can be written:

v (k) = (f ⋆ u) (k)

where f is the unit pulse response from the input to v (k) and ⋆ is the convolution operator. The range of values of v depends on
the nature of the input and on the sequence f .

For sinusoidal inputs:

u (k) = cos (kθ)
|v (k)| ≤ max

∣∣F (eıθ
)∣∣

where F is the transfer function from u to v.

For bounded inputs:

|u (k)| ≤ 1

|v (k)| ≤
∑

l

|f (l)| = ∥f∥1

The right side of the expression for the range of v is known as the l1-norm of f . These are called “bang-bang” controller inputs
in control theory. For filter design the l1 norm is usually far too conservative.

For finite energy inputs: ∑
l≤k

u2 (l) ≤ 1

|v (k)| ≤
[∑

l

f2 (l)
] 1

2

= ∥f∥2

The right side of the expression for the range of v is known as the l2-norm of f .

To reconcile these bounds on the range of v with the constraint on the size of v given above we must constrain the “gain” of the
unit-pulse response sequences for the internal variables. The l2-norm scaling rule is:

δ∥f∥2 = δ

[∑
l

f2 (l)
] 1

2

= 1

56

Figure 3.1: Signal flow graph of round-off noise of the state variable.

Figure 3.2: Signal flow graph of round-off noise at the filter output.

The parameter δ is chosen subjectively. It can be interpreted as the number of standard deviations representable in the register
containing v if the input is unit-variance white noise. A good value for δ is 4.

The diagonal components of the state variable covariance matrix,K, given above are related to the l2-norm for each state variable,
x (k), by:

Kii =
∞∑

k=0
f2

i (k) = ∥fi∥2

so the scaling constraint applied to the i-th component of the state vector is:

δ
√
Kii = 1 , i = 1, 2, · · · , n

This can be achieved by applying the coordinate transformation:

T−1 = diag
[

1
t1
, · · · , 1

tn

]
where:

ti = δ
√
Kii , i = 1 , 2 , · · · , n

A geometric interpretation of scaling is as follows: For unit variance stationary Gaussian inputs the set of values of the state
variables

{
x : x⊤K−1x ≤ 1

}
represents the “one standard deviation error ellipsoid” in the filter state

3.4 Estimation of output round-off noise in state variable filters

The z-domain state variable equations with round off noise inputs can be represented by the following signal flow graph shown
in Figure 3.1.

Where e models the round off noise due to calculation of the state vector, x, and n models the round off noise due to calculation
of the output, y. The state variable difference equations for the flow graph are:

x (k + 1) = Ax (k) +Bu (k) + e (k)
y (k) = Cx (k) +Du (k) + n (k)

The contribution of e to the state vector, x, is usually ignored when the filter realization is scaled. The round off noise at the
output can be modeled as shown in Figure 3.2.

Where:

H (z) = D + C (zI −A)−1
B

G (z) = C (zI −A)−1

57

g (k) =
{

0 k ≤ 0
CAk−1 k > 0

G (z) is a vector of transfer functions from each state to the output. g (k) is a vector of unit pulse responses, one for each state.
If we call σ2

i the variance of that part of the output which is the response to e (k), then:

σ2
i = σ2

e

∞∑
k=1

g2
i (k) = σ2

e∥gi∥2

Recall that q is the quantization step size and for a rounding-to-nearest characteristic σ2
e = q2

12 .

These estimates assume that the state variables are truncated after accumulation (ie: a double length accumulator is used).

In a similar fashion to the covariance matrix, K, of the state vector, the energy in the sequence gi can be characterised by the
matrix, W :

W = E
{
gi (k) gi (k)⊤

}
=
∞∑

k=0

(
CAk

)⊤ (
CAk

)
= A⊤WA+ C⊤C

This is also a discrete Lyapunov equation and can be solved in the same manner as the equation for the state covariance matrix,
K. The matrixes K and W are often called the controllability Gramian and observability Gramian, respectively. The Octave
function KW.m returns both K and W given the state variable description {A,B,C,D}. The user can select the algorithm used
to solve the corresponding discrete Lyapunov equation. The default algorithm uses the Octave function dlyap if it is found and
the Levinson recursion otherwise.

The output noise variance due to round-off noise in calculating the i-th state can be written:

σ2
i = σ2

eWii i = 1, · · · , n

After the filter is scaled, the total output error due to round off noise in the calculation of the state vector is:

σ2
total = σ2

eδ
2

n∑
i=1

WiiKii

Wii and Kii are those for the unscaled filter. The sum
∑n

i=1 WiiKii is known as the “noise gain” of the filter realization. It is
invariant under a diagonal (or scaling) coordinate transformation. Under a general coordinate transform, T :

{A , B , C , D, K, W} ←
{
T−1AT , T−1B , CT , T−1KT−1⊤ , T⊤WT

}

The other sources of output noise variance are those due to the input quantization and the round off in calculating the output.
Neither term depends on the filter realization. Output roundoff contributes the amount:

σ2
other = σ2

e

m∑
j=1
∥gj∥2

2

to the output noise. m is the number of non-state variable summation nodes, gj is the unit pulse response from node j to the
output and the quantisation step size at the output and at each node is assumed to be the same ie: the word lengths used are the
same for each state.

The following result can be used to calculate the l2-norm of a transfer function, H (z), with unit pulse response h (k) and state
variable representation {A,B,C,D}:

∥h∥2
2 = D2 + CKC⊤ (3.1)

58

3.4.1 Rounding-to-minus-infinity quantisation noise

As stated in Section 3.1, the results for round-off noise shown above assume rounding-to-nearest rounding. With rounding-to-
nearest rounding, the quantisation error is assumed to be uniformly distributed in the range

(
− q

2 ,
q
2
)

with variance q2

12 , where q
is the quantisation step size. For rounding-to-minus-infinity, the quantisation error is assumed to be uniformly distributed in the
range (0, q) with variance q2

3 . Consequently, rounding-to-minus-infinity rounding of the state variables is equivalent to adding a
step of q

2 at the output of each state. The Octave script gkstep_test.m demonstates the effect of using rounding-to-minus-infinity
rounding in a 3rd order Butterworth filter with cut-off frequency 0.05fS . The Butterworth filter is globally optimised so that
the states are equally scaled. The quantisation noise at the filter output is due to the filtered state variable quantisation noise
in addition to the quantisation noise of the output calculation. The latter has a mean value of q

2 . The state-to-filter-output unit
impulse response has been given above. The state-to-filter-output step response is the sum over time of the impulse response. The
expected step response at the filter output can be estimated as the sum of the state-to-filter-output step responses of each of the
state variables. Figure 3.3 shows the simulated filtered state variable quantisation noise at the output of the filter superimposed
on the summed state-output-to-filter-output step response to a step of q

2 at each state variable.

20 40 60 80 100
-0.5

0

0.5

1

1.5

2

2.5

Sample

A
m

pl
itu

de
(b

its
)

Figure 3.3: Summed state-to-output step response superimposed on the output quantisation noise of a 3rd order Butterworth filter
due to rounding-to-minus-infinity at each state.

The rounding-toward-minus-infinity rounding error is not signal dependent. On the other hand, with the 2’s-complement
rounding-toward-zero rounding, the offset follows the sign of the input signal. The additional signal dependent quantisation
noise introduced by rounding-toward-zero can significantly degrade filter noise performance.

3.5 Minimization of round-off noise in the calculation of the state vector

Minimising the noise gain minimises the round off noise. Mullis and Roberts [35] prove Algorithm 3.2 for equal word-length
filters.

Algorithm 3.3 finds a coordinate transformation, T , that optimises the round-off noise of fixed point, equal wordlength state-
variable filters given the K and W matrices. Algorithm 3.3 is implemented in the Octave function optKW.m.

The globally optimised state variable filter hasO
(
n2) coefficients. An alternative structure such as a lattice filter or a cascade of

lower-order filters has fewer coefficients, O (n), but will have a larger than optimal noise gain. The noise gain for a non-optimal

59

Algorithm 3.2 Minimisation of the noise gain.
If K and W are two n-by-n real symmetric positive definite matrices then:[

1
n

n∑
i=1

KiiWii

] 1
2

≥ 1
n

n∑
i=1

µi

where µ2
i are the eigenvalues of the product KW . Equality holds if-and-only-if for some diagonal matrix D:

K = DWD

and KiiWii = KjjWjj for all i and j.

Algorithm 3.3 Optimisation of the noise gain.

1. Diagonalise K and W :
Since K and W are real, symmetric and positive definite, a decomposition into W = U1D1U

⊤
1 exists. Here U1 is real

and unitary (ie: U∗1U1 = U1U
∗
1 = I , where ∗ means complex conjugate transpose) and D1 is diagonal with real, positive

elements. Recall that for non-singular matrices (AB)−1 = B−1A−1 and (AB)⊤ = B⊤A⊤. Let T1 = U1D
− 1

2
1 then:

W1 = T⊤1 WT1 = I

K1 = T−1
1 K

(
T−1

1
)⊤ = U2D2U

⊤
2

where U2 is real and unitary and D2 is diagonal with real, positive elements. Let T2 = T1U2D
1
4
2 then

W2 = T⊤2 WT2 = D
1
2
2

K2 = T−1
2 K

(
T−1

2
)⊤ = D

1
2
2

2. Balance D
1
2
2 :

Now find a unitary transformation, U3, for which the diagonal elements of U⊤3 D
1
2
2 U3 are nearly equal. U3 can be found as a

sequence of rotations that replace the largest and smallest diagonal elements of D
1
2
2 with their average. In two dimensions:[

x′ y′

y′ z′

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x y
y z

] [
cos θ − sin θ
sin θ cos θ

]
Expand the matrix product and set x′ = z′ so that

tan 2θ = z − x
2y

After eliminating y from x′ and z′:

x′ = z′ = x+ z

2

3. The optimising transform:

T = U1D
− 1

2
1 U2D

1
4
2 U3

filter may be improved by distributing bits unevenly between the states. Mullis and Roberts [35, Section IV] show that if the state
wordlengths are Bi with:

n∑
i=1

Bi = nB

and the quantisation step size for each state is:

q = 2−Bi+1

60

then the choice of Bi is optimised by setting:

KiiWii

22Bi
= c

where c is a constant. Each Bi is given by:

Bi = B + 1
2 log2 KiiWii −

1
2n

n∑
j=1

log2 KjjWjj (3.2)

The optimal output noise is then:

σ2
total =

[
n

3

(
δ

2B

)2
][

n∏
i=1

WiiKii

] 1
n

3.6 Coefficient sensitivity

An additional effect of the use of finite length registers is the quantization of the filter parameters. This appears as a deterministic
change in the filter transfer function. In fact, the sensitivities of the transfer function to the state variable coefficients are bounded
reasonably tightly by the noise-gain. This means that low round off noise and low coefficient sensitivity generally occur together
in digital filters. In general, finite register effects become more severe as the poles of the filter cluster together. The ratio of cut-off
frequency, fc, to sample rate, fS , is a useful measure of this clustering. For small values the finite register effects determine the
realization chosen.

3.7 Factored state variable filters and wide sense stationary inputs

The estimate of round-off noise shown in Section 3.4 only applies to the state variables and does not include the round-off noise
due to arithmetic operations at other nodes in the filter. The factored state variable description can be used to find the variance of
any variable in the realisation. Let

q0 (k) =
[
x (k)
u (k)

]
then the covariance matrix for q0 (k) is

E
{
q0 (k) q⊤0 (k)

}
=
[
E
{
x (k)x⊤ (k)

}
E {x (k)u (k)}

E
{
u (k)x⊤ (k)

}
E
{
u2 (k)

}]
=
[
K 0
0 1

]
≜ K̃0

The factored state variable equations lead to

q
(k)
l+1 = Fl+1q

(k)
l , 0 ≤ l ≤ L− 1

leading to

K̃l+1 = E

{
q

(k)
l+1 (k + 1)

(
q

(k)
l+1 (k + 1)

)⊤}
= Fl+1K̃lF

⊤
l+1

Since the corresponding state variable description is[
A B
C D

]
= FLFL−1 . . . F1

we have

K̃L = E
{
qL (k) q⊤L (k)

}
61

= E

{[
x (k + 1)
y (k)

] [
x⊤ (k + 1) y (k)

]}
=
[
A B
C D

]
K̃0

[
A⊤ B⊤

C⊤ D⊤

]
=
[
AKA⊤ +BB⊤ AKC⊤ +BD⊤

CKA⊤ +DB⊤ CKC⊤ +D2

]
=
[

K AKC⊤ +BD⊤

CKA⊤ +DB⊤ ryy (0)

]

3.8 Frequency transformations and round-off noise

Section 2.2 describes frequency transformations of state-variable filters. If the prototype filter, H (z) of order n, is defined by the
state-variable filter {A,B,C,D} and the all-pass frequency transformation 1/F (z) of order m, is defined by {α, β, γ, δ}, then
the transformed filter, G (z) = H (F (z)), defined by {ABCD} is:

A = I ⊗ α+A (I − δA)−1 ⊗ βγ

B = (I − δA)−1
B ⊗ β

C = C (I − δA)−1 ⊗ γ

D = D + δC (I − δA)−1
B

Mullis and Roberts [34, Section III], consider the state and output covariance matrixes, (also called the controllability and
observability Gramians) K and W of the transformed filter:

K = AKA⊤ + BB⊤

W = AWA⊤ + C⊤C

They prove that if 1/F (z) is a stable mth degree all-pass filter, then there is a positive-definite m ×m symmetric matrix Q for
which:

Q = αQα⊤ + ββ⊤

Q−1 = αQ−1α⊤ + γ⊤γ

Consequently, if

K = AKA⊤ +BB⊤

W = AWA⊤ + C⊤C

then

K = K ⊗Q (3.3)

W = W ⊗Q−1 (3.4)

and the nm second-order modes of the filter G (z) = H (F (z)) are m copies of the n second-order modes of H (z).

62

Chapter 4

State variable filter realisation as a cascade of
second order sections

4.1 Second Order State Variable Filters Optimised for Overflow and Round-Off
Noise

Section 3.5 shows how to calculate the minimum noise state variable filter for an N -th order rational transfer function filter. The
minimum noise filter has O

(
N2) coefficients. This chapter describes the implementation of a rational filter transfer function as

a cascade of optimised second order state variable sections having a total of O (N) coefficientsa. The cascade of second order
sections can be pipelined for hardware implementation by inserting a delay between each section. Experience has shown that
the filter realisation as a cascade of second order sections can successfully implement higher order filters than are possible with
a single high order filter. The cascade of second order sections can be designed to have a round-off noise gain approaching the
minimum possible. The round-off noise variance in the output of a cascade of second order sections includes:

• input quantisation noise filtered by the cascade transfer function

• quantisation noise at the output yj(k) of each sub-filter filtered by the remaining sub-filters

• quantisation noise at the output of the last sub-filter, in which case ∥gm∥2
2 = 1.

4.2 Design equations for optimised second order state variable filters

Roberts and Mullis [193, Figure 9.14.1 with corrections] give the construction of the transformation matrix required to optimise
a second order state variable filter, shown as Algorithm 4.1.

Bomar [25] gives design equations, shown in Algorithm 4.2 for a state variable second order section with scaling δ = 1 and
optimal noise performance. (See also Roberts and Mullis [193, Figure 9.12.1 with corrections]). Bomar assumes that transfer
function of each second order section is arranged in the form:

H (z) = d+ q1z
−1 + q2z

−2

1 + p1z−1 + p2z−2 (4.1)

Bomar [25] also gives design equations, shown in Algorithm 4.3, for a state variable second order section with scaling δ = 1
and near optimal noise performance with one less multiplication (Bomar calls this a type III section). He shows experimentally
for a 6th order low-pass Butterworth filter that the Type III section has a noise gain that is, as for the minimum-noise realisation,
independent of the passband edge frequency.

The Octave function pq2svcasc converts the 2nd-order sections from the d-p-q format of Equation 4.1 into 2nd-order direct-form,
Bomar-Type-III or minimum-noise state variable sections.

Bomar [26] also describes realisation of second-order state variable sections that are “as computationally efficient as possible
subject to preserving low-roundoff noise,low coefficient sensitivity and freedom from limit cycles”. In these realisations some
matrix elements are replaced by single powers of 2.

aRoberts and Mullis [193, Table 10.2.1] show that a block processing implementation of the original SISO state variable filter may well have fewer arithmetic
operations per output than a realisation by a cascade of second order sections.

63

Algorithm 4.1 Construction of optimised second order state variable filters[193, Figure 9.14.1].

Given K =
[
k11 k12
k21 k22

]
and W =

[
w11 w12
w21 w22

]
:

1. Transform K and W using a Cholesky transformation:

Tc =
[√

k11k22−k2
12

k22
k12√
k22

0
√
k22

]
so

K ′ = T−1
c KT−1

c
⊤ =

[
1 0
0 1

]
and

W ′ = T⊤c WTc =
[
w′11 w′12
w′21 w′22

]
2. Apply a rotation transformation to W ′ so that w′12 = w′21 = 0. The eigenvalues of KW are thus the eigenvalues of W ′.

Let

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]

θ =
{

π
4 w′11 = w′22
1
2 arctan

(
2w′

12
w′

11−w′
22

)
w′11 ̸= w′22

Then

K ′′ = I

W ′′ = R (−θ)W ′ (θ)

=
[
µ2

1 0
0 µ2

2

]
3. Now apply a transformation:

µ = µ2

µ1

T = δ

2

[√
1 + µ −

√
1 + µ√

1 + 1
µ

√
1 + 1

µ

]

so that

K ′′′ = 1
δ2

[
1 µ2−µ1

µ2+µ1
µ2−µ1
µ2+µ1

1

]

W ′′′ = δ2

[
(µ2+µ1)2

4
µ2

2−µ2
1

4
µ2

2−µ2
1

4
(µ2+µ1)2

4

]

4. The optimising transform is TcR (θ)T .

64

Algorithm 4.2 Bomar second order optimised state variable filter sections [25, Equation 17]. (See also [193, Figure 9.12.1].)
Compute: A11, A12, A21, A22, b1, b2, c1, c2

v1 = q2

q1

v2 =
√
v2

1 − p1v1 + p2 (Bomar’s µ)

v3 = v1 − v2 (Bomar’s γ)
v4 = v1 + v2 (Bomar’s ξ)
v5 = p2 − 1
v6 = p2 + 1
v7 = v5

(
v2

6 − p2
1
)

(Bomar’s λ)

v8 =
(p1

2

)2
− p2 (Bomar’s ϵ)

A11 = A22 = −p1

2

b1 =
√

v7

2p1v3 − v6 (1 + v2
3)

b2 =
√

v7

2p1v4 − v6 (1 + v2
4)

A21 =

√
v8
v5 + b2

2
v5 + b2

1

A12 = v8

A21

c1 = q1

2b1

c2 = q1

2b2

Algorithm 4.3 Bomar Type III second order optimised state variable filter sections [25, Equation 23].
Compute: A11, A12, A21, A22, b1, b2, c1, c2

A11 = A22 = −p1

2

A12 =

√
1 +

(p1

2

)2
(
p2 − 3
p2 + 1

)

A21 =
(

p1
2
)2 − p2

A12

b1 = 0

b2 =

√√√√√ (1− p2)
[
(1 + p2)2 − p2

1

]
(1 + p2)

[
1 +

(
p1
2
)2
]
− p2

1

c1 = q2 +A11q1

A12b2

c2 = q1

b2

65

4.3 Block optimal second order cascade filter realisations

A cascade of individually optimised second order sections is not block optimal. That is, with the constraint that the sectional
structure is maintained, the output round off noise of the cascade will not be minimised. This is so because for a white noise input
the covariance matrix of the downstream sub-filters must be calculated for a coloured rather than white noise input. A cascade
realization can be block optimised by:

1. Find the state variable description {A,B,C,D} of the cascade

2. Find the {K,W} matrixes of the cascade. For a cascade of second order sections, the 2×2 blocks on the diagonals are the
covariance and noise gain matrices of the individual sections {Ki,Wi}

3. Find the transformation, Ti, that optimises {Ki,Wi} for each section

4. Apply these Ti to each section in the cascade

4.4 An example of a second-order state-variable cascade filter

The Octave script svcasc2noise_example_test.m designs a 20th order Butterworth filter with cut-off frequency fc = 0.1 fS ,
where fS is the sample rate, realised as a cascade of direct-form, Bomar Type III, minimum noise or block-optimised second-
order state variable sections with a state variable scaling of δ = 4. The Octave function butter2pq calculates the coefficients
of a highpass or lowpass Butterworth filter with second order sections in the form of the rational transfer function shown in
Equation 4.1. The sections are ordered with increasing pole angleb. The Octave function pq2svcasc converts these coefficients
to second-order direct-form, Bomar Type III or minimum-noise state variable sections. The pq2blockKWopt function block-
optimises the second-order direct-form cascade realisation. If the transfer function has odd order then pq2blockKWopt makes
the final section a direct-form first-order section with an unused state variable. Note that, to avoid numerical problems, the
svcasc2Abcd function will quietly remove an obviously unused state variable so that the state variable matrixes have the expected
size for the odd filter order. For an odd order filter realised as a cascade of second-order minimum-noise or Bomar Type III
sections svcasc2Abcd may not be able to remove the unused state variable. This may cause numerical problems when calculating
the K and W covariance matrixes of the complete second-order cascade. In practice, the block-optimised second-order cascade,
as generated by pq2blockKWopt, is the preferred realisation.

The example script uses the Octave function svcasc2noise to calculate the section noise-gain for each realisation generated by
pq2svcasc and for the block-optimised realisation generated by pq2blockKWopt. svcasc2noise also calculates an estimate of the
contribution of the output roundoff noise for that section at the overall cascade output. Finally, svcas2noise estimates the optimal
state variable bit distribution according to Equation 3.2.

The example script compares the overall noise gains for each cascade realisation with the section pole angles in increasing and
decreasing order. That is, in the latter case the sections are in the reverse order to that calculated by butter2pq.

For comparison, the example script finds the overall state variable matrix with svcasc2Abcd and calculates the noise gain of the
globally optimised filter. Recall that in the worst case, the globally optimised N th order filter requires (N + 1)2 multiplies and
the second-order cascade requires 4.5N multiplies.

Finally, the example script compares the estimated and simulated output roundoff noise variance of the block optimised second
order cascade lowpass and highpass filters with the globally optimised state variable versions of those filters.

4.4.1 Comparison of calculated noise gains

Table 4.1 shows the section noise gains for each low-pass filter realisation. The coefficients used for these calculations are
floating-point, not rounded, in order to illustrate the frequency independence of the optimised sections. As expected, the second-
order minimum-noise, block-optimised and globally optimised realisations have the same noise gain in the high-pass and low-
pass filters. Table 4.2 shows the section noise gains for each high-pass filter realisation.

Recall that the noise gain for each section estimates the contribution of the state variable roundoff noise from that section in the
overall filter cascade output. This is not the same as the noise gain from the section state variables to the section output. If you
calculate the latter separately for each section, then the state variable noise gain at each section output of the minimum-noise

bThe Octave function sos2pq converts the output of the Octave-Forge signal package [166] tf2sos function to p-q format

66

Section Direct Bomar III Min. Noise Block Opt.

1 5.5186 1.3967 1.3690 1.2794
2 10.9408 2.6388 2.4110 2.0731
3 15.0831 4.0774 3.5375 2.9953
4 13.6247 4.2012 3.5377 3.0481
5 9.0410 3.1335 2.6059 2.3064
6 4.8920 1.8552 1.5420 1.4031
7 2.3858 0.9592 0.8043 0.7520
8 1.1733 0.4837 0.4133 0.3974
9 0.6722 0.2766 0.2447 0.2420
10 0.5977 0.2652 0.2656 0.2585

Table 4.1: Section noise gains for the 20th order Butterworth lowpass filter

Section Direct Bomar III Min. Noise Block Opt.

1 2.4789 1.3466 1.3690 1.2794
2 4.7116 2.3861 2.4110 2.0731
3 10.3506 3.8681 3.5375 2.9953
4 14.0168 4.5558 3.5377 3.0481
5 12.3990 3.9417 2.6059 2.3064
6 8.0563 2.6454 1.5420 1.4031
7 4.2929 1.4971 0.8043 0.7520
8 2.0938 0.7954 0.4133 0.3974
9 1.0736 0.4607 0.2447 0.2420
10 0.8492 0.4276 0.2656 0.2585

Table 4.2: Section noise gains for the 20th order Butterworth highpass filter

filter will be found to be less than that of the corresponding section from the Bomar Type III filter. This explains the apparent
discrepancies in Table 4.1 and Table 4.2. The noise-gains for each second-order minimum-noise section calculated according to
Bomar’s equations, as shown in Algorithm 4.2, agree with those calculated following the general method shown in Algorithm 4.1,
although the state variable coefficients found by the two methods are different.

Tables 4.3 and 4.4 show the overall noise gains for each filter realisation with sections ranked in order of increasing and decreasing
pole angle for the lowpass and highpass filters respectively. For the block optimised cascade the noise gain in parentheses shows
that calculated if the cascade is not re-optimised after the section order is reversed.

Section Section pole Section pole
design angle increasing angle decreasing

Direct 63.9292 63.5261
Bomar III 19.2876 15.8799
Min. Noise 16.7309 16.7309
Block Opt. 14.7554 14.7554 (21.48)

Global Opt. 1.6848 1.6848

Table 4.3: Overall noise gains for the 20th order Butterworth lowpass filter

4.4.2 Simulation results

Figure 4.1 shows the simulated response of the 20th order Butterworth lowpass filter realised as a block optimised cascade of
second order sections with coefficients rounded to 10 bits and 10 bit state storage. Figure 4.2 shows the simulated response of
the corresponding 20th order Butterworth highpass filter. Tables 4.5 and 4.6 show the simulated and estimated output roundoff
noise variance for the 20th order Butterworth lowpass and highpass filter respectively.

The input signal is a uniformly distributed random noise signal with a nominal standard deviation of 28. The state variables
are scaled with δ = 4 so that the nominal standard deviation of the state variables is 26. In each case the section outputs, state
variables and coefficients are rounded to 10 bits. The effect of coefficient truncation on the noise-gain is seen by comparison with

67

Section Section pole Section pole
design angle increasing angle decreasing

Direct 60.3228 24.1559
Bomar III 21.9245 21.3406
Min. Noise 16.7309 16.7309
Block Opt. 14.7554 14.7554 (21.48)

Global Opt. 1.6848 1.6848

Table 4.4: Overall noise gains for the 20th order Butterworth highpass filter

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure 4.1: Simulated amplitude response of the 20th order lowpass Butterworth filter realised as a block optimised cascade of
second-order sections with 10-bit coefficents and state storage.

Estimated Estimated Simulated
noise gain noise variance noise variance

Scaled Direct 67.89 90.67 65.31
Block Opt. 16.34 21.94 19.94
Block Opt. (extra bits) 5.44 7.41 6.43
Global Opt. 1.71 2.37 2.33

Table 4.5: Estimated noise gain and estimated and simulated output roundoff noise variances for the 20th order Butterworth
lowpass filter with 10 bit rounded coefficients.

Estimated Estimated Simulated
noise gain noise variance noise variance

Scaled Direct 61.11 81.97 61.50
Block Opt. 15.81 21.57 20.50
Block Opt. (extra bits) 5.26 7.50 7.22
Global Opt. 1.69 2.34 2.34

Table 4.6: Estimated noise gain and estimated and simulated output roundoff noise variances for the 20th order Butterworth
highpass filter with 10 bit rounded coefficients.

68

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure 4.2: Simulated amplitude response of the 20th order highpass Butterworth filter realised as a block optimised cascade of
second-order sections with 10-bit coefficents and state storage.

Estimated Estimated Simulated
noise gain noise variance noise variance

Scaled Direct 7.36 9.93 6.93
Block Opt. 1.92 2.69 2.62
Block Opt. (extra bits) 1.10 1.59 1.59
Global Opt. 1.01 1.43 1.43

Table 4.7: Estimated noise gain and estimated and simulated output roundoff noise variances for the 10th order Butterworth
lowpass filter with 10 bit rounded coefficients.

the calculated values shown in Table 4.3 and Table 4.4. The simulation results suggest that, to avoid overflow, the intermediate
section outputs should be kept in a double-length accumulator. For comparison, the tables show the simulation results for the
globally-optimised filter and the improvement obtained by adding an extra bit to the state variables in the first 6 sections of the
block-optimised filter. (See Equation 3.2). When calculating the output noise gain of the block optimised cascade with additional
state variable bits in some sections, the noise gain for the individual section is scaled in proportion to the number of extra bits for
that section. The nominal standard deviation of these state variables is 27.

4.4.3 Comparison with an N=10 example

The order 20 Butterworth filter was chosen as an extreme example. Table 4.7 shows the simulation results obtained by setting
N = 10 in svcasc2noise_example_test.m.

69

4.5 Coefficient sensitivity and round-off noise of first-order and second-order all-
pass filter sections

Digital filters implemented as the parallel combination of two or more allpass filters typically have low coefficient sensitiv-
ity [179]. The transfer function of a filter consisting of parallel all-pass filters A (z) and B (z) is:

H (z) = A (z) +B (z)
2

The frequency response of this filter is:

H (ω) = eϕA(ω) + eϕB(ω)

2
where ϕA (ω) and ϕB (ω) are the phase responses of the all-pass filters. The corresponding squared-amplitude, phase and group
delay responses are:

|H (ω)|2 = 1 + cos (ϕA (ω)− ϕB (ω))
2

ϕH (ω) = ϕA (ω) + ϕB (ω)
2

T (ω) = −1
2

[
∂ϕA (ω)
∂ω

+ ∂ϕB (ω)
∂ω

]

When the all-pass branches of a parallel all-pass filter are realised as the cascaded connection of first and second order all-pass
filters then the phase response of each branch is, without loss of generality, ϕA (ω) =

∑
l ϕAl

(ω) where ϕAl
is the phase

response of the l’th first or second order all-pass section. If x represents a multiplier coefficient in the realisation of section Al,
then the squared-amplitude and group delay sensitivities with respect to x are:

S|H|
2

x (ω) = − 1
|H (ω)|2

sin (ϕA (ω)− ϕB (ω))
2

∂ϕAl
(ω)

∂x

S⊤x (ω) = − 1
T (ω)

1
2
∂2ϕAl

(ω)
∂ω∂x

The transfer function of a first order all-pass filter section is:

H (z) = − r − z−1

1− rz−1

where r is real. The filter is stable if |r| < 1.

The transfer function of a second order all-pass filter section is:

H (z) = a2 + a1z
−1 + z−2

1 + a1z−1 + a2z−2

The transfer function of a second order all-pass filter section with complex poles in the z-plane at z = re±ıθ is:

H (z) =
(
reıθ − z−1) (re−ıθ − z−1)

(1− reıθz−1) (1− re−ıθz−1)

= r2 − 2r cos θz−1 + z−2

1− 2r cos θz−1 + r2z−2

where r is real. The filter is stable if |r| < 1. The transfer function of a second order all-pass filter section with real poles in the
z-plane at z = r1, r2 is:

H (z) =
(
r1 − z−1) (r2 − z−1)

(1− r1z−1) (1− r2z−1)

= r1r2 − (r1 + r2) z−1 + z−2

1− (r1 + r2) z−1 + r1r2z−2

The filter is stable if |r1| < 1 and |r2| < 1.

This section surveys the maximum phase response gradient, ∂ϕ
∂x , and round-off noise performance of a selection of first-order and

second-order all-pass filter section transfer functions and realisations. The Maxima script allpass_filter.max performs the algebra
required to find the state variable description of each realisation and the Octave scripts Abcd2H.m and H2P.m calculate the phase
response gradient (see Appendix J).

70

4.5.1 Searching for realisations of all-pass filter transfer functions

Mitra and Hirano [215] show a catalogue of realizations of minimum multiplier first and second order all-pass filters. They
consider realizations of the Type 1 first order all-pass transfer function:

H1 (z) = z−1 − b1

1− b1z−1 (4.2)

as a two-port network with a constraint: [
Y1
Y2

]
=
[
t11 t12
t21 t22

] [
X1
X2

]
X2 = b1Y 2

Eliminating variables X2 and Y2:

Y1

X1
= t11 − b1 (t11t22 − t12t21)

1− t22b1

Comparing with Equation 4.2:

t11 = t22 = z−1

t12t21 = z−2 − 1

There are four possible realisations of t12 and t21: t12 = z−2−1, t21 = 1 and t12 = z−1−1, t21 = z−1 +1 and their transposed
equivalents [215, Fig. 2].

In a similar fashion, Mitra and Hirano find realisations of the Type 2 and Type 3 second order all-pass transfer functions:

HMH2 (z) = z−2 − b1z
−1 + b1b2

1− b1z−1 + b1b2z−2 (4.3a)

HMH3 (z) = z−2 − b1z
−1 + b2

1− b1z−1 + b2z−2 (4.3b)

Their realisations of these transfer functions are constrained to have only 2 multipliers but may have more than 2 delays. Mitra
and Hirano show 4 Type 2 and 8 Type 3 realisationsc. Mitra and Hirano show plots of the estimated output round-off noise of
each realisation [215, Fig.9, Fig.10 and Fig.11] due to truncation at the multiplier outputs. This estimate does not include the
round-off noise due to truncation at the register inputs.

Nishihara and Sugahara [8] present a catalogue of general (not just all-pass) second order filter realisations with low pole
sensitivity with respect to each of the two multipliers in the realisation. They show 37 realisationsd.

Szczupak et. al [101] describe a computer based search for realisations in which the two coefficients of the second order all-pass
filter transfer function are themselves functions of two multipliers. They find 646 distinct realisations.

cThere are equal numbers of transposed realisations.
dNote the complexity of the classification map shown in Figure 2!

71

(a) Direct form first order all-pass filter section.

(b) Gray and Markel first order all-pass filter section.

(c) Stoyanov et al. low sensitvity first order all-pass filter section.

Figure 4.3: First order all-pass filter sections.

4.5.2 Maximum phase gradient and round-off noise of some first-order all-pass filter sections

Equation 4.4 is the transfer function of the first order direct form all-pass filter section shown in Figure 4.3a. This realisation has
2 multipliers.

HDir1 (z) = b1 + z−1

1 + b1z−1 (4.4)

The Gray and Markel [4] first order all-pass filter section shown in Figure 4.3b also implements the transfer function of Equa-
tion 4.4. The ϵ1 = ±1 are chosen to scale the state for good numerical performance in the implementation. The choice of ϵ does
not alter the transfer function or the noise gain.

Equation 4.5 is the transfer function of the first order all-pass filter section of Stoyanov et al. [72] shown in Figure 4.3c. This
realisation has low sensitivity for filter poles near z = 1.

HLS1 (z) = − (1− c1) + z−1

1− (1− c1) z−1 (4.5)

Figure 4.5 plots the maximum of the gradient of the first-order all-pass filter phase response with respect to the section coefficient
against the pole radius. It is the same for each realisation. The noise gain of each scaled realisation was calculated with the Octave
function Abcd2ng.m, as shown in Chapter 3. The noise gain is found to be 1 for each realisation regardless of pole radius. For the
direct-form section, a slowed and retimed realisation, shown in Figure 4.4, was analysed. Slowing is the replacement of each z−1

delay by z−M , reducing the sample rate. The realisation is retimed by distributing the delays so that there is a register, or state,
at each multiplier output. This allows calculation by the state-variable method of the output round-off noise due to truncation
at both the register inputs and the multiplier outputs. See Parhi [116, Chapter 4] for a description of retiming algorithms. The
Maxima script allpass_filter_retimed.max performs the algebra required to find the state variable description of each retimed
filter realisation.

72

Figure 4.4: Retimed first-order direct form all-pass filter section.

0 0.2 0.4 0.6 0.8 1
100

101

102

Pole radius

M
ax

im
um

ph
as

e
gr

ad
ie

nt

Figure 4.5: Maximum phase gradient plotted against pole radius of first order all-pass filter sections.

73

4.5.3 Maximum phase gradient and round-off noise of some second-order all-pass filter sections

Equation 4.6 is the transfer function of the second-order direct-form all-pass filter section shown in Figure 4.6a. This realisation
has 4 multipliers.

HDir2 (z) = b2 + b1z
−1 + z−2

1 + b1z−1 + b2z−2 (4.6)

Equation 4.7 is the transfer function of the second order Gray-and-Markel all-pass filter section shown in Figure 4.6b. The
ϵ1, ϵ2 = ±1 are chosen to scale the states.

HGM2 (z) = k2 + k1 (1 + k2) z−1 + z−2

1 + k1 (1 + k2) z−1 + k2z−2 (4.7)

Figure 4.6c shows a realisation of Equation 4.7 due to Ansari and Liu [194]. This realisation has low noise gain for poles near
z = ±ı.

The three port transfer matrix of the Mitra and Hirano [215] type 2d realisation of Equation 4.3a is: z−2 1 0
z−1 (z−2 − 1

)
z−1 1

z−4 − 1 z−2 0

 (4.8)

and that of the type 3d realisation of Equation 4.3b is: z−2 1 1
z−1 (z−2 − 1

)
z−1 z−1

z−4 − 1 z−2 z−2

 (4.9)

Figures 4.6d and 4.6e show the type 2d and transposed type 2d realisations of Equation 4.3a. Figures 4.6f and 4.6g show the type
3d and transposed type 3d realisations of Equation 4.3b. The state variable implementations of the transposed realisations have
duplicated state updates. In other words, the rows of the state-transition matrix are not linearly independent.

Equation 4.10 is the transfer function of the second order all-pass filter section of Stoyanov et al. [72] shown in Figure 4.6h. This
realisation has low sensitivity for filter poles near z = 1.

HLS2 (z) = (1− c2) + (2c1 + c2 − 2) z−1 + z2

1 + (2c1 + c2 − 2) z−1 + (1− c2) z−2 (4.10)

Equation 4.11 is the transfer function of the second order all-pass filter section of Ivanova and Stoyanov [112] shown in Fig-
ure 4.6i. This realisation has low sensitivity for filter poles near z = 0.

HIS (z) = d2 + (d1d2 − d1 − 2d2) z−1 + z2

1 + (d1d2 − d1 − 2d2) z−1 + d2z−2 (4.11)

74

(a) Direct form second order all-pass filter section.

(b) Gray-and-Markel second order all-pass filter section.

(c) Ansari-and-Liu second order all-pass filter section.

(d) Mitra-and-Hirano Type 2d second order all-pass filter section.

(e) Mitra-and-Hirano transposed type 2d second order all-pass filter section.

75

(f) Mitra-and-Hirano type 3d second order all-pass filter section.

(g) Mitra-and-Hirano transposed type 3d second order all-pass filter section.

(h) Stoyanov et al. low sensitvity near z = 1 second order all-pass filter section.

(i) Ivanova-and-Stoyanov low sensitivity near z = 0 second order all-pass filter section.

Figure 4.6: Second order all-pass filter sections.

76

Maximum phase gradient of some second-order all-pass filter sections

Figure 4.7 shows the maximum of the gradient of the phase plotted against the second-order direct-form coefficients b1 and b2
in Equation 4.6 for real poles plotted against the real pole radius. Figure 4.8 shows the maximum of the gradient of the phase
plotted against the same coefficients for complex conjugate poles plotted against pole angle.

Figure 4.9 shows the maximum of the gradient of the phase plotted against the second-order Gray and Markel and Ansari and Liu
coefficients k1 and k2 in Equation 4.7 for real poles plotted against pole radius. Figure 4.10 shows the maximum of the gradient
of the phase plotted against the same coefficients for complex conjugate poles plotted against pole angle.

Figure 4.11 shows the maximum of the gradient of the phase plotted against the Mitra and Hirano type 2d second-order all-pass
filter section coefficients b1 and b2 in Equation 4.3a for real poles. Figure 4.12 shows the maximum of the gradient of the phase
plotted against the same coefficients for complex conjugate poles. The phase gradient is not defined at a pole angle of π

2 .

Figure 4.13 shows the maximum of the gradient of the phase plotted against the Mitra and Hirano type 3d second-order all-pass
filter section coefficients b1 and b2 in Equation 4.3b for real poles. Figure 4.14 shows the maximum of the gradient of the phase
plotted against the same coefficients for complex conjugate poles.

Figure 4.15 shows the maximum of the gradient of the phase plotted against the coefficients c1 and c2 of the second-order low-
sensitivity near z = 1 section of Stoyanov et al. having the transfer function shown in Equation 4.10 for real poles. Figure 4.16
shows the maximum of the gradient of the phase plotted against the same coefficients for complex conjugate poles.

Figure 4.17 shows the maximum of the gradient of the phase plotted against the coefficients d1 and d2 of the second-order
low-sensitivity near z = 0 section of Ivanova and Stoyanov having the transfer function shown in Equation 4.11 for real poles.
Figure 4.18 shows the maximum of the gradient of the phase plotted against the same coefficients for complex conjugate poles.

77

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.7: Maximum phase gradient plotted against pole radius of the second-order direct-form all-pass filter section with real
poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.8: Maximum phase gradient plotted against pole angle of the second-order direct-form all-pass filter section with
complex conjugate poles.

78

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.9: Maximum phase gradient plotted against pole radius of the second-order Gray-and-Markel and Ansari-and-Liu all-
pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.10: Maximum phase gradient plotted against pole angle of the second-order Gray-and-Markel and Ansari-and-Liu all-
pass filter section with complex conjugate poles.

79

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.11: Maximum phase gradient plotted against pole radius of the second-order Mitra-and-Hirano type 2d all-pass filter
section with real poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.12: Maximum phase gradient plotted against pole angle of the second-order Mitra-and-Hirano type 2d all-pass filter
section with complex conjugate poles.

80

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.13: Maximum phase gradient plotted against pole radius of the second-order Mitra-and-Hirano type 3d all-pass filter
section with real poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.14: Maximum phase gradient plotted against pole angle of the second-order Mitra-and-Hirano type 3d all-pass filter
section with complex conjugate poles.

81

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.15: Maximum phase gradient plotted against pole radius of the second-order Stoyanov low-sensitivity mear z = 1
all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.16: Maximum phase gradient plotted against pole angle of the second-order Stoyanov low-sensitivity near z = 1 all-
pass filter section with complex conjugate poles.

82

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole radius r1

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.17: Maximum phase gradient plotted against pole radius of the second-order Ivanova and Stoyanov low-sensitivity near
z = 0 all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
100

101

102

103

Pole angle(rad./π)

M
ax

im
um

ph
as

e
gr

ad
ie

nt

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.18: Maximum phase gradient plotted against pole angle of the second-order Ivanova and Stoyanov low-sensitivity near
z = 0 all-pass filter section with complex conjugate poles.

83

Figure 4.19: Retimed Mitra-and-Hirano type 2d second-order direct form all-pass filter section.

Noise gain of some second-order all-pass filter sections

As for the first-order direct-form section the noise gain of the scaled second-order direct-form section can be estimated with a
slowed and retimed realisation.

Figure 4.20 shows the noise gain of a scaled realisation with real poles of Equation 4.6. Figure 4.21 shows the noise gain of a
scaled realisation with complex conjugate poles.

As for the second-order direct-form section the noise gain of the scaled second-order Gray and Markel section can be estimated
with a slowed and retimed realisation. As for the first-order Gray and Markel section, the ϵ coefficients do not alter the transfer
function or noise gain but must be selected for effective internal state scaling in a fixed-point implementation. Figure 4.22 shows
the noise gain of a scaled realisation with real poles. Figure 4.23 shows the noise gain of a scaled realisation with complex
conjugate poles.

The noise gain of the scaled second-order Ansari and Liu section can be estimated with a slowed and retimed realisation. Fig-
ure 4.24 shows the noise gain of a scaled realisation with real poles. Figure 4.25 shows the noise gain of a scaled realisation with
complex conjugate poles.

The noise gain of the scaled second-order Mitra and Hirano type 2d section can be estimated with the retimed realisation shown
in Figure 4.19. The section is retimed by adding a z−1delay at the output and then redistributing the delay “backwards” until the
output of the b1 multiplier is registered.

Figure 4.26 shows the noise gain of a scaled realisation with real poles. Figure 4.27 shows the noise gain of a scaled realisation
with complex conjugate poles.

The noise gain of the scaled second-order Mitra and Hirano type 3d section can be estimated without slowing or retiming the
retimed realisation. Figure 4.28 shows the noise gain of a scaled realisation with real poles. Figure 4.29 shows the noise gain of
a scaled realisation with complex conjugate poles.

The round-off noise of the second-order Stoyanov low-sensitivity section can be estimated without slowing and retiming the
realisation. Figure 4.30 shows the noise gain of a scaled realisation with real poles. Figure 4.31 shows the noise gain of a scaled
realisation with complex conjugate poles.

The round-off noise of the second-order Ivanova and Stoyanov low-sensitivity near z = 0 section can be estimated with a slowed
and retimed realisation. Figure 4.32 shows the noise gain of a scaled realisation with real poles. Figure 4.33 shows the noise gain
of a scaled realisation with complex conjugate poles.

84

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.20: Noise gain of the scaled and retimed second-order direct-form all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.21: Noise gain of the scaled and retimed second-order direct-form all-pass filter section with complex conjugate poles.

85

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.22: Noise gain of the scaled and retimed second-order Gray-and-Markel all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.23: Noise gain of the scaled and retimed second-order Gray-and-Markel all-pass filter section with complex conjugate
poles.

86

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.24: Noise gain of the scaled and retimed second-order Ansari-and-Liu all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.25: Noise gain of the scaled and retimed second-order Ansari-and-Liu all-pass filter section with complex conjugate
poles.

87

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.26: Noise gain of the scaled and retimed second-order Mitra-and-Hirano type 2d all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.27: Noise gain of the scaled and retimed second-order Mitra-and-Hirano type 2d all-pass filter section with complex
conjugate poles.

88

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.28: Noise gain of the scaled second-order Mitra-and-Hirano type 3d all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.29: Noise gain of the scaled second-order Mitra-and-Hirano type 3d all-pass filter section with complex conjugate poles.

89

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.30: Noise gain of the scaled second-order Stoyanov low-sensitivity near z = 1 all-pass filter section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.31: Noise gain of the scaled second-order Stoyanov low-sensitivity near z = 1 all-pass filter section with complex
conjugate poles.

90

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole radius r1

N
oi

se
ga

in

r2=0.99
r2=0.75
r2=0.50
r2=0.25

Figure 4.32: Noise gain of the scaled and retimed second-order Ivanova-and-Stoyanov low-sensitivity near z = 0 all-pass filter
section with real poles.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

Pole angle(rad./π)

N
oi

se
ga

in

r=0.99
r=0.75
r=0.50
r=0.25

Figure 4.33: Noise gain of the scaled and retimed second-order Ivanova-and Stoyanov low-sensitivity near z = 0 all-pass filter
section with complex conjugate poles.

91

Chapter 5

Filter synthesis by the Schur decomposition

This chapter follows Parhi [116, Chapter 12].

5.1 The Schur algorithm

From Parhi [116, Chapter 12]:

The Schur algorithm was originally used to test if a power series is analytic and bounded in the unit disk. If an
N -th order polynomial ΦN (z) has all zeros inside the unit circle then N + 1 polynomials

{Φi (z) , i = N,N − 1, . . . , 0}

can be generated by the Schur algorithm. One of the most important properties of the Schur algorithm is that these
N + 1 polynomials form an orthonormal basis that can be used to expand any N -th order polynomial.

In this section, the inner product formulation used to demonstrate orthonormality is based on the calculation of the signal power
at an internal node of a digital filter. Appendix A.6 contains a review of the complex variables theory required in this section.

5.1.1 Computation of Schur polynomials

The denominator of a stable IIR filter is a Schur polynomial because it has no zeros on or outside the unit circle. Define the N -th
order denominator polynomial as:

DN (z) =
N∑

i=0
diz

i

Initialise the N -th order Schur polynomial ΦN (z) as:

ΦN (z) = DN (z) =
N∑

i=0
ϕiz

i

From ΦN (z) form the polynomial ΦN−1 (z) by:

ΦN−1 (z) =
z−1 {ϕN ΦN (z)− ϕ0Φ̃N (z)

}√
ϕ2

N − ϕ2
0

=
z−1 {ΦN (z)− kN Φ̃N (z)

}√
1− k2

N

where kN = ϕ0/ϕN and Φ̃N (z) is the reverse polynomial of ΦN (z) defined by:

Φ̃N (z) = zN ΦN

(
z−1)

92

Figure 5.1: A filter structure implementing H (z) = NN (z)
PN (z) (after Parhi [116, Fig. 12.1]).

The degree of ΦN−1 (z) is 1 less than that of ΦN (z) since, by a change of variables the numerator is:

z−1 {ϕN ΦN (z)− ϕ0Φ̃N (z)
}

= z−1
N∑

i=0

{
ϕNϕiz

i − ϕ0ϕN−iz
i
}

=
N∑

i=1
{ϕNϕi − ϕ0ϕN−i} zi−1

For ΦN (z) to be a Schur polynomial, |ki| < 1 for each polynomial in the set {ΦN (z) ,ΦN−1 (z) , . . . ,Φ1 (z)}. Parhi [116,
Equation 12.6] points out that by inspection of ΦN−1 (z), the coefficients of increasing powers of z in ΦN−1 (z) are 1√

ϕ2
N
−ϕ2

0
times the N determinants of the 2× 2 submatrices formed by the first column and each succeeding column in the matrix:[

ϕN ϕN−1 ϕN−2 . . . ϕ2 ϕ1 ϕ0
ϕ0 ϕ1 ϕ2 . . . ϕN−2 ϕN−1 ϕN

]
The Schur decomposition of a polynomial is implemented in the Octave function schurdecomp. The C++ file schurdecomp.cc
implements schurdecomp as an oct-file using the MPFR abitrary precision floating point library [119, 68] written by Fousse et
al. [1]. The mantissa precision is set to 256 bits.

5.1.2 Orthonormality of Schur Polynomials

The filter structure shown in Figure 5.1 implements a real causal stable transfer function H (z) = NN (z) /DN (z). The transfer
function from the input node to node p is P (z) /DN (z). If the input signal is modeled as random and white with unit power,
then the average power at node p is:

Pp = 1
2π

π̂

−π

∣∣∣∣ P (eıω)
DN (eıω)

∣∣∣∣2 dω
= 1

2π

π̂

−π

P (eıω)P (e−ıω)
DN (eıω)DN (e−ıω)dω

On the unit circle, z = eıω , so in the z-domain:

Pp = 1
2πı

‰
C

P (z)P
(
z−1) z−1

DN (z)DN (z−1) dz

Where the contour is taken in the anti-clockwise direction about the origin. Recall that all the zeros of DN (z) are inside the unit
circle, C. Now define the inner product of two internal polynomials P (z) and Q (z) as:

⟨P (z) , Q (z)⟩ = 1
2πı

‰
C

P (z)Q
(
z−1) z−1

DN (z)DN (z−1) dz

so that Pp = ⟨P (z) , P (z)⟩. This is a valid inner product definition because it has the following three properties:

1. Conjugate symmetry:

⟨P (z) , Q (z)⟩ = ⟨Q (z) , P (z)⟩∗

where ∗ represents the complex conjugate transpose. This can be verified by a change of variables. The coefficients of
P (z) and Q (z) are usually real.

93

2. Linearity: for any real constants α, β and γ:

⟨αP (z) , βQ (z) + γR (z)⟩ = αβ ⟨P (z) , Q (z)⟩+ αγ ⟨P (z) , R (z)⟩

3. Positive norm:

⟨P (z) , Q (z)⟩ ≥ 0

with equality if-and-only-if P (z) = 0.

Some identities: 〈
ΦN (z) , zi

〉
=
{

1
ϕN

i = N

0 0 ≤ i ≤ N − 1

PROOF: Recall that Φ̃N (z) = zN ΦN

(
z−1). Then〈

ΦN (z) , zi
〉

= 1
2πı

‰
C

ΦN (z) z−i

ΦN (z) ΦN (z−1)dz

= 1
2πı

‰
C

zN−i−1

Φ̃N (z)
dz

=
{

1
ΦN

i = N

0 otherwise

The reverse Schur polynomial has all its roots outside the unit circle so the integrand is analytic within the unit circle if 0 ≤ i < N
and Cauchy’s Integral Theorem applies. The result for i = N follows from Cauchy’s Integral Formula. Similarly:

〈
Φ̃N (z) , zi

〉
=
{

1
ϕN

i = 0
0 i ≥ 1

If

P (z) =
N∑

i=0
piz

i

then:

⟨ΦN (z) , P (z)⟩ = pN

ϕN〈
Φ̃N (z) , P (z)

〉
= p0

ϕN

Also:

⟨ΦN (z) ,ΦN (z)⟩ = 1〈
Φ̃N (z) , Φ̃N (z)

〉
= 1〈

ΦN (z) , Φ̃N (z)
〉

= ϕ0

ϕN〈
z−jΦN (z) , zi

〉
=
〈
ΦN (z) , zi+j

〉〈
z−jΦ̃N (z) , zi

〉
=
〈
Φ̃N (z) , zi+j

〉
The Schur polynomials satisfy the following orthonormality condition:

⟨Φi (z) ,Φj (z)⟩ =
{

1 i = j

0 i ̸= j

where 0 ≤ i, j ≤ N . See the proof in Parhi [116, Appendix D]. The reverse Schur polynomials are not orthonormal. However:〈
Φ̃i (z) , zi−jΦ̃j (z)

〉
=
〈
zj−iΦ̃j

(
z−1) , Φ̃i

(
z−1)〉

=
〈
zjΦ̃j

(
z−1) , ziΦ̃i

(
z−1)〉

= ⟨Φj (z) ,Φi (z)⟩
= 0

where 0 ≤ j ≤ i ≤ N . Therefore the polynomials{
Φ̃N (z) , zΦ̃N−1 (z) , z2Φ̃N−2 (z) , . . . , zN Φ̃0 (z)

}
also form an orthonormal basis. This basis can be used to synthesise an alternative lattice structure. Parhi [116, Section 12.7.2]
shows that the reverse polynomial structure has inferior round off noise performance when compared with the forward polynomial
structure described later in this summary.

94

5.1.3 Polynomial Expansion Algorithm

The Schur polynomials in the set {ΦN (z) , . . . ,Φ0 (z)} form an orthonormal basis. Therefore any N -th order polynomial
NN (z) can be expanded as

NN (z) =
N∑

i=0
ciΦi (z)

Algorithm 5.1 shows the Schur expansion of an arbitrary polynomial in a Schur basis.

Algorithm 5.1 Schur polynomial expansion (see Parhi [116, Section 12.2.3]).
For any polynomial Nm (z) of degree m, (0 < m ≤ N):
Q (z) = Nm (z)
ci = 0, for m < i ≤ N
for i = m,m− 1, . . . , 0 do

ci = Q̃(0)
Φ̃i(0)

Q (z) = Q (z)− ciΦi (z)
end for

Q̃ (z) and Φ̃i (z) are the reverse polynomials of Q (z) and Φi (z).

For lattice filter implementations of a rational transfer function, the denominator is synthesised using the Schur algorithm and the
numerator is synthesised using the polynomial expansion algorithm with the orthonormal functions obtained from the denomina-
tor. The Schur expansion of a polynomial is implemented in the Octave function schurexpand. The C++ oct-file schurexpand.cc
implements schurexpand with the MPFR abitrary precision floating point library written by Fousse et al. [1]. The mantissa
precision is set to 256 bits.

5.1.4 Power calculation using the Schur algorithm

For the lattice filter structure in Figure 5.1, when the input signal is random and white with unit power then the average power at
internal node p is

Pp = ⟨P (z) , P (z)⟩

Since the denominator DN (z) is a Schur polynomial,

P (z) =
∑

i

ciΦi (z)

and, since the Schur algorithm inner product is linear and orthonormal

Pp =
∑

i

c2
i

5.2 Derivation of Digital Lattice Filters

The Schur polynomials are obtained by the degree reduction procedure

Φi−1 (z) =
z−1 {Φi (z)− kiΦ̃i (z)

}
si

(5.1)

where si is a scaling factor and ki = Φi (0) /Φ̃i (0). Note that the si cancel out when calculating ki so the ki are the same
regardless of the choice of si. If si =

√
1− k2

i then the Schur polynomials are orthonormal. In the following the i-th order
Schur polynomial with this choice of si is denoted Φi (z); if si = 1 − ϵiki is chosen, by Λi, and if si = 1 − k2

i is chosen, by
Ψi (z).

Note that since

Φ̃i−1 (z) = zi−1Φi−1
(
z−1)

95

= Φ̃i (z)− kiΦi (z)
si

by rearranging

Φi (z) = si

1− k2
i

{
zΦi−1 (z) + kiΦ̃i−1 (z)

}
Φ̃i (z) = si

1− k2
i

{
zkiΦi−1 (z) + Φ̃i−1 (z)

}

5.2.1 Derivation of FIR, All-Pole and All-Pass Lattice Filters

Initialise an N-th order Schur polynomial as

ΨN (z) =
N∑

i=0
ψiz

i

Form ΨN−1 (z) by degree reduction

ΨN−1 (z) =
z−1 {ΨN (z)− kN Ψ̃N (z)

}
1− k2

N

(5.2)

The reverse Schur polynomial is

Ψ̃N−1 (z) = zN−1ΨN−1(z−1) (5.3)

= Ψ̃N (z)− kN ΨN (z)
1− k2

N

(5.4)

so

Ψ̃N (z) =
(
1− k2

N

)
Ψ̃N−1 (z) + kN ΨN (z)

= Ψ̃N−1 (z) + kN

{
ΨN − kN Ψ̃N−1 (z)

}
(5.5)

Substituting Equation 5.5 into Equation 5.2

ΨN−1 (z) = z−1 {ΨN (z)− kN Ψ̃N−1 (z)
}

so

ΨN (z) = zΨN−1 (z) + kN Ψ̃N−1 (z) (5.6)

and, applying the definition of the reverse polynomial

Ψ̃N (z) = zkN ΨN−1 (z) + Ψ̃N−1 (z) (5.7)

Equations 5.6 and 5.7 represent the FIR filter shown in Figure 5.2. This structure has twice the number of multipliers of the
direct form structure. However, the structure is useful for implementing adaptive filters. Equations 5.2 and 5.4 represent the
IIR filter section shown in Figure 5.3. This structure implements both an all-pole filter Ψ0 (z) /ΨN (z) and an all-pass filter
Ψ̃N (z) /ΨN (z). The relation between Φi (z) and Ψi (z) is

ΨN (z) = ΦN (z)

Ψi (z) = Φi (z)√
(1− k2

N)
(
1− k2

N−1
)
· · ·
(
1− k2

i+1
) , 0 ≤ i < N

Note that Φi (z) and Ψi (z) differ only by a scale factor so the k-parameters are unchanged

ki = Ψi (0)
Ψ̃i (0)

= Φi (0)
Φ̃i (0)

Also the Ψi are orthogonal but not orthonormal since

⟨Ψi (z) ,Ψi (z)⟩ =
〈
Ψ̃i (z) , Ψ̃i (z)

〉
= 1

(1− k2
N)
(
1− k2

N−1
)
· · ·
(
1− k2

i+1
)

Clearly, the ⟨Ψi (z) ,Ψi (z)⟩ increase as i decreases since ki < 1. When most of the k-parameters are nearly one, the difference
of powers among the nodes in the filter is very large and the input needs to be scaled down by a large factor to prevent overflow
at a critical node. As a result the effect of roundoff noise increases significantly.

96

Figure 5.2: FIR filter structure (after Parhi [116, Fig. 12.8]).

Figure 5.3: All-pass and all-pole filter structure (after Parhi [116, Fig. 12.5]).

97

5.3 Derivation of the One-Multiplier IIR Lattice Filter

If si = 1− ϵiki in Equation 5.1 then

Λi−1 (z) =
z−1 {Λi (z)− kiΛ̃i (z)

}
1− ϵiki

where ϵi = ±1 is a sign parameter. For an N -th order IIR transfer function, H (z) = NN (z) /DN (z), initialise ΛN (z) =
DN (z). Then

ΛN−1 (z) =
z−1 {ΛN (z)− kN Λ̃N (z)

}
1− ϵNkN

Λ̃N−1 (z) = Λ̃N (z)− kN ΛN (z)
1− ϵNkN

where ki = Λi (0) /Λ̃i (0). Rearranging

Λ̃N (z) = kN ΛN (z) + (1− ϵNkN) Λ̃N−1 (z) (5.8)

ΛN−1 (z) = z−1 {(1 + ϵNkN) ΛN − kN Λ̃N−1 (z)
}

(5.9)

By repeated application for i = N,N − 1, · · · 1, the denominator DN (z) is synthesised. The relation between Λi (z) and Φi (z)
is

ΛN (z) = ΦN (z)

Λi (z) = Φi (z)

√
(1 + ϵNkN) (1 + ϵN−1kN−1) · · · (1 + ϵi+1ki+1)
(1− ϵNkN) (1− ϵN−1kN−1) · · · (1− ϵi+1ki+1)

where 0 ≤ i < N . Note that Φi (z) and Λi (z) differ only by a scale factor so the k-parameters are unchanged

ki = Λi (0) /Λ̃i (0) = Φi (0) /Φ̃i (0)

Also the Λi are orthogonal but not orthonormal since

⟨Λi (z) ,Λi (z)⟩ =
〈
Λ̃i (z) , Λ̃i (z)

〉
(5.10)

= (1 + ϵNkN) (1 + ϵN−1kN−1) · · · (1 + ϵi+1ki+1)
(1− ϵNkN) (1− ϵN−1kN−1) · · · (1− ϵi+1ki+1) (5.11)

The magnitude of ⟨Λi (z) ,Λi (z)⟩ can be adjusted by choosing the sign parameters so that the one-multiplier lattice filter can
avoid the severe input scaling of the basic lattice filter and have better round-off noise behaviour. One criterion for choosing the
sign parameters is to require that the node associated with the largest k-parameter in magnitude have the largest amplitude[4]. The
sign parameters are found recursively by requiring that the amplitudes at other nodes be as large as possible without exceeding
the maximum value. If the maximum occurs for kl then the recursion proceeds for m = l − 1, l − 2, . . . , 0 and again for
m = l + 1, l + 2, . . . , N . The recursion is simple because:

⟨Λi (z) ,Λi (z)⟩
⟨Λi+1 (z) ,Λi+1 (z)⟩ = 1 + ϵi+1ki+1

1− ϵi+1ki+1

By changing the sign parameter, this ratio can always be made smaller or larger than one. Algorithm 5.2 shows the method used
to assign the sign parameters in the Octave function schurOneMscale [92, Figure 3].

Since the polynomials {ΛN (z) ,ΛN−1 (z) , . . . ,Λ0 (z)} form an orthogonal basis, the numerator polynomial can be synthesised
as

NN (z) =
N∑

i=0
ciΛi (z)

The synthesised filter structure is shown in Figure 5.4. The Octave function tf2schurOneMlattice calculates the coefficients of the
one-multiplier Schur lattice from the transfer function. Note that if the ϵm sign parameters are changed then the Λi polynomials
will also change.

98

Algorithm 5.2 One-multiplier lattice sign assignment [4, Page 496].
Assume that kl has the largest magnitude of the km for m = 1, 2, . . . , N . Define the quantities

Qm = ⟨Λm (z) ,Λm (z)⟩
⟨Λl (z) ,Λl (z)⟩

qm = 1 + |km|
1− |km|

so that Ql = 1. Each Qm should be as large as possible without exceeding Ql. Successive ratios are:

Qm

Qm+1
=
{
qm if ϵm = sgn (km)
1/qm if ϵm = −sgn (km)

(5.12)

Now assign the ϵm:
for m = l − 1, l − 2, . . . , 1 do

if Qm+1 < 1/qm then
ϵm = −sgn (km)

else
ϵm = sgn (km)

end if
end for
for m = l + 1, l + 2, . . . , N do

if Qm < 1/qm then
ϵm = sgn (km)

else
ϵm = −sgn (km)

end if
end for

Figure 5.4: One-multiplier lattice structure (after Parhi [116, Fig. 12.11]).

99

Figure 5.5: Normalised lattice filter (after Parhi [116, Fig. 12.20]).

5.4 Derivation of the Normalised Lattice Filter

For an N-th order IIR transfer function HN (z) = NN (z) /DN (z) initialise the N-th order Schur polynomial as ΦN (z) =
DN (z) and

ΦN (z) =
N∑

i=0
ϕiz

i

Form ΦN−1 (z) by degree reduction

ΦN−1 (z) =
z−1 {ΦN (z)− kN Φ̃N (z)

}√
1− k2

N

where ki = Φi(0)/Φ̃i(0). The reverse polynomial is

Φ̃N−1 (z) = zN−1ΦN−1(z−1)

= Φ̃N (z)− kN ΦN (z)√
1− k2

N

So

Φ̃N (z) =
√

1− k2
N Φ̃N−1 (z) + kN ΦN (z) (5.13)

ΦN−1 (z) = z−1
{√

1− k2
N ΦN (z)− kN Φ̃N−1 (z)

}
(5.14)

ΦN (z) = 1√
1− k2

N

{
zΦN−1 (z) + kN Φ̃N−1 (z)

}
(5.15)

Figure 5.5 shows an implementation of Equations 5.13 and 5.15.

For module i

σ
(i)
20 = −σ(i)

02 = ki

σ
(i)
00 = σ

(i)
22 =

√
1− k2

i

These equations synthesise the denominatorDN (z) of the transfer function. The numerator is expanded in the orthonormal basis

NN (z) =
N∑

i=0
ciΦi (z)

100

(a) Original lattice section.

(b) After slow-down.

(c) After slow-down and re-timing.

Figure 5.6: Slowed and retimed lattice section.

σ
(i)
10 = ci

This is a normalised lattice filter. The nodes in the feedback path have unit power since the Φi (z) form an orthonormal basis.
For an all-pole filter the state covariance matrix, K, is the unit matrix and the structure is orthonormal. However, for a pole-zero
filter the states corresponding to the numerator part are not scaled and the filter is not orthonormal.

5.5 Derivation of the Scaled Normalised Lattice Filter

We can introduce a delay at each node in the normalised lattice by making the transformation z → z2 and retiming so that each
node corresponds to a state in the state variable description. Figure 5.6 shows one module of the retimed, slowed lattice. The
state-variable description of the re-timed lattice has a state for every node so that the signal at each node can be scaleda. The
orthogonality of the Φi (z) means that the additional diagonal elements of the state covariance matrix have the form

∑
c2

i . The
elements of the diagonal scaling matrix have the form T =

√∑
c2

i . This suggests the following section-by-section scaling:

1. For module N:

σ
(N)
10 = cN (5.16)

σ
(N)
11 =

√√√√ N∑
j=0

c2
j (5.17)

2. For modules N − 1 to 1:

σ
(i)
10 = ci√∑i

j=0 c
2
j

(5.18)

σ
(i)
11 =

√∑i−1
j=0 c

2
j√∑i

j=0 c
2
j

(5.19)

aThe roundoff-noise performance of the transformed filter is the same as that of the original filter

101

Figure 5.7: Normalised-scaled lattice filter (after Parhi [116, Fig. 12.19]).

3. Any module N to 1:

σ
(i)
20 = −σ(i)

02 = ki (5.20)

σ
(i)
00 = σ

(i)
22 =

√
1− k2

i (5.21)

The structure of an N-th order normalised-scaled lattice filter is shown in Figure 5.7. Note that σ(0)
10 = sign c0. The Octave

function schurNSscale implements the scaling of the σ10 and σ11 lattice coefficients from the ci expansion coefficients. For
convenience, schurNSscale combines σ(0)

10 and σ(1)
11 . The Octave function tf2schurNSlattice calculates the coefficients of the

normalised-scaled Schur lattice from the transfer function.

5.5.1 Example: synthesis of a 3rd order Butterworth lattice filter

Parhi [116, Example 12.6.1] uses as an example a third order Butterworth low-pass filter with cutoff at angular frequency 0.1π
(where the sampling frequency is normalised to 2π). The squared magnitude of the n-th order Butterworth response is defined
to be ∣∣∣Ĥ(ıω)

∣∣∣2 =
[

1 +
(
ω

ωc

)2n
]−1

The poles of the response are evenly distributed around the unit circle. For stability, we choose the poles in the left-hand s-plane,
λk = ωce

ıθk , θk = π
2

(
1 + (2k−1)

n

)
with 1 ≤ k ≤ n and:

Ĥ(s) = −λ0λ1λ
∗
1

(s− λ0)(s− λ1)(s− λ∗1)

where λ0 = Ωc, the cutoff frequency of the analog low pass filter, and: λ1 = −Ωc

[(
1− ı

√
3
)
/2
]

so:

Ĥ(s) = Ω3
c

(s+ Ωc) (s2 + sΩc + Ω2
c)

Choose the bi-linear transformation from the s-plane to the z-plane so that the transfer function of the digital filter is H (z) =
Ĥ(z−1

z+1). If the cutoff frequency of the digital filter H (z) is θc = ωct0 (where ωc is the s-plane cutoff angular frequency and t0
is the sampling interval) then pre-warp the s-plane frequency axis so that the corresponding cut-off in the s-plane is:

Ω(ωc) = tan(ωct0/2)

(found by substituting z = eıωt0 into the bi-linear transformation). For the third order Butterworth filter:

H (z) = Ω3(z + 1)3

[(1 + Ω) z + (−1 + Ω)] [(1 + Ω + Ω2) z2 + (−2 + 2Ω2) z + (1− Ω + Ω2)]

102

Figure 5.8: Butterworth 3rd order normalised-scaled lattice filter example (after Parhi [116, Fig. 12.20]).

In the example, the cut-off frequency is 0.05/t0 so ωct0 = 0.1π and Ω = 0.158384 giving:

H (z) = 0.0028982(z + 1)3

z3 − 2.37409z2 + 1.92836z − 0.53208 = (z + 1)3

345.04z3 − 819.16z2 + 665.71z − 183.59

For the denominator of H (z) the Schur basis is:

Φ3 (z) = 345.1z3 − 819.3z2 + 665.8z − 183.6
Φ2 (z) = 292.2072z2 − 549.2662z + 271.5337
Φ1 (z) = 107.956z − 105.1841
Φ0 (z) = 24.3064

The Schur expansion of the numerator polynomial of H (z) is:

1. For H (z) initialise Q (z) = z3 + 3z2 + 3z + 1. Then c3 = 1/345.1 = 0.0029.

2. Update Q (z) = 5.3741z2 + 1.0707z + 1.532. Then c2 = 5.3741/292.2072 = 0.0184.

3. Update Q (z) = 11.1725z − 3.4619. Then c1 = 11.1725/107.956 = 0.10349.

4. Update Q (z) = 7.4238. Then c0 = 7.4238/24.3064 = 0.3054

The sum of the expansion coefficients, the output signal power, is 0.1043. The lattice “reflection coefficients” are k3 = −0.532,
k2 = 0.9293 and k1 = −0.9743.

Figure 5.8 shows the signal-flow graph of the normalised-scaled lattice implementation of H (z).

103

5.6 State Variable Descriptions for Schur Lattice Filters

5.6.1 State variable description of the Schur FIR lattice filter

Figure 5.2 shows the Schur FIR lattice structure. For convenience, call x′n the input to state xn of the n-th section, yn the upper
output of the n-th section and ŷn the lower output of the n-th section. Construction of the state variable description of the Schur
FIR lattice is summarised in Algorithm 5.3.

Algorithm 5.3 Construction of a state variable description of the Schur FIR lattice filter.
y0 = u
ŷ0 = u
for n = 1, . . . , N do

x′n = ŷn−1
yn = knxn + yn−1
ŷn = xn + knyn−1

end for
y = yN

As shown in Section 1.12.2, the state variable description can be expressed as a series of matrix multiplications linking the input
and state outputs to the output and the next state inputs:

y0
ŷ0
x1
...
xN

 =

0 · · · 0 1
0 · · · 0 1
1 · · · 0 0
...

. . .
...

0 · · · 1 0

x1
x2
x3
...
xN

u

x′1
y1
ŷ1
x2
...
xN

=

0 1 0 0 · · · 0
1 0 k1 0 · · · 0
k1 0 1 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...

0 · · · 1

y0
ŷ0
x1
x2
...
xN

x′1
x′2
y2
ŷ2
x3
...
xN

=

1 0 0 0 0 · · · 0
0 0 1 0 0 · · · 0
0 1 0 k2 0 · · · 0
0 k2 0 1 0 · · · 0
0 0 0 0 1 · · · 0
...

. . .
...

0 · · · · · · 1

x′1
y1
ŷ1
x2
x3
...
xN

x′1
...

x′N−1
yN−1
ŷN−1
xN

=

1 · · · · · · 0
...

. . .
...

0 · · · 0 1 0 0
0 · · · 1 0 kN−1 0
0 · · · kN−1 0 1 0
0 · · · 0 0 0 1

x′1
...

yN−2
ŷN−2
xN−1
xN

x′1
...
x′N
yN

ŷN

 =

1 0 · · · · · · 0
...

. . .
...

0 0 1 0
0 kN 0 1
0 · · · 1 0 kN

x′1
...

yN−1
ŷN−1
xN

The Octave function schurFIRlattice2Abcd returns the state variable description of a Schur FIR lattice filter. The Octave script
schurFIRlattice2Abcd_symbolic_test.m creates a symbolic state variable description of the Schur FIR lattice filter.

104

5.6.2 State variable description of the one-multiplier IIR lattice filter

In Figure 5.9, Figure 5.4 is redrawn with x′n corresponding to the input to state xn of the n-th section, yn being the output of the
n-th section and ŷn the all-pass output of the n-th section.

Figure 5.9: State variable description of the Schur one-multiplier lattice filter.

Construction of the state variable description is summarised in Algorithm 5.4.

Algorithm 5.4 Construction of a state variable description of the Schur one-multiplier lattice filter.
ŷ0 = x1
for n = 1, . . . , N − 1 do

x′n = −knŷn−1 + (1 + knϵn)xn+1
ŷn = (1− knϵn) ŷn−1 + knxn+1

end for
xN = −kN ŷN−1 + (1 + kN ϵN)u
ŷ = (1− kN ϵN) ŷN−1 + kNu
y = c0x1 + c1x2 + · · ·+ cN−1xN + cNu

The state variable description can be expressed as a series of matrix multiplications linking the input and state outputs to the
output and the next state inputs. The all-pass output of the Schur one-multiplier lattice filter is constructed as followsb:

ŷ0
x2
x3
...
xN

u

=

1 0 · · · · · · 0

0 1
...

...
. . .

. . .
...

0 1 0
0 · · · · · · 0 1

x1
x2
x3
...
xN

u

x′1
ŷ1
x3
...
xN

u

=

−k1 (1 + k1ϵ1) 0 · · · · · · 0

(1− k1ϵ1) k1 0
...

0 0 1
...

. . .
...

0 1 0
0 · · · · · · 0 1

ŷ0
x2
x3
...
xN

u

bNoting that det

[
−kl 1 + klϵl

1− klϵl kl

]
= −1 and det P Q = det P det Q, then, by inspection, det A1...l,1...l = −1lkl.

105

x′1
x′2
ŷ2
...
xN

u

=

1 0 0 0 · · · 0

0 −k2 (1 + k2ϵ2) 0
...

0 (1− k2ϵ2) k2 0
...

. . .
...

0 1 0
0 · · · · · · 0 1

x′1
ŷ1
x3
...
xN

u

x′1
x′2
...

x′N−1
ŷN−1
u

=

1 0 · · · · · · 0

0 1
...

...
. . .

...
0 −kN−1 (1 + kN−1ϵN−1) 0
0 (1− kN−1ϵN−1) kN−1 0
0 · · · · · · 0 0 1

x′1
...

x′N−2
ŷN−2
xN

u

x′1
x′2
x′3
...
x′N
ŷ

=

1 0 · · · · · · 0

0 1
...

...
. . .

...
0 1 0 0
0 0 −kN (1 + kN ϵN)
0 · · · 0 (1− kN ϵN) kN

x′1
x′2
...

x′N−1
ŷN−1
u

The Octave function schurOneMlattice2Abcd returns the state variable description of a one multiplier lattice filter (including
the all-pass filter Cap and Dap output matrixes). The Octave script schurSchurOneMlattice2Abcd_symbolic_test.m creates a
symbolic state variable description of the Schur one multiplier lattice filter.

5.6.3 State variable description of a pipelined one-multiplier Schur lattice filter

Figure 5.10a shows a representation 3rd order lattice filter and Figure 5.10b shows the filter after pipelining by moving the second
filter delay to the upper and lower branches of the signal flow graph. The total delay in each loop of the signal flow graph is
unchanged so the transfer function of the filter is also unchanged. This pipelining limits the maximum latency of each filter
update calculation to the latency of two sections and changes the round-off noise performance of the filterc.

(a) Original filter.

(b) Filter after retiming.

Figure 5.10: Example of pipelining a 3rd order lattice filter.

Figure 5.11 shows a second order segment of the pipelined Schur one-multiplier lattice filter in Figure 5.10b.

Construction of a state variable description of the pipelined Schur one-multiplier lattice filter is summarised in Algorithm 5.5.
cThe tapped output could alse be retimed by pipelining the arithmetic operations in a tree structure. The all-pass lattice ouput calculation is recursive and

cannot be retimed in that way.

106

Figure 5.11: Second order segment of the pipelined Schur one-multiplier lattice filter.

Algorithm 5.5 Construction of a state variable description of the pipelined Schur one-multiplier lattice filter.
Given {k1, k2, . . . , kN}, {ϵ1, ϵ2 . . . , ϵN} and {c0, c1, . . . , cN}:
y0 = c0x1
ŷ0 = x1
for n = 1, . . . ,

⌈
N
2
⌉
− 1 do

x′3n−2 = −k2n−1ŷn−1 − (1 + k2n−1ϵ2n−1) k2nx3n + (1 + k2n−1ϵ2n−1) (1 + k2nϵ2n)x3n+1
x′3n−1 = yn−1 − c2n−1k2nx3n + c2n−1 (1 + k2nϵ2n)x3n+1
x′3n = (1− k2n−1ϵ2n−1) ŷn−1 − k2n−1k2nx3n + k2n−1 (1 + k2nϵ2n)x3n+1
yn = x3n−1 + c2nx3n+1
ŷn = (1− k2nϵ2n)x3n + k2nx3n+1

end for
if N is odd then

x′3⌈N
2 ⌉−2 = −kN ŷ⌈N

2 ⌉−1 + (1 + kN ϵN)u
y = y⌈N

2 ⌉−1 + cNu

ŷ = (1− kN ϵN) ŷ⌈N
2 ⌉−1 + kNu

else
x′3 N

2 −2 = −kN−1ŷN
2 −1 − (1 + kN−1ϵN−1) kNx3 N

2
+ (1 + kN−1ϵN−1) (1 + kN ϵN)u

x′3 N
2 −1 = yN

2 −1 − cN−1kNx3 N
2

+ cN−1 (1 + kN ϵN)u
x′3 N

2
= (1− kN−1ϵN−1) ŷN

2 −1 − kN−1kNx3 N
2

+ kN−1 (1 + kN ϵN)u
y = x3 N

2 −1 + cNu

ŷ = (1− kN ϵN)x3 N
2

+ kNu
end if

As in Section 5.6.2, the state variable description can be expressed as a series of matrix multiplications. For an even order filter:

y0
ŷ0
x1
x2
x3
...

x3 N
2
u

=

c0 0 · · · · · · 0
1 0 · · · · · · 0
1 0 · · · · · · 0
...

. . .
...

...
. . .

...
0 1 0
0 · · · · · · 0 1

x1
x2
x3
...

x3 N
2
u

x′1
x′2
x′3
y1
ŷ1
x4
...

x3 N
2
u

=

0 −k1 0 0 − (1 + k1ϵ1) k2 (1 + k1ϵ1) (1 + k2ϵ2) · · · 0
1 0 0 0 −c1k2 c1 (1 + k2ϵ2) · · · 0
0 (1− k1ϵ1) 0 0 −k1k2 k1 (1 + k2ϵ2) · · · 0
0 0 0 1 0 c2 · · · 0
0 0 0 0 (1− k2ϵ2) k2 · · · 0

. . .
...

0 · · · · · · 1 0
0 · · · · · · 0 1

y0
ŷ0
x1
x2
x3
x4
...

x3 N
2
u

107

x′1
...

x′3 N
2
y
ŷ

 =

1 · · · · · · 0
...

. . .
...

0 · · · 0 −kN−1 0 0 − (1 + kN−1ϵN−1) kN (1 + kN−1ϵN−1) (1 + kN ϵN)
0 · · · 1 0 0 0 −cN−1kN cN−1 (1 + kN ϵN)
0 · · · 0 1− kN−1ϵN−1 0 0 −kN−1kN kN−1 (1 + kN ϵN)
0 · · · 0 0 0 1 0 cN

0 · · · 0 0 0 0 (1− kN ϵN) kN

x′1
...

x′3 N
2 −3

yN
2 −1

ŷN
2 −1

x3 N
2 −2

x3 N
2 −1

x3 N
2
u

For an odd order filter, the final matrix multiplication is:

x′1
...

x′3⌈N
2 ⌉−2
y
ŷ

 =

1 · · · · · · 0
...

. . .
...

0 · · · 0 −kN 0 (1 + kN ϵN)
0 · · · 1 0 0 cN

0 · · · 0 (1− kN ϵN) 0 kN

x′1
...

x′3⌈N
2 ⌉−3

y⌈N
2 ⌉−1

ŷ⌈N
2 ⌉−1

x3⌈N
2 ⌉−2
u

The Octave function schurOneMlatticePipelined2Abcd returns the state variable description of a pipelined Schur one-multiplier
lattice filter (including the all-pass filter Aap, Bap, Cap and Dap output matrixes).

The Octave script schurOneMlatticePipelined2Abcd_symbolic_test.m creates a symbolic state variable description of a retimed
Schur one-multiplier lattice filter.

5.6.4 State variable description of a doubly-pipelined one-multiplier Schur lattice filter

Figure 5.12 shows a first order segment of a doubly-pipelined Schur one-multiplier lattice filter. In this case, the state transition
matrix is linear in the coefficients and there are two delays in each filter loop rather than the original single delay. In other words,
the filter calculations are assumed to be performed at double the input sample rate.

Figure 5.12: First order segment of a doubly pipelined Schur one-multiplier lattice filter.

Construction of a state variable description of the doubly-pipelined Schur one-multiplier lattice filter is summarised in Algo-
rithm 5.6.

As in Section 5.6.2, the state variable description can be expressed as a series of matrix multiplications:

x′1
y0
ŷ0
x2
x3
...

x3N+2
u

=

0 1 0 · · · 0 0
c0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 1

x1
x2
x3
...

x3N+2
u

108

Algorithm 5.6 Construction of a state variable description of the doubly-pipelined Schur one-multiplier lattice filter.
Given {k1, k2, . . . , kN}, {ϵ1, ϵ2 . . . , ϵN} and {c0, c1, . . . , cN}:
y0 = c0x1
ŷ0 = x1
x′1 = x2
for n = 1, . . . , N do

x′3n−1 = −knŷn−1 + (1 + knϵn)x3n+2
x′3n = yn−1 + cnx3n+2
x′3n+1 = (1− knϵn) ŷn−1 + knx3n+2
yn = x3n

ŷn = x3n+1
end for
x′3N+2 = u
y = yN

ŷ = ŷN

x′1
x′2
x′3
x′4
y1
ŷ1
x5
x6
...

x3N+2
u

=

1 0 0 0 0 0 0 0 · · · 0 0
0 0 −k1 0 0 0 (1 + k1ϵ1) 0 · · · 0 0
0 1 0 0 0 0 c1 0 · · · 0 0
0 0 (1− k1ϵ1) 0 0 0 k1 0 · · · 0 0
0 0 0 0 1 0 0 0 · · · 0 0
0 0 0 0 0 1 0 0 · · · 0 0
0 0 0 0 0 0 1 0 · · · 0 0
0 0 0 0 0 0 0 1 · · · 0 0
...

. . .
...

...
0 0 0 0 0 0 0 0 · · · 1 0
0 0 0 0 0 0 0 0 · · · 0 1

x′1
y0
ŷ0
x2
x3
x4
x5
x6
...

x3N+2
u

x′1
...

x′3N−1
x′3N

x′3N+1
yN

ŷN

x3N+2
u

=

1 · · · 0 0 0 0 0 0 0
...

. . .
...

0 · · · 0 −kN 0 0 0 (1 + kN ϵN) 0
0 · · · 1 0 0 0 0 cN 0
0 · · · 0 (1− kN ϵN) 0 0 0 kN 0
0 · · · 0 0 0 1 0 0 0
0 · · · 0 0 0 0 1 0 0
0 · · · 0 0 0 0 0 1 0
0 · · · 0 0 0 0 0 0 1

x′1
...

yN−1
ŷN−1
x3N−1
x3N

x3N+1
x3N+2
u

x′1
...

x′3N+2
y
ŷ

 =

1 · · · 0 0 0 0 0 0 0
...

. . .
...

0 · · · 0 0 0 0 0 0 1
0 · · · 0 0 0 1 0 0 0
0 · · · 0 0 0 0 1 0 0

x′1
...
yN

ŷN

x3N+2
u

The Octave function schurOneMlatticeDoublyPipelined2Abcd returns the state variable description of a doubly-pipelined Schur
one-multiplier lattice filter (including the all-pass filter Aap, Bap, Cap and Dap output matrixes).

The Octave script schurOneMlatticeDoublyPipelined2Abcd_symbolic_test.m creates a symbolic state variable description of a
doubly-pipelined Schur one-multiplier lattice filter.

5.6.5 State variable description of an all-pass doubly-pipelined one-multiplier Schur lattice filter

Figure 5.13 shows only the all-pass part of a first order segment of the doubly-pipelined Schur one-multiplier lattice filter of
Figure 5.12.

109

Figure 5.13: First order segment of an all-pass doubly pipelined Schur one-multiplier lattice filter.

Construction of a state variable description of the all-pass doubly-pipelined Schur one-multiplier lattice filter is summarised in
Algorithm 5.7.

Algorithm 5.7 Construction of a state variable description of the all-pass doubly-pipelined Schur one-multiplier lattice filter.
Given {k1, k2, . . . , kN} and {ϵ1, ϵ2 . . . , ϵN}
ŷ0 = x1
x′1 = x2
for n = 1, . . . , N do

x′2n = −knŷn−1 + (1 + knϵn)x2n+2
x′2n+1 = (1− knϵn) ŷn−1 + knx2n+2
ŷn = x2n+1

end for
x′2N+2 = u
ŷ = ŷN

5.6.6 State variable description of the scaled-normalised IIR lattice filter

In Figure 5.14, Figure 5.7 is redrawn with x′n corresponding to the input to state xn of the n-th section, yn being the output of
the n-th section and ŷn the all-pass output of the n-th section.

Figure 5.14: State variable description of the Schur Scaled-Normalised lattice filter.

Construction of the state variable description is summarised in Algorithm 5.8 d.

The state variable description can be expressed as a series of matrix multiplications linking the input and state outputs to the
output and the next state inputs:

dThe Octave function schurNSlattice combines σ
(0)
10 and σ

(1)
11

110

Algorithm 5.8 Construction of a state variable description of the Scaled-Normalised Lattice.
ŷ0 = x1
y0 = σ

(0)
10 x1

for n = 1, . . . , N − 1 do
x′n = σ

(n)
02 ŷn−1 + σ

(n)
00 xn+1

ŷn = σ
(n)
22 ŷn−1 + σ

(n)
20 xn+1

yn = σ
(n)
11 yn−1 + σ

(n)
10 xn+1

end for
x′N = σ

(N)
02 ŷN−1 + σ

(N)
00 u

ŷ = σ
(N)
22 ŷN−1 + σ

(N)
20 u

y = σ
(N)
11 yN−1 + σ

(N)
10 u

ŷ0
y0
x2
x3
...
xN

u

=

1 0 · · · · · · 0

σ
(0)
10 0 · · ·

...
0 1
...

. . .
...

0 1 0
0 · · · · · · 0 1

x1
x2
x3
...
xN

u

x′1
ŷ1
y1
x3
...
xN

u

=

σ
(1)
02 0 σ

(1)
00 0 0 · · · 0

σ
(1)
22 0 σ

(1)
20 0

...
0 σ

(1)
11 σ

(1)
10 0

0 0 0 1
...

. . .
...

0 1 0
0 · · · · · · 0 1

ŷ0
y0
x2
x3
...
xN

u

x′1
x′2
ŷ2
y2
...
u

=

1 0 0 0 0 · · · 0

0 σ
(2)
02 0 σ

(2)
00

...
0 σ

(2)
22 0 σ

(2)
20

0 0 σ
(2)
11 σ

(2)
10

...
. . .

0 0
0 · · · · · · 0 1

x′1
ŷ1
y1
x3
...
xN

u

x′1
x′2
...

x′N−1
ŷN−1
yN−1
u

=

1 0 · · · · · · 0

0 1
...

...
. . .

0 σ
(N−1)
02 0 σ

(N−1)
00

0 σ
(N−1)
22 0 σ

(N−1)
20

...
0 0 σ

(N−1)
11 σ

(N−1)
10 0

0 · · · · · · 1

x′1
...

ŷN−2
yN−2
xN

u

x′1
x′2
x′3
...
x′N
ŷ
y

=

1 0 · · · · · · 0

0 1
...

...
. . .

...
0 σ

(N)
02 0 σ

(N)
00

0 σ
(N)
22 0 σ

(N)
20

0 · · · · · · 0 σ
(N)
11 σ

(N)
10

x′1
x′2
...

ŷN−1
yN−1
u

111

The Octave function schurNSlattice2Abcd returns the state variable description of a normalised-scaled lattice filter (including the
all-pass filter Cap and Dap output matrixes).

112

Figure 5.15: Transposed normalised-scaled lattice filter module (after Parhi [116, Fig. 12.24]).

5.7 Roundoff Noise Calculation in Schur Lattice Filters

In this section I rely on the state-variable analysis of round-off noise presented by Roberts and Mullis [193], [34], [35] and the
transposed signal flow graph analysis of Parhi [116, Section 12.7].

Lattice filter roundoff noise can be calculated by the K and W matrices derived from the state variable description of the filter.
An alternative method uses the Schur polynomials and the transposed graph of the filter. To compute the output roundoff noise,
the transfer functions from the internal nodes to the output node are needed. These are the same as the transfer functions from the
input to the internal nodes of the transposed filter. Again, these transfer functions can be derived from the Schur decomposition
or the state variable description. In the following I try to distinguish between pipelining a filter to reduce the latency of internal
calculations and retiming a filter to determine the noise gain without necessarily maintaining the desired filter transfer function.

5.7.1 Round-off noise of the normalised-scaled lattice filter

Calculation of the normalised-scaled lattice filter round-off noise with the transposed signal flow graph

Figure 5.15 shows module m of N, . . . , 1 of the transposed graph of a normalised-scaled lattice filter (with k = σ20 = −σ02,
and kc =

√
1− k2 = σ00 = σ22).

The transposed graph of the module gives:

 z−1Nm−1 (z)
Dm−1 (z)
Em−1 (z)

 = 1
kc

 1 −σ10 −k
0 kcσ11 0
−k kσ10 1

 Nm (z)
Dm (z)
Em (z)

For moduleN , the input, DN (z), and output, NN (z), are given by the transfer functionH (z) = N (z) /D (z) and EN (z) = 0.
Similarly, for the all-pass response,DN (z) = 0,NN (z) = zND

(
z−1) andEN (z) = D (z). The transfer function polynomials

of the modules to the right hand of module N are found by repeated matrix multiplication. Since D (z) is a Schur polynomial,
the output noise variance due to round off at each node is calculated from the coefficients of the Schur orthonormal basis
decomposition of these transfer function polynomials.

The Octave script butt3NS_test.m uses the transposed transfer function to calculate the round-off noise of the normalised-scaled
3rd order low-pass Butterworth filter of the example in Section 5.5.1. The coefficients of the lattice are floating-point, not
truncated. Coefficient truncation implies a different Schur basis and the polynomial division used to find the output noise is
inaccurate. Annotated output from butt3NS_test.m follows.

The filter cutoff frequency is

fc = 0.050000

The denominator and numerator polynomials are

n = 0.0028982 0.0086946 0.0086946 0.0028982

113

d = 1.00000 -2.37409 1.92936 -0.53208

The Schur orthonormal basis corresponding to the denominator polynomial is

S = 0.07045 0.00000 0.00000 0.00000
-0.30483 0.31286 0.00000 0.00000
0.78677 -1.59152 0.84670 0.00000

-0.53208 1.92936 -2.37409 1.00000

The Schur expansion of the numerator polynomial is

c = 0.3053850 0.1034929 0.0183952 0.0028982

The coefficients of filter sections (input/output at the right end of each vector) are

s10 = 0.3209629 0.0569565 0.0028982
s11 = 0.94709 0.99838 0.32297
s20 = -0.97432 0.92923 -0.53208
s00 = 0.22518 0.36951 0.84670
s02 = 0.97432 -0.92923 0.53208
s22 = 0.22518 0.36951 0.84670

The noise gain of the filter (with un-quantised coefficients) is

ng = 1.1906

The nodes corresponding to D0 (z) and E0 (z), that is at the output of state x1, make no contribution to round-off noise and are
omitted from the noise gain. The noise gain can be reduced slightly by summing the output in one pass (assuming a double-length
accumulator holds the intermediate sums along the top edge of Figure 5.8).

The noise gain of the associated all-pass filter is

ngap = 5.0000

Recall that for a unit variance white noise input the internal nodes of the normalised-scaled filter have unit signal variance and that
the transfer functions from the internal nodes of the all-pass filter to the all-pass output have unity gain by definition. Therefore
the noise gain of the all-pass filter is simply the number of internal nodes at which arithmetic truncation occurs. In this case there
are five internal nodes in the all-pass filter at which round-off occurs. Three of these are at the inputs to the internal delay element
state storage and two are at calculation of the reverse Schur polynomial output, Φ̃i (z). By convention the third of the reverse
Schur polynomial output truncations is represented separately as the all-pass filter output truncation. (Truncation of the internal
reverse Schur polynomial outputs could be avoided by storing them in temporary double precision storage).

For comparison the noise gain of a globally optimised Butterworth filter is ngopt = 0.47049 and for a direct form imple-
mentation, ngdir = 68.980. The corresponding noise gains for the globally optimised and direct-form all-pass filters are
ngoptap = 3.0000 and ngdirap = 818.90.

The filters were tested with a uniformly distributed random noise signal with variance 0.5 of full-scale. The filter outputs were
calculated with floating point arithmetic and again with rounding-to-nearest truncation and 10 bit word storage.

Figure 5.16 shows the amplitude response of the Schur normalised-scaled lattice implementation of the Butterworth filter and
all-pass filter determined from the cross-correlation of the filter input and outputs.

The estimated and simulated round-off noise variances are for the Schur lattice implementation of the Butterworth filter (σ2 =
(1 + ng) /12):

est_varyd = 0.1825
varyd = 0.1819

114

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure 5.16: Amplitude response of the 3rd order Butterworth filter implemented with a Schur normalised-scaled lattice structure.

and for the Schur lattice all-pass filter

est_varyapd = 0.5000
varyapd = 0.4913

Similarly, the estimated and simulated round-off noise variances for the globally optimised Butterworth filter are:

est_varyoptd = 0.1225
varyoptd = 0.1215

and the estimated and simulated round-off noise variances for the scaled direct-form Butterworth filter are:

est_varydird = 5.8317
varydird = 1.8148

The factor of about 3 discrepancy between the estimated and measured output roundoff noise of the scaled direct-form filter
suggests that the output roundoff noise of that filter is correlated with the input signal rather than having the uniform random
distribution assumed in the noise calculations. Figure 5.17 compares the response of the output roundoff noise of the scaled
direct-form implementation to that of the globally optimised filter.

The standard deviations of the internal states of the Schur lattice filter are

stdxx = 131.21 129.39 127.97

The standard deviations of the internal states of the globally-optimum and scaled direct-form filters are similar. Figures 5.18, 5.19
and 5.20 show part of the state trajectories for the Schur lattice, globally-optimised and direct-form state variable versions of the
Butterworth filter with a random noise input.

Figure 5.21 shows part of the state trajectories for the Schur lattice implementation of the Butterworth filter in response to a sine
wave input.

115

0 0.1 0.2 0.3 0.4 0.5
-100

-90

-80

-70

-60

Optimum filter output noise response

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-100

-90

-80

-70

-60

Direct form filter output noise response

A
m

pl
itu

de
(d

B
)

Frequency

Figure 5.17: Comparison of the amplitude response of the output noise of the 3rd order Butterworth filter when implemented
with a scaled direct-form and globally optimised state variable structure.

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x2

State variable x1

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x3

State variable x1

Figure 5.18: Internal states in the 3rd order Butterworth filter implemented in a normalised-scaled Schur lattice structure with a
random noise input.

116

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x2

State variable x1

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x3

State variable x1

Figure 5.19: Internal states in the 3rd order Butterworth filter implemented in the globally optimised state variable structure with
a random noise input.

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x2

State variable x1

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x3

State variable x1

Figure 5.20: Internal states in the 3rd order Butterworth filter implemented in a direct-form structure with a random noise input.

117

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x2

State variable x1

-600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

St
at

e
va

ri
ab

le
x3

State variable x1

Figure 5.21: Internal states in the 3rd order Butterworth filter implemented with a Schur lattice structure with a sine wave input.

Calculation of the normalised-scaled lattice filter round-off noise with a retimed state-variable description

Parhi [116, Chapter 12, p. 450] suggests that the normalised-scaled lattice filter round-off noise variance can also be determined
from the state variable representation if the filter is slowed and retimed as shown in Figure 5.22. Each intermediate node is now
associated with a state. The additional states alter the overall transfer function but the round-off noise gains are unchanged.

Figure 5.22: Slowed and retimed normalised-scaled lattice for the 3rd order Butterworth example.

The Octave function schurNSlatticeRetimedNoiseGain converts the Schur normalised-scaled lattice implementation to a retimed
state variable form used to calculate the noise gains. The Octave script butt3NSSV_test.m demonstrates roundoff noise calcula-
tions in the retimed state variable form. The Butterworth and all-pass filter noise gains with floating-point coefficients are found
to be the same as those for the transposed filter calculation above. With 10 bit 2 signed-digit coefficients the retimed state variable

118

form of the Schur lattice Butterworth and all-pass filters have noise gains ng = 1.1334 and ngap = 5.6989. The equivalent
floating point signed-digit coefficients are calculated by the Octave function flt2SD which calls bin2SD. The latter function ap-
proximates an integer by adding successive signed-digitse. The oct-file bin2SD.cc implements a C++ version of bin2SD. The
filter amplitude responses for the corresponding Butterworth and all-pass filters with 10-bit 2-signed-digit coefficients are shown
in Figure 5.23.

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Figure 5.23: Amplitude response of the 3rd order Butterworth filter implemented with a normalised-scaled lattice structure and
10-bit 2 signed-digit coefficients.

The response demonstrates a drawback of the normalised-scaled lattice filters: they are not structurally loss-less in the sense of
Vaidyanathan et al. [179, 176] (see Appendix M.2). The normalised-scaled lattice does not preserve the all-pass characteristic
when its coefficients are truncated.

Frequency transformations and Schur normalised-scaled lattice filter round-off noise

Section 2.2 shows the frequency transformation of a state variable filter. Section 3.8 shows some results, given by Mullis
and Roberts [34, Section III], concerning the noise gain of a frequency transformed state variable filter. Koshita et al. [223]
point out that the normalised-scaled Schur lattice all-pass filter has controllability and observability Grammians K = W = I .
It follows from Equation 3.4 that the frequency transformed filter constructed with the state variable implementation of that
Schur normalised-scaled all-pass lattice filter has the same noise gain as the globally optimised implementation of the frequency
transformed filter (see Section 3.5). Further, the state-transition matrix of the lattice all-pass frequency transformation filter is
Hessenberg in form so the state-transition matrix of the frequency transformed filter has many zero entries. The Octave function
tfp2schurNSlattice2Abcd implements the frequency transformation of a prototype filter as follows:

1. construct the state variable implementation, {α, β, γ, δ}, of the Schur normalised-scaled lattice filter corresponding to the
all-pass frequency transformation, F (z)

2. construct the globally optimised state-variable implementation, {a, b, c, d}, of the low-pass filter prototype, H (z)

3. construct the state variable implementation, {A,B,C,D}, of the frequency transformed filter, H (F (z))

eParhi [116, Section 13.6.1, p.507] shows an algorithm that calculates the complete signed-digit representation. The Octave function bin2SPT and oct-file
bin2SPT.cc implement this algorithm.

119

The Octave script tfp2schurNSlattice2Abcd_test.m exercises tfp2schurNSlattice2Abcd with the 5th order elliptic low-pass to
multiple stop-band filter example of Section 2.3 shown in Figure 2.6.

Table 5.1 shows the number of non-zero coefficients, the noise gain and the estimated noise variance in bits of the multiple
band-stop filter implemented by tfp2schurNSlattice2Abcd, a globally optimised state variable filter, a Schur normalised-scaled
lattice filter and a Schur one-multiplier lattice filter (neglecting the one-multiplier state scaling).

Non-zero coefficients Noise gain Noise variance(bits)

ABCD transformed 286 6.44 0.62
Globally optimised 961 6.44 0.62
Schur normalised-scaled lattice 180 18.88 1.66
Schur one-multiplier lattice 61 13.60 1.22

Table 5.1: Schur NS lattice frequency transformation round-off noise example : number of non-zero coefficients, noise gain and
estimated output roundoff noise variances for a prototype 5th order elliptic low-pass filter transformed to a multiple band-stop
filter.

5.7.2 Round-off noise of the one multiplier lattice filter

Calculation of the one multiplier lattice filter round-off noise with the transposed signal flow graph

Figure 5.24 shows module m of N, . . . , 1 of the transposed graph of a one multiplier lattice filter.

Figure 5.24: Transposed one multiplier lattice filter module.

The transposed graph of the module gives

Em−1 = −ϵ2mkmz
−1Nm−1 + (1− kmϵm)Em

Nm = (1 + ϵmkm) z−1Nm−1 + cmDm + kmEm

(1 + ϵmkm) z−1Nm−1 = Nm − cmDm − kmEm

(1 + ϵmkm)Em−1 = −kmNm + cmkmDm + Em

Finally z−1Nm−1 (z)
Dm−1 (z)
Em−1 (z)

 = 1
1 + ϵmkm

 1 −cm −km

0 1 + ϵmkm 0
−km cmkm 1

 Nm (z)
Dm (z)
Em (z)

The single-multiplier lattice basis functions, Λi (z), are orthogonal but not orthonormal. The basis functions, Φi (z), of the
normalised-scaled lattice are orthonormal so, for a unit-power white noise input, each node of the normalised-scaled lattice has
unit-power. Equation 5.11 shows the expected power at each lattice node of the unscaled one multiplier lattice. Recall that this
follows from the definition of the inner product of Schur polynomials and Parseval’s equality:

∥gi∥2
2 = 1

2πı

˛
G (z)Gi

(
z−1) dz

z

where Gi (z) is the z-transform of gi, the unit-impulse response from internal node i to the output. Similarly, for the scaled filter
with unit-impulse response from the input to internal node i, fi(k), the ℓ2 scaling rule gives

∥fi∥2 =
∞∑

k=0
f2

i (k) = 1

120

The noise gain calculation assumes that there is an equivalent white noise input at the i-th node of variance q2/12 where q is the
quantisation step size. The noise at the output is due to this node is q∥gi∥2/12. If the filter is not scaled then the unit impulse
response from the input to internal node i is not unity. The filter is scaled by dividing coefficients on branches entering node i
by ∥fi∥ and multiplying coefficients on branches leaving the i-th node by ∥fi∥. Therefore the output noise variance for scaled
filters is

σ2 = q2

12
∑

i

∥fi∥2∥gi∥2

The Octave function schurOneMlatticeFilter implements this scaling.

The Octave script butt3OneM_test.m implements a 3rd order Butterworth filter with the single-multiplier lattice structure. Anno-
tated results of the script follow.

The multiplier and sign coefficients are

k = -0.97432 0.92923 -0.53208
epsilon = -1 -1 -1

The scaling factors for each section are

p = 3.03862 0.34657 1.80947

The numerator polynomial expands in the orthonormal Schur basis, Φi (z), found above, as

c = 0.1005013 0.2986163 0.0101661 0.0028982

The scaled Butterworth filter noise gain with floating-point coefficients is

ng = 0.98228

and the scaled all-pass noise gain is

ngap = 5.0000

Using the 10-bit random test signal above, the estimated and measured round-off noise variance at the Butterworth output is

est_varyd = 0.16519
varyd = 0.1654

and at the all-pass output the estimated and measured round-off noise variance is

est_varyapd = 0.50000
varyapd = 0.4913

For the scaled filter, the signal at each internal unit delay storage element has standard deviation

stdxf = 131.21 129.39 127.96

Note that the noise gain for the low-pass filter is slightly smaller than for the normalised-scaled lattice filter.

121

Figure 5.25: Slowed and retimed single-multipler lattice for the 3rd order Butterworth example.

Calculation of the one multiplier lattice filter round-off noise with a retimed state-variable description

The single-multiplier lattice round-off noise variance can also be determined from the state variable representation if the signal
flow graph is slowed and retimed as shown in Figure 5.25. Each intermediate node is now associated with a state. The additional
states alter the overall transfer function but the round-off noise gains are unchanged.

The state-variable equations for this single-multiplier lattice example after slowing and re-timing are calculated in the Octave
function schurOneMlatticeRetimedNoiseGain. The Octave function schurOneMlatticeFilter calculates the upper, Butterworth
output, edge of Figure 5.4 in a single operation, ie: with a single large accumulator, and the lower, all-pass output, edge with
separate truncated accumulations. On the other hand, the Octave function svf implements a general state-variable filter with trun-
cated accumulations for each state and a wide accumulator for both the outputs. The round-off noise estimation in schurOneM-
latticeRetimedNoiseGain illustrates that the retiming method of calculating noise gain is much more flexible than the transposed
filter method. In addition, as noted in Section 5.7.1, the Schur basis is not truncated at the same time as the lattice coefficients
but is still used to calculate the noise gain after truncation. Consequently, it is simpler to use the state-variable description to
calculate the round-off noise of the one multiplier lattice with truncated coefficients.

The schurOneMlatticeRetimedNoiseGain function can calculate round-off noise gain for three different one multiplier lattice
filter implementations by selecting the states included through the filterStr argument:

• For “schur” schurOneMlatticeFilter calculates the Butterworth output (the upper row of Figure 5.25) in a single wide
accumulator and ignores the states on the top edge

• For “ABCD” svf calculates both the Butterworth output and the all-pass output in wide accumulators and ignores the states
on both the top and bottom edges

In both these cases, states x1 and x2 in Figure 5.25 do not contribute to the round-off noise. (In the case of x2, c0 is included in
the calculation of state x5).

The Octave script butt3OneMSV_test.m implements this state-variable description and calculates the round-off noise. The results
of the script are shown in the following.

When filter type “schur” is selected the round-off noise gains for floating-point filter coefficients calculated with the Octave
function schurOneMlatticeRetimedNoiseGain match those found with schurOneMlatticeNoiseGain.

When filter type “ABCD” is selected the Butterworth filter noise gain is ngABCD = 0.75000 and the all-pass noise gain is
ngABCDap = 3.0000.

122

With floating-point coefficients, the globally optimised state-variable implementation has a noise gain of ngopt = 0.47049 for
the Butterworth filter and ngoptap = 3.0000 for the all-pass filter.

After truncating the k and c coefficients to 10 bit 3-signed-digits the Butterworth and all-pass noise gains were ngf = 1.1019
and ngfap = 5.0000 respectively. Note that the state scaling factors, p, are not truncated. With 10 bit 2 signed-digit coefficients
(as used for the normalised-scaled lattice in Section 5.7.1) the passband response of the filter was unacceptable.

With rounding-to-nearest arithmetic truncation in the accumulator, the estimated and measured round-off noise variance of the
one multiplier Schur lattice filter with 10-bit 3-signed-digit truncated coefficients are, for the Butterworth filter:

est_varyd = 0.1752
varyd = 0.1740

and for the allpass filter:

est_varyapd = 0.5000
varyapd = 0.4931

The standard deviations of the internal states of the filter are

stdxf = 137.07 129.01 127.79

Figure 5.26 shows the amplitude responses of the filter found by cross-correlation of the input and Butterworth and all-pass filter
outputs when the filter is calculated as a Schur scaled one multiplier lattice with 10-bit 3-signed-digit truncated coefficients in
the Octave function schurOneMlatticeFilter.

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure 5.26: Amplitude responses of the slowed and retimed one multiplier lattice 3rd order Butterworth filter implemented in
Schur lattice form with 10-bit 3-signed-digit truncated coefficients.

5.7.3 Round-off noise of the pipelined one multiplier lattice filter

The Octave script schurOneMlatticePipelinedFilter_test.m demonstrates calculation of the round-off noise of the pipelined one-
multiplier lattice filter from the state variable description, as shown in Section 3.4.

123

5.8 Examples of pipelining Schur lattice filters

5.8.1 Pipelining a 4th order Schur normalised-scaled lattice filter

The normalised-scaled lattice filter of order N shown in Figure 5.7 has a delay-free path, or latency, of N adds and N multiplies
to the tapped and all-pass outputs, y and yap respectively. Section 1.12.1 describes a procedure for inserting fractional delays in
the signal flowgraph of the filter to reduce the length of the delay free path. The clock rate of the resulting filter is a multiple
of the sample rate. Parhi [116, Chapter 4] discusses formal methods for pipelining a signal flow graph. Figure 5.27a shows
a simplified view of a normalised-scaled Schur lattice filter implementing a 4-th order transfer function with a denominator
polynomial having coefficients only in z−2. Figure 5.27b shows the example filter after redistributing the delay in each loop of
the graph so that the total delay around that loop is unchanged. Each state update in the resulting filter has the form pq + rs.
In this case the filter group delay is increased by 2 samples. In general, this pipelining scheme increases the group delay by 1
sample for each second-order section.

(a) In original form.

(b) After retiming.

Figure 5.27: Signal flow graph of a 4th order normalised-scaled Schur lattice filter with a denominator polynomial having
coefficients only in z−2.

Following the notation of Figure 5.14, the state variable equations for the filter shown in Figure 5.27b are:

x1 (k + 1) = x3 (k)

x2 (k + 1) = σ
(1)
11 x1 (k) + σ

(1)
10 x3 (k)

x3 (k + 1) = σ
(2)
02 x1 (k) + σ

(2)
00 x9 (k)

x4 (k + 1) = x9 (k)
x5 (k + 1) = x9 (k)

x6 (k + 1) = σ
(2)
11 x2 (k) + σ

(2)
10 x4 (k)

x7 (k + 1) = σ
(2)
22 x1 (k) + σ

(2)
20 x9 (k)

x8 (k + 1) = σ
(3)
10 x5 (k) + σ

(3)
11 x6 (k)

x9 (k + 1) = σ
(4)
02 x7 (k) + σ

(4)
00 u (k)

x10 (k + 1) = x11 (k)

124

x11 (k + 1) = u (k)

y (k) = σ
(4)
11 x8 (k) + σ

(4)
10 x10 (k)

yap (k) = σ
(4)
22 x7 (k) + σ

(4)
20 u (k)

The Octave script schur_pipelined_test.m designs a 4-th order low-pass filter with cutoff frequency 0.05fS and denominator
coefficients in z−2. The script minimises the amplitude response error with the Octave fminunc function. The barrier function
of Tarczynski et al. [11] is added to the response error to constrain the locations of the roots of the denominator polynomial and
ensure that the filter is stable. The barrier function is implemented in Octave function WISEJ.m. Figure 5.28 shows the simulated
amplitude response of the pipelined Schur lattice filter.

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Figure 5.28: Simulated amplitude response of the pipelined 4th order normalised-scaled Schur lattice filter.

5.8.2 Pipelining a 6th-order Schur one-multiplier lattice filter

Figure 5.29 shows the signal flow graph of a retimed 6th order one-multiplier Schur lattice filter with a denominator polynomial
having coefficients only in z−2. Both filter implementations have the same number of delays around the corresponding loops
of their signal flow graphs. Retiming the filter reduces the latency in the calculation of the outputs and does not change the
amplitude and group delay responses. If N is the filter order then the pipelined filter has an additional N

2 − 1 states.

Construction of a state variable description of the pipelined Schur one-multiplier lattice filter with coefficients in z−2 only is
summarised in Algorithm 5.9.

The Octave function schurOneMR2lattice2Abcd, exercised by the Octave script schurOneMR2lattice2Abcd_test.m, implements
pipelining of a one-multiplier Schur lattice filter with a denominator polynomial having coefficients in z−2 only. The Octave
script schurSchurOneMR2lattice2Abcd_symbolic_test.m creates a symbolic state variable description of the Schur one multiplier
lattice filter with a denominator polynomial having coefficients in z−2 only.

125

(a) Signal flow graph of a 6th order one-multiplier Schur lattice filter with a denominator polynomial having coefficients in z−2.

(b) Signal flow graph of a 6th order one-multiplier Schur lattice filter with a denominator polynomial having coefficients in z−2 after pipelining.

Figure 5.29: Original and pipelined signal flow graphs of a 6th order one-multiplier Schur lattice filter with a denominator
polynomial having coefficients in z−2 only. The number of delays around each loop of the signal flow graph is unchanged.

Algorithm 5.9 Construction of a state variable description of the pipelined Schur one-multiplier lattice filter with denominator
coefficients in z−2 only.
Given N even, {k1, k2, . . . , kN}, {ϵ1, ϵ2 . . . , ϵN} and {c0, c1, . . . , cN}:
x′1 = x2
x′2 = −k2x1 + (1 + k2ϵ2)x5
x′3 = (1− k2ϵ2)x1 + k2x5
x′4 = c0x1 + c1x2 + c2x5
for n = 2, . . . , N

2 − 1 do
x′3n−1 = −k2nx3n−3 + (1 + k2nϵ2n)x3n+2
x′3n = (1− k2nϵ2n)x3n−3 + k2nx3n+2
x′3n+1 = x3n−2 + c2n−1x3n−1 + c2nx3n+2

end for
x′3 N

2 −1 = −kNx3 N
2 −3 + (1 + kN ϵN)u

y = x3 N
2 −2 + cN−1x3 N

2 −1 + cNu

ŷ = (1− kN ϵN)x3 N
2 −3 + kNu

126

5.8.3 Frequency transformations of pipelined Schur lattice filters

An implementation of a rational transfer function having demominator coefficients only in powers of z−2 can be pipelined
so that the resulting filter is suitable for hardware implementation. This section gives an example of the effect of frequency
transformations on such a filter transfer function. The Octave script freq_trans_structure_test.m designs an 8-th order low-pass
filter prototype with a denominator polynomial having coefficients only in powers of z−2. The script minimises the amplitude
response error with the Octave fminunc function. The barrier function of Tarczynski et al. [11] is added to the response error
to constrain the locations of the roots of the denominator polynomial and ensure that the filter is stable. The barrier function is
implemented in Octave function WISEJ.m. The relative weights of the pass-band and stop-band response errors are 1 : 100. The
transfer function numerator and denominator polynomials for the low-pass filter prototype are, respectively:

n = [0.0857526461, 0.2721065334, 0.5924693555, 0.8872367637, ...
1.0183181186, 0.8872367931, 0.5924694628, 0.2721066332, ...
0.0857528266];

dR = [1.0000000000, 0.0000000000, 2.0227725009, 0.0000000000, ...
1.3779306177, 0.0000000000, 0.3584982390, 0.0000000000, ...
0.0507148469];

Figure 5.30 shows the response of the low-pass prototype filter.

Figure 5.31a shows the response of a band-pass filter generated from the low-pass prototype filter with the following frequency
transformation:

pA = phi2P([0.1 0.25])
pA = [1.0000e+00 -6.7508e-01 3.2492e-01]

The denominator polynomial of the resulting band-pass filter has coefficients in powers of z−1.

Figure 5.31b shows the response of a band-pass filter generated from the low-pass prototype filter with a frequency transformation
that is symmetrical about fS

4 :

pB = phi2P([0.2 0.3])
pB = [1.0000e+00 0.0000e+00 5.0953e-01]

In this case, both the numerator and denominator polynomials of the resulting band-pass filter have coefficients only in powers
of z−2.

127

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Low-pass prototype : fap=0.25

Figure 5.30: Amplitude response of a low-pass filter prototype having denominator polynomial coefficients in z−2.

128

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

pA=phi2p([0.1 0.25])=[1.00 -0.68 0.32]

(a) Amplitude response of a band-pass filter with frequency transformation [0.1 0.25].

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

pB=phi2p([0.2 0.3])=[1.00 0.00 0.51]

(b) Amplitude response of a band-pass filter with frequency transformation [0.2 0.3].

Figure 5.31: Frequency transformations of a low-pass filter prototype having denominator polynomial coefficients in powers of
z−2 only.

129

5.9 Summary

Given a transfer function H (z) = NN (z) /DN (z) the design procedure for the normalised-scaled lattice filter is:

1. Compute the Schur polynomials from the denominator DN (z)

2. Compute the parameters ki for i = N,N − 1, · · · 1

3. Expand the numerator NN (z) in the Schur polynomial basis by the polynomial expansion algorithm

4. Synthesise the filter by Equations 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21

Given a transfer function H (z) = NN (z) /DN (z) the design procedure for the one multiplier lattice filter is:

1. Compute the Schur polynomials from the denominator DN (z)

2. Compute the parameters ki for i = N,N − 1, · · · 1

3. Find the ki with greatest magnitude and recursively compute the sign parameters by Algorithm 5.2. Scale the Schur
polynomial basis functions appropriately

4. Expand the numerator NN (z) in the Schur polynomial basis by the polynomial expansion algorithm

5. Synthesise the filter by Equations 5.8 and 5.9

The normalised-scaled lattice filter is not structurally passive, as is the one multiplier lattice filter, but the normalised-scaled
lattice filter appears to be less sensitive to coefficient truncation than the one multiplier lattice filter. The normalised-scaled
lattice filter is inherently scaled. The one multiplier lattice filter is not orthonormal and requires scaling.

130

Chapter 6

Orthogonal state variable filters

Chapter 5 described the Schur decomposition of an arbitrary rational filter transfer function into the normalised-scaled or one-
multiplier tapped all-pass lattice representations with state covariance matrix K = I . The all-pass lattice filters so constructed
are (in the terminology of Roberts and Mullis) orthogonal filters. In this chapter I review the method of Roberts and Mullis [193,
Section 10.4] for decomposing an arbitrary transfer function into 2 × 2 block diagonal coordinate rotations that can be “manip-
ulated to achieve either high-speed, parallel computation using a sparsely connected array of processor modules or low-speed
single processor realizations”a.

6.1 Definition of orthogonal state variable filters

If, for matrix O, OO⊤ = I , then O ∈ O, the group of orthogonal matrixes. If U has complex elements and UU∗ = I then
U ∈ U , where ∗ is the complex conjugate transpose matrix operator, and U is the group of unitary matrixes. An all pass filter
has magnitude response

∣∣H (eıθ
)∣∣ = 1 for all real θ. The m×m matrix transfer function H (z) of m inputs and m outputs and

complex elements is all-pass if H
(
eıθ
)

is unitary:

H
(
eıθ
)
∈ U (m) ∀ real θ

DEFINITION: A state variable filter F =
[
A B
C D

]
belongs to the set of orthogonal, all-pass filters F (m,n) if

1. AA⊤ +BB⊤ = I(n×n)

2. H
(
eıθ
)

= D + C
(
eıθI −A

)−1
B ∈ U (m) ∀ real θ

In addition, F belongs to the sub-set F0 (m,n) if it has the following equivalent properties:

1. F ∈ F0 (m,n)

2. (A,B) is controllable

3. (A,C) is observable

4. det (λI −A) = 0 ⇒ |λ| < 1

As noted above, apart from FL, each factor in the factored state variable description is an orthogonal matrix. For all-pass filters
FL is also orthogonal. More formally

F ∈ O (m+ n)⇒ F ∈ F (m,n)
F ∈ F0 (m,n)⇒ F ∈ O (m+ n)

aIn Appendix M.2, I review the method presented by Vaidyanathan and Mitra [179, 176] for decomposing an odd-order transfer function into the sum of two
all-pass filters

131

Figure 6.1: Lattice section.

For any orthogonal matrix F ∈ O (N), there are N possible filters, one each in F (m,N − n), 1 ≤ m ≤ N . The choice of m
depends on how F is partitioned

F =
[
A(N−m)×(N−m) B(N−m)×m

Cm×(N−m) Dm×m

]

Note that transformations of the all-pass filter by T ∈ O (N),

F ′ =
[
A′ B′

C ′ D′

]
=
[
T⊤AT T⊤B
CT D

]
=
[
T 0
0 I

]⊤ [
A B
C D

] [
T 0
0 I

]
are also members of F and that F ′ represents an alternative realisation of H(z) = D + C (zI −A)−1

B.

6.2 The Lattice Orthogonal All-Pass Filter Section

Figure 6.1 shows a possible realisation of the orthogonal lattice all-pass filter section. There are two inputs and two outputs. The
filter matrix is given by x′

y1
y2

 =

 0 cos θ sin θ
1 0 0
0 − sin θ cos θ

 x
u1
u2

and the corresponding transfer function is

H (z) =
[
z−1 cos θ z−1 sin θ
− sin θ cos θ

]

6.3 Noise gain of orthogonal filters

For an orthogonal state variable structure, K = I , and the noise gain is

gorth = 1
n

n∑
i=1

KiiWii

= 1
n

n∑
i=1

µ2
i

where the µ2
i are the second order modes or eigenvalues of KW . For comparison, a globally optimised minimum noise filter

with equal word-lengths has

gmin = 1
n

n∑
i=1

KiiWii

=
[

1
n

n∑
i=1

µi

]2

Thus the difference between gorth and gmin is the difference between a second moment and the square of a first moment, which
is the variance. The two are only equal if the µi are all equal. Recall that the second order modes of the globally optimised filter
are invariant under a frequency transformation.

132

6.4 Realisation of arbitrary filters from orthogonal sub-filters

Let G (z) be the transfer function for an order n filter with 1 input and 1 output. Suppose

G =
[
A B
C1 D1

]
is an orthogonal filter implementation with

K = AA⊤ +BB⊤ = I

The first n rows of G are orthonormal, but have dimension n+ 1 so there exist C and D for which

F =
[
A B
C D

]
∈ O (n+ 1)

is orthonormal. The Schur decomposition of G produces an all-pass filter corresponding to F . The conversion from F to G can
be found from

G =
[
A B
C1 D1

]
F⊤F

=
[

I 0
C1A

⊤ +D1B
⊤ C1C

⊤ +D1D
⊤

]
F

= G0F

where [
Γ δ

]
=
[
C1 D1

]
F⊤

G0 =
[
I 0
Γ δ

]
G0 can be simplified by finding the transformation

T =
[
T0 0
0 1

]
∈ O (n+ 1)

so that

ΓT0 =
[

0 γ
]

where γ is a scalar. T0 can be found as the product of a series of rotations (each of which are members of O (n)) that zero out
the leading elements of Γ

[
γi γi+1

] [cos θi sin θi

− sin θi cos θi

]
=
[

0 γ′i+1
]

where θi is given by

tan θi = γi

γi+1

Now transform G by T

G′ = T−1GT

= T−1 (G0F)T
=
(
T−1G0T

) (
T−1FT

)
= G′0F

′

where

G′0 =

 I 0 0
0 1 0
0 γ δ

In other words, F ′ ∈ F (2, n− 1) is a two-input, two-output all-pass filter and one of the all-pass outputs of F ′ becomes a state
of G (z). Figure 6.2 is a representation of the corresponding implementation of G (z) (see [193, Figure 10.4.5]).

133

Figure 6.2: Signal flow graph of an arbitrary transfer function constructed from a two-input two-output all-pass filter.

Roberts and Mullis [193, pp. 460-461] describe the following procedure for factoring a two-input, two-output all-pass filter, F ,
into the product of 2× 2 block diagonal coordinate rotations of the form T1 0 0

0 1 0
0 0 1

 ∈ O (n+ 1)

that preserve G′0
b:

1. Construct a series of similarity transformations that zero the elements of F which are more than 2 sub-diagonals below the
main diagonal. For example, with G (z) of order n = 5 so that F ∈ O (6):

F ′ =

X X X X X X
X X X X X X
X X X X X X
06 X X X X X
04 05 X X X X
01 02 03 X X X

 = T⊤6 T
⊤
5 T
⊤
4 T
⊤
3 T
⊤
2 T
⊤
1 FT1T2T3T4T5T6

The indexes on the sub-diagonal zeros indicate the order of construction. The transformations Ti are constructed in the
same manner as those that zero the leftmost elements of Γ. In the example:

 I4×4 0 0
0 cos θ sin θ
0 − sin θ cos θ

⊤

X X X X X X
X X X X X X
X X X X X X
F4,1 X X X X X
F5,1 F5,2 X X X X
F6,1 F6,2 F6,3 X X X

 I4×4 0 0

0 cos θ sin θ
0 − sin θ cos θ

=

X X X X X X
X X X X X X
X X X X X X
F ′4,1 X X X X X
F ′5,1 F ′5,2 X X X X

0 F ′6,2 F ′6,3 X X X

2. Factor F ′ with q = 2n− 1 coordinate rotations that zero the sub-diagonal elements

F ′′ = F ′F1 · · ·Fq

These are not similarity transformations. In fact, F ′′ will be diagonal with elements ±1c. The diagonal elements can be
included in the rotations so that:

F ′ = F⊤q · · ·F⊤1
For example:

F ′′ =

X X X X X X
09 X X X X X
04 08 X X X X
0 03 07 X X X
0 0 02 06 X X
0 0 0 01 05 X

 = F ′F1F2F3F4F5F6F7F8F9

bThis procedure is known as the upper Hessenberg reduction [58, Section 7.4.2].
cThis is a consquence of F ′′ being upper-triangular and F ′′ ∈ O (n + 1).

134

(a) Orthogonal filter as a depth-10 pipeline with a single rotation element.

(b) Orthogonal filter as a depth-4 pipeline.

Figure 6.3: Orthogonal structures for a 5-th order filter.

This realisation of G (z) as a tapped lattice filter requires, as a starting point, an orthogonal state variable representation of G (z)
with K = I . The singular value decomposition [58, Theorem 2.5.2] provides the required similarity transformd. Alternatively,
the Schur decomposition of a transfer function (reviewed in Chapter 5, based on Parhi [116, Chapter 12]) realises an orthogonal
lattice filter without requiring the calculation of K to find an initial similarity transformatione. In practice, for larger filters, I
have found that the Schur decomposition is more accurate.

The Octave function orthogonaliseTF returns the orthogonal decomposition of a rational polynomial transfer function. In the
default configuration, orthogonaliseTF uses the Schur decomposition of the transfer function to find an orthogonal state transition
matrix, A, and then finds the 2× 2 block diagonal rotation matrixes in the orthogonal decomposition of the filter. As an example,
the Octave script orthogonaliseTF_test.m finds the orthogonal decomposition of a 9th order elliptic low-pass filter with cutoff
frequency 0.05fS . The orthogonal decomposition of the filter contains 17 non-trivial 2×2 block diagonal rotation matrixes. The
noise gain of the orthogonal filter is 2.83. The noise gain of the corresponding minimum noise state variable filter is 1.64.

6.4.1 An example of structural variations

The decomposition of the filter transfer function into 2 × 2 block diagonal coordinate rotations permits straightforward modifi-
cation of the filter factorisation. For example, suppose we design a 5-th order filter with the structure shown in Figure 6.3a. The
2 × 2 rotation matrixes on the diagonals are represented by the letters across two rows. All other elements are either 0 or, on
the diagonal, 1. The structure shown in Figure 6.3a uses a single rotation time multiplexed across 9 matrixes (plus G′0, although
that matrix is not orthogonal). The orthogonal matrixes above the arrow in Figure 6.3a can be combined into a single similarity
transform, T , and applied to G0F to form a new filter factorisation:

F ′ = T−1FT

This is equivalent to a circular shift of the order of the orthogonal factor matrixes. Also, the individual factors commute if the
2 × 2 sub-matrixes on the diagonal have no common rows. Hence the filter matrix can be compacted as shown in Figure 6.3b,
which represents a sequence of 2, 3, 2, 2 rotation elements in a depth-4 pipeline.

Roberts and Mullis [193, pp. 462-467] show other examples of orthogonal filter factorisation.

dThe SVD of K gives U⊤KV = diag (σ1, . . . , σn) where U and V are orthogonal n× n matrixes (ie: U⊤U = I)
eIn fact the Schur decomposition of the transfer function is equivalent to the orthogonal decomposition of the state transition matrix presented here.

135

Chapter 7

Feedforward and feedback of state quantisation
error in state variable filters

Chapter 3 reviewed the optimisation of a state variable digital filter for minimum roundoff noise. The resulting filter hasO
(
N2)

non-zero coefficients. Section 4 showed how a filter could be implemented as a cascade of second-order sections with section
optimal roundoff noise performance. Chapters 5 and 6 reviewed the design of lattice filters with good roundoff noise performance
and low coefficient sensitivity. An alternative technique for reducing the roundoff noise in the filter output is the feedback of
the state quantisation error [74, 247, 47] in order to improve the roundoff noise performance of the filter with a small increase
in complexity. Mullis and Roberts [36] show that complete or “optimal” error feedback is equivalent to increasing the word-
lengths of the coefficients and state registers in the “usual” state variable filter without feedback. They point out that sub-optimal
error feedback, that is choosing the registers that receive feedback and choosing coefficients that are a power-of-2, may provide
improved noise performance with reduced complexity. Overflow oscillations and coefficient sensitivity must be considered on
a case-by-case basis. Li and Gevers show that the “delta” operator method, where the usual time-shift operator, z, is replaced
by δ = z−1

∆ is a special case of the residue feed back method of Williamson [47] . Lu and Hinamoto [247] describe use of
SQP-Relaxation non-linear optimisation to find the near-optimal signed-digit coefficients of a diagonal feedback matrix. Here I
follow the paper by Williamson [47] .

7.1 Problem formulation

Figure 7.1 [247, Figure 2] shows a block diagram of a state variable digital filter with feedback and feed-forward of the state
quantisation error e. The state variable quantiser isQ, the feedback error transfer function is δ and the feed-forward error transfer
function is η.

As shown in Section 1.5 the unquantised state variable equations are

x (k + 1) = Ax (k) +Bu (k)
y (k) = Cx (k) +Du (k)

In his treatment Williamson [47] states that “the coefficients {A,B,C,D}, while not necessarily less than 1 in magnitude, are
assumed to have an exact fractionalB0 bit representation. The filter states ˜x (k) and the ouptput ˜y (k) all have a fractionalB+B0

bit representation and the input u (k) is a B bit fraction. The quantiser Q
[

˜x (k)
]

rounds the B+B0 fraction ˜x (k) to B bits after
the arithmetic operations are complete. Fixed point arithmetic is implemented using a two’s complement representation (where
the sign bit is not counted)”. The roundoff residue, e (k), is a B +B0 bit fraction having zero in the most significant B bits:

e (k) = x̃ (k)−Q [x̃ (k)]

The roundoff residue sequence, e (k), is modelled as a zero-mean noise process with covariance

σe = E
{
e (k) e⊤ (k)

}
= q2

12I

136

Figure 7.1: Error feedback and feed-forward in state variable digital filters, (Lu and Hinamoto [247, Figure 2]).

where q = 2−B . When the state variables are quantised, the state variable equations for the error feedback/feed-forward filter of
Figure 7.1 are

x̃ (k + 1) = AQ [x̃ (k)] +Bu (k) + δe (k)
ỹ (k) = CQ [x̃ (k)] +Du (k) + ηe (k)

The round off noise for the filter is

∆x (k + 1) = A∆x (k) + (A− δ) e (k)
∆y (k) = C∆x (k) + (C − η) e (k)

where ∆x (k) = x̃ (k) − x (k) and ∆y (k) = ỹ (k) − y (k). As shown in Section 1.9, the frequency domain transfer function
from the state quantisation error to the output roundoff noise is:

∆H (z) = C (zI −A)−1 (A− δ) + (C − η)

Section 3.3.3 shows that the probability of overflow can be minimised by appropriate l2-norm scaling of the state variables. If
the input signal, u (k), is zero-mean and unit variance, then the steady-state covariance of the state variables is, since x̃ (k) and
e (k) are uncorrelated

K = AKA⊤ +BB⊤ + q2 (A− δ) (A− δ)⊤

If q2 ≪ 1 then

K ≈ AKA⊤ +BB⊤

For optimum l2-norm scaling diag {K} = I . As shown in Section 1.11, for ∆y (0) = 0, the output roundoff noise error is

∆y (k) =
k−1∑
l=0

CAl (A− δ) e (k −m− 1) + (C − η) e (k)

As shown in Section 3.4, the output roundoff noise variance due to truncation of each state is σ2
eσ

2, where

σ2 = trace
{

(A− δ) (A− δ)⊤W + (C − η) (C − η)⊤
}

W = AWA⊤ + CC⊤

Williamson considers the noise minimisation problem of finding a realisation {A,B,C,D} ofH (z) and integer-valued feedback
gains {δ, η} such that the output noise gain, g, is minimised, subject to the state scaling constraint, diag {K} = I .

Given an initial realisation, {A0, B0, C0, D}, of H (z), Williamson [47, Section III] defines the residue matrix as

P0 = (I −A)⊤W0 +W0 (I −A)

137

where

W0 = A0W0A
⊤
0 + C0C

⊤
0

He shows that the eigenvalues,
{
µ2

i

}
of K0W0, and

{
ρ2

i

}
of K0P0, are invariant under a similarity transformation, T , and are

positive. In Section 6.3, the eigenvalues
{
µ2

i

}
are referred to as the second-order modes of H (z). Williamson calls

{
ρ2

i

}
the

residue modes. Further, he calls a realisation {A0, B0, C0, D} input balanced if K0 = I and W0 = M2 = diag
{
µ2

1, . . . , µ
2
N

}
,

where N is the order of H (z)a. An input balanced structure can be transformed to an internally balanced structure with K1 =
W1 = M by means of the similarity transformation T1 = M−

1
2 .

7.2 Minimisation of round-off noise with δ = I and η = 0

Williamson [47, Section V] considers the “problem of finding the optimal transformation, T , and the optimal integer residue
feedback matrixes δT and ηT , which together minimise the output round-off noise”. He proves the theorem shown as Algo-
rithm 7.1 for the suboptimal case for a low-pass narrow-band filter in which δT = I and ηT = 0. (For a high-pass narrow-band
filter δT = −I). If δT = 0 and ηT = 0 then the minimum noise gain is

gM =
∑N

k=1 µk√
N

Hence, error feedback reduces the noise gain only if the sum of the residue modes is less than the sum of the second-order modes.

Algorithm 7.1 Minimisation of round off noise in error feedback/feedforward state variable filters. (See Williamson [47, Theorem
5.2]).
Let M define the second-order modes of a stable N th order filter, H (z), with an input-balanced realisation, {A0, B0, C0, D}.
Consider the finite word length implementation

{
AT = T−1A0T,BT = T−1B0, CT = T⊤C0, D

}
. Then subject to the l2-norm

scaling constraint, the identity state residue correction, δT = I , and the zero output residue correction, ηT = 0, the minimum
noise filter is defined by

T = R1ΠR⊤0
Π = diag {π1, . . . , πN}

where

π2
m = 1

ρm

∑N
k=1 ρk

N

and for unitary matrixes R0 and R1

diag
{
R0Π−1R⊤0

}
= I

R⊤1 P0R1 is diagonal

where

P0 = (I −A0)⊤M2 +M2 (I −A0)

The residue modes {ρk} are the square roots of the eigenvalues of P0. The corresponding minimum noise gain, gI is

gI =
∑N

k=1 ρk√
N

The Octave script error_feedback_test.m attempts to reproduce Williamson’s Example 6.3. This example considers error feed-
back for the 6th order filter given by H (z) = q(z)

p(z) where

q=[0.0047079 -0.0251014 0.0584417 -0.0760820 0.0584417 -0.0251014 0.0047079];
p=[1 -5.6526064 13.3817570 -16.9792460 12.1764710 -4.6789191 0.7525573];

aIf K = I , then the filter is orthogonal. See Part 6. An SVD transformation of the corresponding W matrix gives the input balanced structure.

138

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Figure 7.2: Simulated response of a 6-th order filter with 8 bit coefficients and a 2 bit mantissa (for error feedback) in the state
variables. (After Williamson [47, Example 6.3]).

I found different values for the second order modes. I found that the optimum noise gain was 1.333 and the noise gain for an
orthogonal filter was 2.086 whereas Williamson reports a noise gain of g2

M = 5.8272 in the latter case. I found the following
values for the residue modes:

rho = [0.268561 0.141649 0.127042 0.058299 0.021251 0.005512]

and a noise gain of gI = 0.254. The error-feedback filter was simulated with 8 bit coefficients by adding 2 bits to the state storage
in the Octave function svf.m (as the mantissa, to the right of the binary point). The estimated output roundoff noise is 0.323 bits.
The measured output roundoff noise is 0.308 bits. The output round-off noise is dominated by the noise due to the rounding of
the output, y (k): 1√

12 = 0.2887 bits. The simulated response is shown in Figure 7.2.

139

140

Part II

Constrained optimisation of the IIR filter
frequency response

141

142

Chapter 8

IIR filter design using Sequential Quadratic
Programming with the transfer function defined
by pole and zero locations

The transfer function or response of an IIR digital filter is usually written in the z-transform domain similarly to

H (z) = b (z)
a (z) =

∑m
l=0 blz

−l

1 +
∑n

l=1 alz−l
(8.1)

Where 0 ≤ m ≤ n. Poles at zero may be added to ensure that the filter is causal. For a causal filter, the output of the filter
only depends inputs from the past. When z is interpreted as a single sample delay this means that the order of the numerator is
less than or equal to the order of the denominator. A non-causal filter can be used to process signals off-line. Alternatively, the
non-causal filter can be decomposed by polynomial division into a parallel and cascade combination. A stable filter has all the
roots of the denominator polynomial inside the unit circle in the z-plane. A minimum phase filter has both poles and zeros inside
the unit circle in the z-plane so that the inverse filter is also stable.

Equation 1 minimises the error in the complex response (amplitude and phase). In contrast, in the following the weighted
amplitude and group-delay response squared-error is minimised and filter stability is obtained by constraints on the pole location.
The sequential quadratic programming (SQP) optimisation method linearises the response error at the current estimate of the
solution and solves the corresponding constrained quadratic programming problem to find a new estimate that minimises the
linearised error. The procedure stops at a local minimum of the error surface. Unfortunately, the filter design error surface usually
has many, many local minima. Achieving success in finding a good solution (for which the error value at the local minimum is
close to the global minimum) depends on the initial solution and the formulation and weighting of the error functiona.

8.1 Problem statement

The magnitude and group delay responses of an IIR digital filter are optimised in terms of a coefficient vector containing the
gain-zero-pole definition of the transfer function

x =
[
K, R0,1, . . . , R0,U , Rp,1, . . . , Rp,V , r0,1, . . . , r0, M

2
, ϕ0,1, . . . , ϕ0, M

2
, rp,1, . . . , rp, Q

2
, ϕp,1, . . . , ϕp, Q

2

]
(8.2)

This vector represents the poles and zeros of a filter with gain factor K, the radiuses of U real zeros and V real poles and the
radiuses and angle of M

2 pairs of conjugate zeros and Q
2 pairs of conjugate poles. Note that for decimation factor, R, the poles

are in fact on the zR plane and each pole in x corresponds to R poles on the z plane. Appendix G shows the amplitude, phase
and group delay responses and their gradients in terms of the coefficient vector.

aAn alternative to Equation 1 is to linearise the cost function, EH , by:

ÊH =
NB∑
j=1

fu,jˆ

fl,j

Wj (f)∣∣D̂ (f)
∣∣2 |N (f)−D (f) Hd (f)|2df

where D̂ is the previous estimate of D. See, for example, Dumitrescu and Niemistø̈ [21]

143

The weighted squared-magnitude of the response error, EA, is:

EA (x) =
NB∑
j=1

fu,jˆ

fl,j

WAj (f) [A (x, f)−AD (x, f)]2 df

where NB is the number of frequency bands, fu,j the upper and fl,j the lower frequency band edges, WAj the weighting
function for each frequency band, and A is the actual and AD the desired magnitude response. The weighted time delay error,
ET , is similarly expressed in terms of WT j the weighting function for each frequency band, the actual group delay response, T ,
and the desired group delay response, TD.

The optimal filter design minimises the total weighted squared response error, E = EA + ET , subject to constraints gi (x) ≥ 0
where x ∈ D ⊂ RN and the filter is stable for x ∈ D. The method of Lagrange multipliers minimises the Lagrangian function:

L (x, λi) = E (x)−
∑

i∈A(x)

λigi (x)

where A (x) represents the set of active constraints at x and λi are the Lagrange multipliers (or dual variables) for those con-
straints. The Karush-Kuhn-Tucker conditions for the minimum are:

∇x

E (x)−
∑

i∈A(x)

λigi (x)

 = 0 (8.3)

gi (x) ≥ 0 (8.4)
λi ≥ 0 (8.5)

⟨λi, gi (x)⟩ = 0 (8.6)

The gradient of the magnitude error is:

∇xEA (x) =
NB∑
j=1

2
fu,jˆ

fl,j

WAj (f) [A (x, f)−AD (x, f)]∇xA (x, f) df

The gradient of the delay error is similar.

The literature often refers to the dual problem, finding the greatest lower bound of the dual function:

Λ (λi) = inf
x∈D

E (x)−
∑

i∈A(x)

λigi (x)

8.1.1 Solution of the constrained quasi-Newton optimisation problem

Express the Karush-Kuhn-Tucker conditions (Equations 8.3 and 8.4) at xk in terms of a linearised version of the gradient of the
error and linearised constraints (see Appendix K.1):

∇xE
(
xk
)

+∇2
xE
(
xk
) (
x− xk

)
−
∑

i∈A(x)

λi∇xgi

(
xk
)

= 0 (8.7)

gi

(
xk
)

+∇xgi

(
xk
) (
x− xk

)
≥ 0

where the Hessian of the squared-magnitude response error, EA, is:

∇2
xEA (x) =

NB∑
j=1

2
fu,jˆ

fl,j

WAj (f)
{

[∇xA (x, f)]2 + [A (x, f)−AD (x, f)]∇2
xA (x, f)

}
df

and the Hessian of the group delay error, ET , is similar.

Appendix K.6 shows that for a particular set of constraints,
{
gi

(
xk
)
| i ∈ A

(
xk
)}

, the IIR design problem can be approximated
by

Wkd
k − Bkλ

k = −∇xE
(
xk
)

(8.8)

144

−B⊤k dk = g
(
xk
)

whereWk is a positive-definite approximation to the true Hessian matrix derived using the Broyden-Fletcher-Goldfarb-Shanno
formula (see Appendix K.7.1) and Bk is the matrix whose columns are the gradients of the active constraints. This is a matrix
equation that can be solved for the Lagrange multipliers λk and the direction vector dk:

λk = −
(
B⊤kW−1

k Bk

)−1 [
g
(
xk
)
− B⊤kW−1

k ∇xE
(
xk
)]

dk = −W−1
k

[
∇xE

(
xk
)
− Bkλ

k
]

At each iteration of the sequential programming method the coefficient vector is updated by

xk+1 = xk + τkdk

where dk is the step direction vector and τk ∈ [0, 1] is the step-size. τk is found by a line search for the minimum of the
Lagrangian function

L
(
τk
)

= E
(
xk + τkdk

)
−

∑
i∈A(xk)

λk
i gi

(
xk + τkdk

)
subject to the constraints. The iteration finishes when the Karush-Kuhn-Tucker conditions are satisfied.

8.1.2 Choice of active constraints

Selesnick, Lang and Burrus [90] describe a simple algorithm for selecting the constraints on the magnitude response that apply
at each iteration in the design of an FIR filter. The general discussion accompanying that description is applicable here. The
following applies equally to the group delay error component, ET , of the total error, E .

The amplitude A (f) of the filter response minimising the L2 error subject to the peak constraints will touch the upper and lower
bound functions at the extremal frequencies of A (f). At each iteration of the algorithm, the set of frequency points at which
A (f) touches the constraints is updated. The equality-constrained problem is then solved by the method of Lagrange multipliers.
According to the Karush-Kuhn-Tucker conditions, the solution to the equality-constrained problem solves the corresponding
inequality constrained problem if all the Lagrange multipliers are non-negative (where the signs of the multipliers are defined
appropriately). If on some iteration a multiplier is negative, then the solution to the equality-constrained problem does not solve
the corresponding inequality-constrained one. For this reason, constraints corresponding to negative multipliers are sequentially
dropped from the set of constraints. Although not proved in theory, this technique appears to converge in practice.

Let the constraint set S be the set of frequencies S = {f1, . . . , fr} where f ∈ [0, π]. Let S be partitioned into two sets SL and
SU , where SL is the set of frequencies where the lower bounds apply

A (x, f) = L (f)

and SU is the set of frequencies where the upper bounds apply

A (x, f) = U (f)

Suppose SL = {f1, . . . , fq} and SU = {fq+1, . . . , fr}. To minimise EA (x, f) subject to these constraints, form the Lagrangian

L (x, λ) = EA (x, f)−
q∑

i=1
λi [A (x, f)− L (f)]−

r∑
i=q+1

λi [U (f)−A (x, f)]

At the minimum of EA (x, f) the gradient ∇xL (x, λ) = 0 and

∇xEA (x, f)−
q∑

i=1
λi∇xA (x, f) +

r∑
i=q+1

λi∇xA (x, f) = 0

A (x, fi) = L (fi) for 1 ≤ i ≤ q
A (x, fi) = U (fi) for q + 1 ≤ i ≤ r

According to the Karush-Kuhn-Tucker conditions, when the Lagrange multipliers λ1, . . . , λr are all non-negative, then the solu-
tion to these equations minimises ϵ (x, f) subject to the inequality constraints

A (x, fi) ≥ L (fi) for 1 ≤ i ≤ q

145

Algorithm 8.1 Exchange algorithm for multiband FIR filter of Selesnick, Lang and Burrus [91, p.498].

1. Initialisation: Initialise the constraint sets R and S to the empty set.

2. Minimisation with Equality Constraints: Calculate the Lagrange multipliers associated with the filter that minimizes EA (ω)
subject to the equality constraints A (ωi) = L (ωi) for ω ∈ SL, and A (ωi) = U (ωi) for ω ∈ SU .

3. Karush-Kuhn-Tucker Conditions: If there is a constraint set frequency ωi, for which the Lagrange multiplier λi is negative,
then remove from the active constraint set, S, the frequency corresponding to the most negative multiplier, and go back to
step 2. Otherwise go on to step 4.

4. Check for Violation over R: Calculate the new filter response, A (ωi) for frequencies in the alternate constraint set, R. If
A (ωi) < L (ωi) or A (ωi) > H (ωi) for some ωi ∈ R, then remove the frequency corresponding to the greatest violation
from R, append that frequency to S, and go back to step 2.

5. Multiple Exchange of Constraint Set: Overwrite the previous constraint set, R, with the current constraint set, S. Set the
current constraint set S equal to SL ∪ SU , where SL is the set of frequency points ω, in [0, π] satisfying both A′ (ωi) = 0
and A (ωi) ≤ L (ωi) (ie: troughs failing the constraint) and where SU , is the set of frequency points ω, in [0, π] satisfying
both A′ (ωi) = 0 and A (ωi) ≥ U (ωi) (ie: peaks failing the constraint).

6. Check for Convergence: If A (ω) ≥ L (ω) − ϵ for all frequency points in SL and if A (ω) ≤ U (ω) + ϵ for all frequency
points in SU , then convergence has been achieved. Otherwise, go back to step 2.

A (x, fi) ≤ U (fi) for q + 1 ≤ i ≤ r

Selesnick et al. [91, p.498] modify the algorithm of Selesnick et al. [90] so that it can be used in the design of multiband FIR
filters, as shown in Algorithm 8.1. In the following, this algorithm is referred to as the Peak-Constrained-Least-Square (PCLS)
error algorithm. The modification referred to is the addition of a second set of constraints. It avoids the cycling of constraint sets
that otherwise occurs with multi-band filter designs.

Selesnick et al. [90, Section IV.A] justify the removal of the most negative Lagrange multiplier as follows:

The constraints are on the values of A (ωi) for the frequency points ωi in a constraint set. On each iteration, the
constraint set is updated so that at convergence, the only frequency points at which equality constraints are imposed
are those where A (ω) touches the constraint. The equality constrained problem is solved with Lagrange multipliers.
The algorithm below associates an inequality-constrained problem with each equality constrained one. According
to the Kuhn-Tucker conditions, the solution to the equality constrained problem solves the corresponding inequality
constrained problem if all the Lagrange multipliers are non-negative (where the signs of the multipliers are defined
appropriately). If on some iteration a multiplier is negative, then the solution to the equality constrained problem
does not solve the corresponding inequality constrained one. For this reason, before the constraint set is updated in
the algorithm described below, constraints corresponding to negative multipliers (when they appear) are sequentially
dropped from the constraint set. In this way, an inequality constrained problem is solved on each iteration, albeit
over a smaller constraint set. It turns out that in the special case of a lowpass filter design considered here, this
simple iterative technique converges in practice.

The Octave function files cl2lp.m and cl2bp.m, written by Selesnick [219], are, respectively, low-pass and band-pass implemen-
tations by Selesnick of the PCLS filter design method.

8.1.3 Linearisation of peak constraints

At each iteration the magnitude response and group-delay are linearised about xk. I follow the description of the linearised
constraints given by Sullivan [98, p.2855]. The linearised magnitude response is:

Â (x) = A
(
xk
)

+∇xA
(
xk
)⊤ (

x− xk
)

The frequency response magnitude inequality constraints are, in the pass band

AD − Â (x) ≥ 0
Â (x)− [AD −∆AP

] ≥ 0

146

and in the stop band

∆AS
− Â (x) ≥ 0

where ∆Ap
is the pass band ripple for the desired gain AD and ∆AS

is the stop band ripple. After linearising about xk these
constraints become

AD −A
(
xk
)
−∇xA

(
xk
)⊤ (

x− xk
)
≥ 0

A
(
xk
)

+∇xA
(
xk
)⊤ (

x− xk
)
− [AD −∆AP

] ≥ 0

∆AS
−A

(
xk
)
−∇xA

(
xk
)⊤ (

x− xk
)
≥ 0

Similarly, the linearised group-delay is

T̂ (x) = T
(
xk
)

+∇xT
(
xk
)⊤ (

x− xk
)

and the group-delay inequality constraints in the pass band are

[TD + ∆D]− T̂ (x) ≥ 0
T̂ (x)− [TD −∆T] ≥ 0

where ∆T = Tmax − TD = TD − Tmin is the tolerance for the group-delay error compared with the desired group-delay TD. As
before, the two corresponding linearised constraints on the group-delay in the pass band are

[TD + ∆T]− T
(
xk
)
−∇xT

(
xk
)⊤ (

x− xk
)
≥ 0

T
(
xk
)

+∇xT
(
xk
)⊤ (

x− xk
)
− [TD −∆T] ≥ 0

The frequency response inequality constraints are calculated at a grid of frequency points. For a low-pass filter there are two
amplitude constraints and two group-delay constraints in the pass band and one amplitude constraint in the stop band.

8.1.4 Ensuring the stability of the IIR filter

An IIR filter is stable if the poles of the filter transfer function lie within the unit circle: |z| < R < 1. Deczky [3] and
Richards [135] define the transfer function in the form of gain, pole locations and zero locations. In this case filter stability is
ensured by a simple constraint on the pole radius.

The partial derivatives of the amplitude response with respect to the filter coefficients are simpler when expressed in terms
of the numerator and denominator polynomials of the transfer function. This has lead many authors to suggest filter stability
criteria expressed in terms of the coefficients of the denominator polynomial. Tarczynski et al. [11] ensure stability by adding
a barrier function to the squared error based on the impulse response of the digital filter that corresponds to the denominator
polynomial of the filter transfer function being optimised. Lang [137] describes a method for finding successive coefficient
vectors based on Rouché’s theorem. Dumitrescu and Niemistø̈ [21] compare Lang’s method with one that ensures that the updated
denominator polynomial remains a Schur polynomial in the vicinity of the current coefficient vector. Lu and Hinamoto [246]
express the denominator polynomial as a product of second-order sections and derive a linear inequality stability constraint on
the denominator coefficients. Lu [253] describes a stability test based on Cauchy’s Argument Principle.

In my opinion, expressing the filter transfer function in the gain-pole-zero form is preferable to the usual polynomial fraction
form because the former provides the simplest possible stability criterion.

8.1.5 Selecting an initial filter design

The constraints on the filter design are the desired response and stability.

Windowed FIR initial filters

An FIR filter approximating the desired response can be designed with the Octave remez function. Alternatively, the FIR filter
can be designed with the “windowing” method, summarised here. The frequency response of a digital filter

H (z) =
∞∑

k=−∞
hkz
−k

147

with a lowpass response cutoff at ωp is

H (ω) =
∞∑

k=−∞
hke
−ıkω

=
{

1, |ω| < ωp

0, ωp < |ω| < π

The coefficients of the impulse response are

hk = 1
2π

ˆ ωp

−ωp

eıkωdω

= 1
πk

sin kωp

= ωp

π
sinc kωp

To create an FIR response we truncate the response to length L = 2N + 1 with a window function. The window function is
selected for main-lobe width and side-lobe suppression. A typical window function is

Wk =
{[
α+ (1− α) cos 2πk

N

]
, |k| ≤ N

0, |k| > N

For the Hamming window, α = 0.54. The Octave code to implement a windowed FIR filter is:

b=2*fc*sinc((-((L-1)/2):((L-1)/2))*2*fc).*hamming(L)

where L is the FIR filter length and fc < 0.5 is the low-pass cut-off frequency for sampling frequency fS = 1.

Tarzcynski’s method of unconstrained optimisation of an IIR initial filter

An arbitrary filter can be refined by unconstrained optimisation with a “barrier” function (see Appendix K.8.2). Tarczynski et
al. [11], propose minimising the error with the following, so-called, WISE barrier function:

(1− λ) EH + λ

T +M∑
t=T +1

f2 (t) (8.9)

where EH is the filter response error defined in Equation 1, λ, T and M are suitable constants and f (t) is the impulse response
of the filter F (z) = 1

D(z) . Tarczynski et al. provide heuristics for selecting λ, T and M . Typically, λ ∈
[
10−10, 10−3],

T ∈ [100, 500] and M = RK. The barrier function (the second part of Equation 8.9) is intended to be small when the filter
is stable and increase rapidly otherwise. Roberts and Mullis [193, Section 8.3] show that the state space description of the
direct-form implementation of F (z) is: [

x (t+ 1)
y (t)

]
=
[
A B
C D

] [
x (t)
u (t)

]
where:

A =

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−dNd

−dNd−1 · · · −d1

B =

[
0 0 · · · 0 1

]⊤
C =

[
−dNd

· · · −d1
]

D = 1

Alternatively, for the filter transfer function, H (z), given by Equation 8.1, Tarczynski et al. [11, Appendix 1] show that
the filter z−Nd

D(ρz) can be implemented as a cascade of first order sections, z−1

1−pi(ρz)−1 . 0 < ρ < 1 is chosen to limit the pole

148

magnitudes. Let the output of the ith section, yi, be the input to the i + 1th section, ui+1, and assume the poles are ordered so
that |p1| ≥ |p2| ≥ . . . ≥ |pNd

|, then the state variable model for each section is:

xi (t+ 1) = piρ
−1xi (t) + ui (t)

yi (t) = xi (t)

The overall state variable model is (for R = 1):

A =

p1ρ
−1 0 0 · · · 0

1 p1ρ
−1 0 · · · 0

...
...

...
. . .

...
0 0 . . . 1 pNd

ρ−1

B =

[
1 0 · · · 0 0

]⊤
C =

[
0 0 · · · 0 1

]
D = 0

In both cases, the corresponding impulse response is:

f (t) =

0 t < 0
D t = 0
CAt−1B t > 0

Golub and van Loan [58, Algorithm 11.2.2] show an algorithm, reproduced as Algorithm 8.2, for efficiently computing the
powers of a matrix by cumulative products of the binary powers of the matrix. This algorithm requires at most 2×floor [log2 (s)]
matrix multiplies. If s is a power of 2, then only log2 (s) matrix multiplies are needed.

Algorithm 8.2 Compute the powers of a matrix. (See Golub and van Loan [58, Algorithm 11.2.2].)

The following algorithm computes F = As for matrixA ∈ Rn×n and a positive integer swith binary expansion s =
∑K

k=0 βk2k.
Z = A, q = 0
while βq = 0 do

Z = Z2

q = q + 1
end while
F = Z
for k = q + 1, . . . , t do

Z = Z2

if βk ̸= 0 then
F = FZ

end if
end for

The Octave script tarczynski_ex2_standalone_test.m, designs a filter for the specifications of Tarczynski et a.l Example 2 [11]
with nN = 24, nD = 2 and R = 2 by unconstrained minimisation of Equation 8.9 with fminunc. The resulting response is
shown in Figure 8.1 and the pole-zero plot of the filter is shown in Figure 8.2.

The Octave function xInitHd uses the WISE barrier function to design an initial filter in polynomial form and then calls the
Octave qroots function to convert that polynomial into gain-pole-zero form. As noted in the Introduction, finding the roots of a
polynomial is a difficult problem in numerical analysis and the output of the qroots function depends on the CPU architecture,
operating system, library versions, compiler version and Octave version.

Surma-aho and Saramäki method of designing an IIR initial filter

Appendix M.4.3 describes the method of Surma-aho and Saramäki [113] for designing an initial low-pass filter implemented
as either a single filter or as the parallel combination of two all-pass filters. Unfortunately, this method requires root-finding of
intermediate polynomials. I find the method of Tarczynski et al. to be more useful.

149

0 0.1 0.2 0.3 0.4 0.5
-8

-6

-4

-2

0

2

Tarczynski et al. Example 2 : nN=24,nD=2,R=2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10
12
14
16
18
20
22
24

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.1: Tarczynski et al. Example 2, response for nN=24, nD=2 and R=2.
with

-2 -1 0 1

-1

-0.5

0

0.5

1

Tarczynski et al. Example 2 : nN=24,nD=2,R=2

Figure 8.2: Tarczynski et al. Example 2, pole-zero plot for nN=24, nD=2 and R=2.

150

8.2 Examples of IIR filter design with SQP and constrained pole and zero locations

8.2.1 Introductory comments on the IIR filter design examples

This section considers examples of IIR filter design. The design procedure is:

• find a valid initial design

• iteratively reduce the mean-square-error (MMSE) with the procedure described in Section 8.1.1.

• iteratively apply constraints with the peak-constrained-least-square-error (PCLS) algorithm described in Section 8.1.2.

For the filter design examples in this section, the filter amplitude, phase and group delay responses and their gradients are
calculated by the Octave functions iirA, iirP and iirT, respectively.

!!! WARNING !!! The iirA, iirP and iirT functions do not attempt to handle the discontinuity and non-differentiability of
the properties of a zero at z = 1 with ω = 0. In general, I have found that this does not cause difficulties but may result in a
sub-optimal result. The differentiator examples of Section 8.2.8 and Section 8.2.9 assume a zero at z = 1 and design a correction
filter that provides the desired combined response.

Finding an initial IIR filter design

The initial IIR filter design must be stable and bear a passing resemblance to the desired response. The multi-dimensional IIR
filter design surface has many local minima and the minimum reached depends on the initial point. After deciding the decimation
ratio, R, a stable initial design can be found with:

• an FIR filter and an estimate of the number of poles required

• an arbitrary IIR filter optimised with the Octave function xInitHd

The Octave function xInitHd begins with an initial filter and designs a rational polynomial transfer function approximation to
the desired response by repeated calls to the Octave fminunc function. Filter stability is assured by a barrier function based on
the impulse response of a filter constructed from the poles of the approximate response. See Section 8.1.5 and Tarczynski et
al. [11]. The coefficient constraints are defined in the Octave function xConstraints. In fact I only constrain the pole radiuses
and do not constrain the scale factor, K, or the complex conjugate pole angles. It is possible that the initial filter produced by
xInitHd has a negative scale factor and the filter amplitude response is real but negative. See, for example, the initial filter of the
R=2 decimator filter below. Presumably, the filter was found at a minimum so reversing the sign of the scale factor reverses the
sign of the initial amplitude gradients. In practice, a first pass of MMSE optimisation will (hopefully!) reverse the sign of K to
match the sign of the desired response while, at the same time, finding a new minimum. The constraints applied to the amplitude
response by the implementation of PCLS optimisation in iir_slb assume that the amplitude function is positive so an attempt at
PCLS optimisation of a filter with a negative scale factor will most likely fail.

Appendix K.10 works through the derivation of the Goldfarb-Idnani algorithm [40] for finding an initial solution that meets
constraints. As an example, the Octave script goldfarb_idnani_fir_minimum_phase_test.m begins with a non-minimum phase
FIR bandpass filter and finds a minimum phase FIR filter, that is, an FIR bandpass filter with the constraint that the zero locations
lie on or within the unit circle. When the number of constraints on the frequency response is more than ten or so the script fails
due to numerical problems with the Hessian matrix. The script does find a minimum-phase FIR filter albeit with a very poor
response. In this case I found that a “by-eye” or “cut-and-fit” iterative approach to finding an initial filter is more useful. For
example see the Octave script iir_sqp_slb_fir_bandpass_test.m.

MMSE optimisation

MMSE optimisation is performed by calling Octave function iir_sqp_mmse. The response error is minimised while the real and
complex pole radiuses are constrained to |r| < rho < 1. The other parts of the coefficient vector (scale factor, zero radiuses and
pole and zero angles) are not constrained. The vS argument to iir_sqp_mmse specifies the indexes into the frequency vectors ωa

etc. of linear constraints at the corresponding index intoAdu orAdl etc. Function iir_sqp_mmse () calls sqp_bfgs to minimise the
objective function iir_sqp_mmse_fx () with linear constraints calculated by iir_sqp_mmse_gx (). These functions calculate the

151

squared-error in the response amplitude and delay and linear constraints by calls to iirE (). That function calculates the error with
trapezoidal integration. If the frequency bands are not contiguous then zeros in the weight vector can make frequency transition
bands. A useful future improvement is to add a constraint on the slope of the amplitude response in the transition band. For a
lowpass filter: ∂A

∂ω < 0.

I found by trial-and-error when running iir_sqp_mmse that the SQP Hessian matrix can be initialised with the diagonal elements
of the amplitude squared error Hessian. Similarly, the current SQP search point can be updated with the Armijo-Kim line-
search algorithm and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix update algorithm (see Appendix K.9.2 and
Appendix K.7.1 respectively). The error surface is not quadratic and has many, many local minima. The SQP loop is more
stable if, at each iteration, the error surface is approximated by a quadratic surface with the BFGS estimate of the Hessian matrix.
Typically, the MMSE optimisation process is iterative; the design process starts with a loose amplitude only specification and the
constraints on amplitude, phase and delay are gradually tightened.

There are several reasons why an optimisation attempt might fail:

• the weighting factors for the comined squared error of, for example, amplitude and group delay, are not appropriate.
Experiment with the weights.

• the number of iterations may exceed the limit. Increase the iteration limit, maxiter,

• the tolerance used may be too low. Increase the tolerance, tol.

• the line-search direction does not satisfy the constraints:

warning: searching for d within constraints but norm(d)<tol^2!

Reduce the maximum coefficient update size, dmax.

• the line-search algorithm may not find a minimum or the line-search algorithm may find that the objective function is not
approximately quadratic in the search region:

Found tau = 0.000000 using goldensection search of Lagrangian
warning: norm(delta)<eps

Octave includes an SQP solver function, sqp. I have not used this function because it calls separate functions to calculate the
error and the constraints. In iir_sqp_mmse and in the PCLS solver, iir_slb, the constraints are calculated at the same time as the
error.

PCLS optimisation

The MMSE optimisation constrains the integrated error over a frequency interval. PCLS optimisation constrains the peaks of
the amplitude, phase and group-delay responses. For example, the MMSE design of a low-pass filter may have amplitude peaks
above 0dB. The PCLS algorithm of Selesnick, Lang and Burrus [91, Fig.4,p.499] (reproduced above as Algorithm 8.1), is
implemented in the Octave function iir_slb. The function handle of the MMSE solver (in this case iir_sqp_mmse) is an argument
to iir_slb. The peak-exchange algorithm of Selesnick et al. is much simpler than that of Adams and Sullivan [103, Section IV].

Figure 8.3 shows the failed constraints for the amplitude response of a low pass filter with an amplitude constraint mask. The
figure was generated by the Octave script iir_slb_update_constraints_test.m. When switching from MMSE to PCLS optimisa-
tion, the introduction of constraints on the response peaks alters the Lagrangian and the pass-band and stop-band weights must
be modified by trial-and-error.

152

0 0.1 0.2 0.3 0.4 0.5
0.9

0.92

0.94

0.96

0.98

1

1.02

test parameters:fap=0.15,dBap=0.1,fas=0.3,dBas=45,tp=6,rtp=0.025,tol=1e-05

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

A
m

pl
itu

de

Frequency

Figure 8.3: Example of failed constraints for a low pass filter.

153

8.2.2 Tarczynski et al. Example 2

Figure 8.1 shows the response of a filter designed with the “WISE” method of Tarczynski et al. [11]. The coefficients of the
numerator and denominator polynomials of the filter are:

N0 = [0.0055318056, 0.0168959019, 0.0074747069, -0.0015217632, ...
-0.0019752367, 0.0069417252, 0.0033977968, -0.0102845651, ...
-0.0055115952, 0.0171242060, 0.0104429077, -0.0353411015, ...
-0.0284871651, 0.1348459465, 0.4155092437, 0.6323652597, ...
0.6374870441, 0.4464420276, 0.1788987531, -0.0679345776, ...
0.2506266798, -0.3305090495, 0.2959985521, -0.1721580560, ...
0.0604525821]';

D0 = [1.0000000000, 1.1781972853, 0.2453690259]';

In the above listing, the first line shows the gain, and subsequent lines show, respectively, 2 real zeros, 2 real poles, the zero
radiuses for 11 conjugate pairs of zeros and the zero angles for 11 conjugate pairs of zeros. In practice, since R = 2, the real
poles are split into pairs of conjugate poles lying on the imaginary axis. After some experimentation I modified the filter to:

Ux0=3,Vx0=2,Mx0=20,Qx0=0,Rx0=2
x0 = [0.0400000000, ...

-1.1000000000, 0.3617300000, 0.3617300000, ...
-0.8842894000, -0.1495357000, ...
0.6034298000, 0.8306859000, 1.0533570000, 1.1899991000, ...
1.2418447000, 1.2794257000, 1.3011204000, 1.3091281000, ...
1.3386509000, 1.3538295000, ...
0.9197805000, 1.5328472000, 1.6013209000, 1.8790233000, ...
2.1870677000, 2.5029369000, 1.1173639000, 2.8187821000, ...
0.6631062000, 0.2204128000]';

In this case there are three real zeros. The Octave script iir_sqp_mmse_tarczynski_ex2_test.m calls the iir_sqp_mmse () function
to MMSE optimise this filter. The optimised filter is:

Ux1=3,Vx1=2,Mx1=20,Qx1=0,Rx1=2
x1 = [0.0017320719, ...

-1.3848301093, 0.4125509029, 0.4125509029, ...
-0.5535583491, 0.0111284883, ...
0.5862376536, 0.8555459647, 1.2340323025, 1.3457959128, ...
1.3766498387, 1.3890052592, 1.3904153941, 1.5201431901, ...
1.5763473382, 1.5841438418, ...
0.9389116881, 1.5229001580, 1.6851391399, 1.9749880919, ...
2.2541329622, 2.5431581836, 2.8379025736, 1.0191948043, ...
0.2063733702, 0.6493642166]';

The corresponding transfer function numerator and denominator polynomials are, respectively:

N1 = [0.0017320719, 0.0010567346, -0.0020670973, -0.0023919018, ...
0.0048179403, 0.0072124023, -0.0064617736, -0.0182992204, ...
0.0002677316, 0.0271697651, 0.0051420244, -0.0541760808, ...

-0.0295752284, 0.1678144148, 0.4345163431, 0.5316776331, ...
0.3558168730, 0.0911637847, -0.0022310380, 0.1178985225, ...

-0.2444893149, 0.2464467626, -0.1425491230, 0.0288515415]';

and

D1 = [1.0000000000, 0.0000000000, 0.5424298608, 0.0000000000, ...
-0.0061602676]';

Figure 8.4 shows the response of the optimised filter, Figure 8.5 shows the pass-band response and Figure 8.6 shows the corre-
sponding pole-zero plot.

154

0 0.1 0.2 0.3 0.4 0.5
-8

-6

-4

-2

0

2

Tarczynski et al. Example 2 response : U=3,V=2,M=20,Q=0,R=2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10
12
14
16
18
20
22
24

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.4: Tarczynski et al. Example 2 response after MMSE optimisation.

0 0.05 0.1 0.15 0.2
-0.2

-0.1

0

0.1

0.2

A
m

pl
itu

de
(d

B
)

0.3 0.35 0.4 0.45 0.5
-6.2

-6.1

-6

-5.9

-5.8

0 0.05 0.1 0.15 0.2
14.2

14.25

14.3

14.35

14.4

D
el

ay
(s

am
pl

es
)

Frequency
0.3 0.35 0.4 0.45 0.5

19.9

19.95

20

20.05

20.1

Frequency

Figure 8.5: Tarczynski et al. Example 2 pass-band response after MMSE optimisation.

155

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Tarczynski et al. Example 2 pole-zero plot : U=3,V=2,M=20,Q=0,R=2

Figure 8.6: Tarczynski et al. Example 2 pole-zero plot after MMSE optimisation.

156

8.2.3 Deczky’s Example 3

Sullivan and Adams [98, p. 2859] refer to the following example IIR filter design specification as “Filter 2-iv”. It is a modified
version of Deczky’s Example 3, [3].

U = 0
V = 0
M = 10
Q = 6
R = 1

A (f) =
{

1 0 < f < 0.15
0 0.3 < f < 0.5

T (f) = 10.00 0 < f < 0.25

The Octave script deczky3_sqp_test.m implements this example. The filter specification defined in that file is

n=1000 % Frequency points across the band
tol=0.0002 % Tolerance on relative coefficient update size
ctol=0.0002 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.1 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.25 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.004 % Pass band group delay peak-to-peak ripple
Wtp_mmse1=0.125 % Pass band group delay weight(MMSE pass 1)
Wtp_mmse2=0.5 % Pass band group delay weight(MMSE pass 2)
Wtp_pcls=4 % Pass band group delay weight(PCLS pass)
fas=0.3 % Stop band amplitude response edge
dBas=30 % Stop band minimum attenuation
Was=1 % Stop band amplitude weight
U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=1 % Denominator polynomial decimation factor

Sullivan and Adams initialise the filter coefficients with a set of coefficients called “IPZS-1” [98, IPZS-1, p. 2860]

z=[exp(j*2*pi*0.41),exp(j*2*pi*0.305), ...
1.5*exp(j*2*pi*0.2),1.5*exp(j*2*pi*0.14),1.5*exp(j*2*pi*0.08)];

p=[0.7*exp(j*2*pi*0.16),0.6*exp(j*2*pi*0.12),0.5*exp(j*2*pi*0.05)];
K=0.0096312406;
x0=[K,abs(z),angle(z),abs(p),angle(p)]';

The above listing shows that the initial filter has 0 real zeros, 0 real poles, 5 conjugate pairs of zeros, and 3 conjugate pairs of
poles. The initial response is shown in Figure 8.7. The corresponding pole-zero plot is shown in Figure 8.8.

157

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

Initial Deczky Ex. 3 : U=0,V=0,M=10,Q=6,R=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.7: Deczky Example 3, response for initial coefficients.

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Initial Deczky Ex. 3 : U=0,V=0,M=10,Q=6,R=1

Figure 8.8: Deczky Example 3, pole-zero plot for initial coefficients.

158

MMSE optimisation of Deczky’s Example 3

With weights Wap = Was = 1 and Wtp = 0.125 the first MMSE optimisation pass gives the response shown in Figure 8.9.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x1(mmse):fap=0.15,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=10,Wtp_mmse=0.125
A

m
pl

itu
de

(d
B

)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.9: Deczky Example 3, MMSE optimised response after pass 1.

After some experimentation, the second iteration, with Wtp = 0.5, gives the response shown in Figure 8.10 with pass-band
details shown in Figure 8.11 and the pole-zero plot shown in Figure 8.12.

159

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x2(mmse):fap=0.15,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=10,Wtp_mmse=0.5

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.10: Deczky Example 3, MMSE optimised response after pass 2.

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

x2(mmse):fap=0.15,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=10,Wtp_mmse=0.5

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
9.98

9.99

10

10.01

10.02

10.03

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.11: Deczky Example 3, MMSE optimised passband response after pass 2.

160

-1 0 1 2

-1

-0.5

0

0.5

1

x2(mmse):fap=0.15,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=10,Wtp_mmse=0.5

Figure 8.12: Deczky Example 3, MMSE optimised pole-zero plot after pass 2.

161

PCLS optimisation of Deczky’s Example 3

The test script deczky3_sqp_test.m now switches to PCLS optimisation of the MMSE filter. After some experimentation, the final
specification becomes fap = 0.15, dBap = 0.1dB, Wap = 1, fas = 0.30, dBas = 30dB, Was = 1, ftp = 0.25, Wtp = 2,
tp = 10 samples group delay and tpr = 0.004 samples of peak-to-peak group delay ripple. The resulting amplitude and delay
responses are shown in Figure 8.13 with pass-band detail shown in Figure 8.14. The corresponding pole-zero plot is shown in
Figure 8.15.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=30,Was=1,ftp=0.25,tp=10,tpr=0.004,Wtp_pcls=4

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.13: Deczky Example 3, PCLS optimised response.

The optimised filter vector is, in the gain, zeros and poles form of Equation 8.2:

Ud1=0,Vd1=0,Md1=10,Qd1=6,Rd1=1
d1 = [0.0030848447, ...

1.0006654496, 1.0099535988, 1.3647602625, 1.7745134605, ...
2.2765441921, ...
2.0984427111, 2.7646885002, 1.7523051099, 0.7241814695, ...
0.0026962171, ...
0.5159067633, 0.5992126094, 0.6426290208, ...
0.3554694381, 1.0889506059, 1.4320018340]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N1 = [0.0030848447, -0.0118239828, 0.0100863873, -0.0023814848, ...
0.0139924683, -0.0089717520, -0.0348411344, -0.0001053886, ...
0.0970106595, 0.1330666316, 0.0957717582]';

and

D1 = [1.0000000000, -1.7004912738, 1.8461543422, -1.3306538996, ...
0.6636586566, -0.2214696964, 0.0394661715]';

162

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

d1(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=30,Was=1,ftp=0.25,tp=10,tpr=0.004,Wtp_pcls=4

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
9.998

9.999

10

10.001

10.002

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.14: Deczky Example 3, PCLS optimised passband response.

-1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

d1(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=30,Was=1,ftp=0.25,tp=10,tpr=0.004,Wtp_pcls=4

Figure 8.15: Deczky Example 3, PCLS optimised pole-zero plot.

163

An alternative implementation of Deczky’s Example 3

The test script deczky3a_sqp_test.m is an alternative implementation of Deczky’s Example 3 with filter specification:

n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-05 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.15 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.2 % Pass band group delay response edge
tp=9.325 % Nominal filter group delay
tpr=0.06 % Pass band group delay peak-to-peak ripple
Wtp=0.02 % Pass band group delay weight
fas=0.3 % Stop band amplitude response edge
dBas=50 % Stop band minimum attenuation
Was=4 % Stop band amplitude weight
U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=1 % Denominator polynomial decimation factor

The resulting amplitude and delay responses are shown in Figure 8.16 with pass-band detail shown in Figure 8.17. The corre-
sponding pole-zero plot is shown in Figure 8.18.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1:fap=0.15,dBap=0.15,Wap=1,fas=0.3,dBas=50,Was=4,ftp=0.2,tp=9.325,tpr=0.06,Wtp=0.02

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.16: Deczky Example 3a PCLS optimised response.

164

0 0.05 0.1 0.15 0.2

-0.2

-0.1

0

0.1

d1:fap=0.15,dBap=0.15,Wap=1,fas=0.3,dBas=50,Was=4,ftp=0.2,tp=9.325,tpr=0.06,Wtp=0.02

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2
9.3

9.31

9.32

9.33

9.34

9.35

9.36

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.17: Deczky Example 3a PCLS optimised passband response.

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

d1:fap=0.15,dBap=0.15,Wap=1,fas=0.3,dBas=50,Was=4,ftp=0.2,tp=9.325,tpr=0.06,Wtp=0.02

Figure 8.18: Deczky Example 3a PCLS optimised pole-zero plot.

165

The PCLS optimised filter vector is, in gain-zero-pole form:

Ud1=0,Vd1=0,Md1=10,Qd1=6,Rd1=1
d1 = [0.0019384234, ...

0.9605213189, 0.9740029718, 0.9937061599, 1.9512802273, ...
2.6128234661, ...
2.8135156189, 2.2258286413, 1.9213235090, 0.7293668141, ...
0.0001870793, ...
0.5185717755, 0.6136982888, 0.7296383737, ...
0.3574817497, 1.0447104541, 1.4314407986]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N1 = [0.0019384234, -0.0086214128, 0.0056335258, 0.0127293369, ...
-0.0013235215, -0.0316450915, -0.0140301769, 0.0634851553, ...
0.1241735509, 0.1037944753, 0.0435470372]';

and

D1 = [1.0000000000, -1.7906171249, 2.0986076544, -1.6292605382, ...
0.8715142971, -0.3035731634, 0.0539191341]';

8.2.4 Deczky’s Example 1

The following example IIR filter design specification is similar to Deczky’s Example 1 [3]. The pass-band is [0.0, 0.25] with 1dB
maximum amplitude ripple, the pass-band delay is 8 samples with 2 sample maximum peak-to-peak ripple and the stop band is
[0.3, 0.5) with at least 36dB attenuation. The PCLS optimisation in this example includes a constraint on the derivative of the
amplitude response in the transition band: ∂A(ω)

∂ω < 0. The Octave script deczky1_sqp_test.m implements this example. The
filter specification defined in that file is:

n=400 % Frequency points across the band
tol=0.0002 % Tolerance on relative coefficient update size
ctol=2e-06 % Tolerance on constraints
fap=0.25 % Pass band amplitude response edge
dBap=1 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
Wat=0.01 % Transition band weight
ftp=0.25 % Pass band group delay response edge
tp=8 % Nominal filter group delay
tpr=2 % Pass band group delay peak-to-peak ripple
Wtp=0.01 % Pass band group delay weight
fas=0.3 % Stop band amplitude response edge
dBas=36 % Stop band minimum attenuation
Was=1 % Stop band amplitude weight
Ux0=2 % Number of real zeros
Vx0=0 % Number of real poles
Mx0=10 % Number of complex zeros
Qx0=6 % Number of complex poles
Rx0=1 % Denominator polynomial decimation factor

The initial filter design was found with the Octave script tarczynski_deczky1_test.m. The initial frequency response is shown in
Figure 8.19.

MMSE optimisation of Deczky’s Example 1

The frequency response after MMSE optimisation is shown in Figure 8.20 and the pole-zero plot is shown in Figure 8.21.

166

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

Initial Deczky Ex. 1 : Ux0=2,V=0,M=10,Q=6,R=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.19: Deczky Example 1, response for initial coefficients.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x1(mmse):fap=0.25,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=8,Wtp=0.01

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.20: Deczky Example 1, MMSE optimised response.

PCLS optimisation of Deczky’s Example 1

The frequency response after PCLS optimisation is shown in Figure 8.22, the pass-band detail is shown in Figure 8.23 and the
pole-zero plot is shown in Figure 8.24. The optimised filter vector is, in gain, zeros and poles form:

167

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

x1(mmse):fap=0.25,Wap=1,fas=0.3,Was=1,ftp=0.25,tp=8,Wtp=0.01

Figure 8.21: Deczky Example 1, MMSE optimised pole-zero plot.

Ud1=2,Vd1=0,Md1=10,Qd1=6,Rd1=1
d1 = [0.0155615801, ...

-0.7531649609, -0.7531596882, ...
0.8725534530, 0.9160716248, 0.9850366949, 1.7211837278, ...
1.8290438538, ...
2.4535487596, 2.0636111456, 1.9019581944, 1.0636572276, ...
0.3566384971, ...
0.2875791903, 0.5999022738, 0.9345609164, ...
0.7984074780, 1.6803037284, 1.7321620078]';

and the corresponding transfer function numerator and denominator polynomials are, respectively:

N1 = [0.0155615801, -0.0114849513, -0.0027784423, 0.0114056235, ...
0.0141791360, -0.0364681210, -0.0192479022, 0.2048238208, ...
0.5289348020, 0.6790325872, 0.5243095819, 0.2456943588, ...
0.0542352105]';

and

D1 = [1.0000000000, 0.0300566606, 1.1822016920, -0.2525337136, ...
0.3302291178, -0.1077514783, 0.0259950800]';

168

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(pcls):fap=0.25,dBap=1,Wap=1,fas=0.3,dBas=36,Was=1,ftp=0.25,tp=8,tpr=2,Wtp=0.01

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.22: Deczky Example 1, PCLS optimised response.

0 0.05 0.1 0.15 0.2 0.25

-0.4

-0.2

0

0.2

d1(pcls):fap=0.25,dBap=1,Wap=1,fas=0.3,dBas=36,Was=1,ftp=0.25,tp=8,tpr=2,Wtp=0.01

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
7.8

8

8.2

8.4

8.6

8.8

9

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.23: Deczky Example 1, PCLS optimised passband response.

169

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

d1(pcls):fap=0.25,dBap=1,Wap=1,fas=0.3,dBas=36,Was=1,ftp=0.25,tp=8,tpr=2,Wtp=0.01

Figure 8.24: Deczky Example 1, PCLS optimised pole-zero plot.

170

8.2.5 Low-pass R=2 decimation filter

The second example design is a low-pass R = 2 decimation filter with compensation for the zero-order hold amplitude response:

U = 0
V = 0
M = 10
Q = 6
R = 2

A (f) =
{

πf
sin πf 0 < f < 0.10
0 0.25 < f < 0.5

T (f) = 8 0 < f < 0.125

The Octave script decimator_R2_test.m implements this example. The filter specification is

U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=2 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol_wise=1e-07 % Tolerance on WISE relative coef. update
tol_mmse=1e-05 % Tolerance on MMSE relative coef. update
tol_pcls=0.0004 % Tolerance on PCLS relative coef. update
ctol=1e-06 % Tolerance on constraints
fap=0.1 % Pass band amplitude response edge
dBap=0.2 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.125 % Pass band group delay response edge
tp=8 % Nominal filter group delay
tpr=0.008 % Pass band group delay peak-to-peak ripple
Wtp=0.25 % Pass band group delay weight
fas=0.25 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=3 % Stop band amplitude weight

The initial filter is found using the WISE barrier function implemented in the Octave function xInitHd function. That filter design
is itself initialised with a “guess”:

xi=[0.001, ...
[1,1,1,1,1], ...
(7:11)*pi/12, ...
0.7*[1,1,1], ...
(1:3)*pi/8]';

In this case the denominator decimation factor is R = 2 and each complex pole pair is split into 2 complex pole pairs so that the
overall filter has 6 complex conjugate pole pairs. In the above listing, the first line shows the gain, and subsequent lines show,
respectively, 0 real zeros, 0 real poles, the zero radiuses for 5 conjugate pairs of zeros, the zero angles for 5 conjugate pairs of
zeros, the pole radiuses for 3 conjugate quadruples of poles and the pole angles for 3 conjugate quadruples of poles. The resulting
initial response is shown in Figure 8.25.

MMSE optimisation of the low-pass R=2 decimator

After some experimentation and iteration, weights Wap = 1, Was = 4 and Wtp = 0.25 give the response shown in Figure 8.26
with the pass-band detail shown in Figure 8.27. The corresponding pole-zero plot is shown in Figure 8.28.

171

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

Initial decimator R=2 : U=0,V=0,M=10,Q=6,R=2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.25: Low-pass decimator R=2, response for initial coefficients.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x1:fap=0.1,fas=0.25,Was=3,ftp=0.125,tp=8,Wtp=0.25

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.26: Low-pass decimator R=2, MMSE optimised response.

172

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.5

0

0.5

1

1.5

x1:fap=0.1,fas=0.25,Was=3,ftp=0.125,tp=8,Wtp=0.25

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12
7.99

7.995

8

8.005

8.01

8.015

8.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.27: Low-pass decimator R=2, MMSE optimised passband response.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x1:fap=0.1,fas=0.25,Was=3,ftp=0.125,tp=8,Wtp=0.25

Figure 8.28: Low-pass decimator R=2, MMSE optimised pole-zero plot.

173

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1:fap=0.1,dBap=0.2,fas=0.25,dBas=40,Was=3,ftp=0.125,tp=8,tpr=0.008,Wtp=0.25

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.29: Low-pass decimator R=2, PCLS optimised response.

PCLS optimisation of the low-pass R=2 decimator

Starting with the MMSE filter of Figure 8.26, the weightsWap = 1,Was = 3 andWtp = 0.25 and the constraints dBap = 0.2,
dBas = 40, tp = 8 and tpr = 0.008 give the response shown in Figure 8.29 with pass-band detail shown in Figure 8.30. The
corresponding pole-zero plot is shown in Figure 8.31. The estimate of the optimised filter vector is, in the gain, zeros and poles
form of Equation 8.2:

Ud1=0,Vd1=0,Md1=10,Qd1=6,Rd1=2
d1 = [0.0160456528, ...

0.9876270487, 0.9883670275, 0.9908605820, 0.9926785797, ...
1.6353372849, ...
2.4715642627, 2.9071695646, 2.0990333504, 1.6418081783, ...
0.3255108385, ...
0.2897932914, 0.4476466286, 0.5686156023, ...
0.1249186303, 1.2775236374, 1.8743905020]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N1 = [0.0160456528, 0.0242551209, -0.0099621817, -0.0688503637, ...
-0.0736937768, 0.0253849892, 0.1796988011, 0.2782245718, ...
0.2526368866, 0.1407064509, 0.0395582365]';

and

D1 = [1.0000000000, 0.0000000000, -0.4939102551, 0.0000000000, ...
0.4730265227, 0.0000000000, -0.2593078674, 0.0000000000, ...
0.1103267547, 0.0000000000, -0.0385650985, 0.0000000000, ...
0.0054410765]';

174

0 0.02 0.04 0.06 0.08 0.1 0.12
-0.5

0

0.5

1

1.5

d1:fap=0.1,dBap=0.2,fas=0.25,dBas=40,Was=3,ftp=0.125,tp=8,tpr=0.008,Wtp=0.25

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12
7.994

7.996

7.998

8

8.002

8.004

8.006

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.30: Low-pass decimator R=2, PCLS optimised passband response.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

d1:fap=0.1,dBap=0.2,fas=0.25,dBas=40,Was=3,ftp=0.125,tp=8,tpr=0.008,Wtp=0.25

Figure 8.31: Low-pass decimator R=2, PCLS optimised pole-zero plot.

175

An alternative implementation of the low-pass R=2 decimator

The Octave script decimator_R2_alternate_test.m designs an alternative implementation of an R = 2 decimation low-pass filter
with a flat pass-band amplitude response. The alternative filter specification is:

U=0 % Number of real zeros
V=0 % Number of real poles
M=12 % Number of complex zeros
Q=6 % Number of complex poles
R=2 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol_mmse=1e-05 % Tolerance on MMSE relative coef. update
tol_pcls=0.001 % Tolerance on PCLS relative coef. update
ctol=0.0005 % Tolerance on constraints
fap=0.1 % Pass band amplitude response edge
dBap=0.3 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.125 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.02 % Pass band group delay peak-to-peak ripple
Wtp=0.2 % Pass band group delay weight
fas=0.25 % Stop band amplitude response edge
dBas=45 % Stop band minimum attenuation
Was=1 % Stop band amplitude weight

Figure 8.32 shows the response of the resulting filter. The corresponding pole-zero plot is shown in Figure 8.33.

The gain, zeros and poles of the optimised filter are:

Ud1=0,Vd1=0,Md1=12,Qd1=6,Rd1=2
d1 = [0.0001059639, ...

1.0052857776, 1.0238204830, 1.0341923518, 1.0479012499, ...
1.7193536375, 8.5218090692, ...
1.6416786565, 2.1134538852, 2.4888570635, 2.9135587315, ...
0.3288006601, 3.1325134768, ...
0.3458657502, 0.4414361207, 0.5641765556, ...
0.3529149730, 1.2466286182, 1.8336301023]';

The numerator and denominator polynomials of the PCLS optimised filter are:

N1 = [0.0001059639, 0.0019786601, 0.0105555052, 0.0105762196, ...
-0.0159120536, -0.0489480521, -0.0347202008, 0.0516513952, ...
0.1652029746, 0.2260342184, 0.1938102140, 0.1041229553, ...
0.0283023132]';

D1 = [1.0000000000, 0.0000000000, -0.6371454470, 0.0000000000, ...
0.5425827022, 0.0000000000, -0.3105299172, 0.0000000000, ...
0.1345669239, 0.0000000000, -0.0441337551, 0.0000000000, ...
0.0074196073]';

176

0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.3

-0.2

-0.1

0

0.1

A
m

pl
itu

de
(d

B
)

R=2 decimator alt. response : fap=0.1,dBap=0.3,fas=0.25,dBas=45,tp=10,tpr=0.02

0 0.1 0.2 0.3 0.4 0.5
-65

-60

-55

-50

-45

-40

0 0.1 0.2 0.3 0.4 0.5
9.99

9.995

10

10.005

10.01

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.32: Alternative low-pass decimator R=2, PCLS optimised response.

-8 -6 -4 -2 0 2

-1

0

1

d1:fap=0.1,dBap=0.3,fas=0.25,dBas=45,Was=1,ftp=0.125,tp=10,tpr=0.02,Wtp=0.2

Figure 8.33: Alternative low-pass decimator R=2, PCLS optimised pole-zero plot.

177

An interpolated low-pass R=2 decimator

Lyons [207] describes the design of interpolated low-pass FIR filters. The Octave script decimator_R2_interpolated_test.m first
designs an interpolated R = 2 IIR low-pass filter. The un-interpolated filter specification is:

P=3 % Interpolation factor
U=0 % Number of real zeros
V=0 % Number of real poles
M=12 % Number of complex zeros
Q=6 % Number of complex poles
R=2 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol_wise=1e-07 % Tolerance on WISE relative coef. update
tol_mmse=1e-05 % Tolerance on MMSE relative coef. update
tol_pcls=0.001 % Tolerance on PCLS relative coef. update
ctol=1e-05 % Tolerance on constraints
fap=0.09 % Pass band amplitude response edge
dBap=0.25 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.12 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.2 % Pass band group delay peak-to-peak ripple
Wtp=0.1 % Pass band group delay weight
fas=0.18 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=10 % Stop band amplitude weight

The gain, zeros and poles of the optimised filter are:

Ud1=0,Vd1=0,Md1=12,Qd1=6,Rd1=2
d1 = [0.0127982332, ...

0.9408972503, 0.9760751074, 0.9797669670, 0.9800475084, ...
0.9897057372, 1.5100713988, ...
1.5971047670, 2.9344277382, 2.5501369913, 2.2232754462, ...
1.1715733537, 0.2814683748, ...
0.4949040752, 0.5993584283, 0.7055873425, ...
0.3808663772, 1.1669938404, 1.7213905906]';

The numerator and denominator polynomials of the PCLS optimised un-interpolated filter are:

N1 = [0.0127982332, 0.0141544342, -0.0093698714, -0.0311157803, ...
-0.0285109390, -0.0084527809, 0.0294315463, 0.0814767884, ...
0.1189740001, 0.1243687085, 0.1045039077, 0.0652884756, ...
0.0222304307];

D1 = [1.0000000000, 0.0000000000, -1.1781661715, 0.0000000000, ...
1.2405500352, 0.0000000000, -0.9178720740, 0.0000000000, ...
0.5099284545, 0.0000000000, -0.2031418414, 0.0000000000, ...
0.0438043113];

Figure 8.34 shows the amplitude and delay responses of the prototype IIR filter.

Next, an anti-aliasing filter is designed with the remez function from the Octave-Forge signal package using the actual pass-band
edge, 0.093 , stop-band edge, 0.179 , and interpolation factor, P . The coefficients of the FIR anti-aliasing filter are:

b = [-0.0123510030, -0.0226223862, 0.0106253797, 0.1158827378, ...
0.2483715491, 0.3099785029, 0.2483715491, 0.1158827378, ...
0.0106253797, -0.0226223862, -0.0123510030];

The interpolated, anti-aliased IIR filter has a nominal delay of 35 samples and 25 multipliers. Figure 8.35 shows the responses
of the IIR filter interpolated by the factor, P , and the FIR anti-aliasing filter. Figure 8.36 shows the amplitude response of the
interpolated and anti-aliased IIR filter. Figure 8.37 shows the pass-band amplitude and group delay responses of the interpolated
and anti-aliased IIR filter. Figure 8.38 compares the amplitude response of the interpolated and anti-aliased IIR filter with that
of three equi-ripple FIR filters designed with the remez function from the Octave-Forge signal package: firstly an interpolated
and anti-aliased FIR filter having the same frequency specifications as the IIR filter with a delay of 35 samples and 17 distinct
mulipliers; secondly, a direct-form FIR filter with 25 distinct multipliers; thirdly, a direct form FIR filter with 35 samples delay.

178

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
)

IIR filter : R=2,fap=0.09,dBap=0.25,fas=0.18,dBas=40,ftp=0.12,tp=10,tpr=0.2

-50

-45

-40

-35

-30

0 0.1 0.2 0.3 0.4 0.5
9.8

9.9

10

10.1

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.34: Amplitude and delay responses of PCLS optimised prototype R=2 IIR filter.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

R=2 IIR filter interpolated by P=3 and FIR anti-aliasing filter

Interpolated IIR

Anti-aliasing FIR

Figure 8.35: Responses of an interpolated low-pass PCLS optimised R=2 IIR filter and FIR anti-aliasing filter.

179

0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.2

0

0.2

0.4

Interpolated and anti-aliased IIR filter

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-55

-50

-45

-40

Figure 8.36: Amplitude response of an interpolated anti-aliased low-pass IIR filter.

0 0.01 0.02 0.03 0.04

-0.4

-0.2

0

0.2

Pass-band of interpolated and anti-aliased IIR filter

A
m

pl
itu

de
(d

B
)

0 0.01 0.02 0.03 0.04
34.6

34.8

35

35.2

35.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.37: Pass-band amplitude and group delay responses of an interpolated anti-aliased low-pass IIR filter.

180

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
)

-45

-40

-35

-30

-25

(a) Response of an interpolated IIR filter with 25 multipliers and 34 samples nominal delay.

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
)

-45

-40

-35

-30

-25

(b) Response of an equivalent interpolated anti-aliased symmetric FIR filter with 17 distinct multipliers and 35 samples delay.

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
)

-45

-40

-35

-30

-25

(c) Response of a symmetric direct-form FIR filter with 25 distinct multipliers.

0 0.02 0.04 0.06 0.08 0.1
-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
)

Frequency
0 0.02 0.04 0.06 0.08 0.1

-45

-40

-35

-30

-25

(d) Response of a symmetric direct-form FIR filter with 35 samples nominal delay.

Figure 8.38: Comparison of the amplitude response of the interpolated and anti-aliased IIR filter with that of three FIR filters
designed with the remez function : firstly an interpolated and anti-aliased FIR filter having the same frequency specifications as
the IIR filter; secondly, a direct-form FIR filter having the same number of distinct multipliers; thirdly, a direct form FIR filter
having the same nominal delay.

181

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x0:fapl=0.1,fapu=0.2,tp=16,fasl=0.05,fasu=0.25,Wasl=2,Wasu=4

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.39: IIR band-pass R=2 decimation filter, response of the initial filter.

8.2.6 Band-pass R=2 decimation filter

This example design is an R = 2 decimation band-pass filter. The amplitude response pass-band edges are at frequencies
0.1fs and 0.2fs. The amplitude response stop-band edges are at frequencies 0.05fs and 0.25fs. The pass-band group-delay
specification is 16 samples with band edges at frequencies 0.09fs and 0.21fs. The Octave script iir_sqp_slb_bandpass_test.m
implements this example. The sqp loop is implemented by the Octave function iir_slb. The initial filter was “guesstimated” and
has a pole-zero specification of U = 2, V = 0, M = 18, Q = 10 and R = 2:

U=2,V=0,M=18,Q=10,R=2
x0=[0.00005, ...

1, -1, ...
0.9*ones(1,6), [1 1 1], ...
(11:16)*pi/20, (7:9)*pi/10, ...
0.81*ones(1,5), ...
(4:8)*pi/10]';

In the above listing, the first line shows the gain, and subsequent lines show, respectively, 2 real zeros, 0 real poles, the zero
radiuses for 9 conjugate pairs of zeros, the zero angles for 9 conjugate pairs of zeros, the pole radiuses for 5 conjugate pairs
of poles and the pole angles for 5 conjugate pairs of poles. In this case the denominator decimation factor is R = 2 and each
complex pole pair is split into 2 complex pole pairs so that the overall filter has 10 complex conjugate pole pairs. The response
of the initial filter is shown in Figure 8.39.

MMSE optimisation of the band-pass R=2 decimator

First the initial filter is passed through iir_sqp_mmse with amplitude response pass-band weight Wap = 1, amplitude response
lower and upper stop-band weights Wasl = 2 and Wasu = 4, respectively, and group-delay response pass-band weight
Wtp = 1. The response of the MMSE-optimised filter is shown in Figure 8.40 with pass-band detail shown in Figure 8.41. The
corresponding pole-zero plot is shown in Figure 8.42.

182

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x1:fapl=0.1,fapu=0.2,tp=16,fasl=0.05,fasu=0.25,Wasl=2,Wasu=4

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.40: IIR band-pass R=2 decimation filter with delay tp=16 samples, response of the filter after MMSE optimisation.

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

x1:fapl=0.1,fapu=0.2,tp=16,fasl=0.05,fasu=0.25,Wasl=2,Wasu=4

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.97

15.98

15.99

16

16.01

16.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.41: IIR band-pass R=2 decimation filter with delay tp=16 samples, passband response of the filter after MMSE optimi-
sation.

183

-10 -8 -6 -4 -2 0

-2

-1

0

1

2

x1:fapl=0.1,fapu=0.2,tp=16,fasl=0.05,fasu=0.25,Wasl=2,Wasu=4

Figure 8.42: IIR band-pass R=2 decimation filter with delay tp=16 samples, pole-zero plot of the filter after MMSE optimisation.

184

PCLS optimisation of the band-pass R=2 decimator

Next, the filter designed in Section 8.2.6 is passed through iir_slb for PCLS optimisation with Wtp = 1, tpr = 0.08 samples,
dBap = 1 and dBas = 35. The response of the resulting filter is shown in Figure 8.43 with pass-band detail shown in
Figure 8.44. The corresponding pole-zero plot is shown in Figure 8.45. The estimate of the optimised filter vector is, in the gain,
zeros and poles form of Equation 8.2:

Ud1=2,Vd1=0,Md1=18,Qd1=10,Rd1=2
d1 = [0.0119805617, ...

-0.9500704127, 0.9700553801, ...
0.9804074763, 0.9805448416, 0.9820834963, 0.9824826950, ...
0.9838547103, 0.9929437807, 0.9947499706, 1.3537141914, ...
1.4193941558, ...
2.6756908392, 2.1928941245, 2.4486621678, 1.9388252506, ...
1.7375472144, 0.2813668504, 1.5933041120, 0.8426161790, ...
1.0914550596, ...
0.5675249624, 0.6203412790, 0.6463481919, 0.7111225951, ...
0.7464109073, ...
1.9317355259, 2.4223733286, 1.3926805875, 2.7967686161, ...
1.0540910895]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N1 = [0.0119805617, 0.0053349378, 0.0226038750, 0.0226031114, ...
0.0476636685, 0.0341296484, 0.0294623564, 0.0000281382, ...

-0.0024749055, -0.0311018435, -0.0679743231, -0.1023390223, ...
-0.0694347354, 0.0369913403, 0.1362736102, 0.1556855404, ...
0.0622315091, -0.0405691583, -0.0988511454, -0.0711009679, ...

-0.0331225232]';

and

D1 = [1.0000000000, 0.0000000000, 1.7062464744, 0.0000000000, ...
1.9331974063, 0.0000000000, 1.9383131644, 0.0000000000, ...
1.7150589700, 0.0000000000, 1.2590545233, 0.0000000000, ...
0.8058630835, 0.0000000000, 0.4345272663, 0.0000000000, ...
0.1969880077, 0.0000000000, 0.0648455291, 0.0000000000, ...
0.0145884545]';

185

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1:fapl=0.1,fapu=0.2,dBap=1,tp=16,tpr=0.08,fasl=0.05,fasu=0.25,dBas=35,Wasl=2,Wasu=4

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.43: IIR band-pass R=2 decimation filter with delay tp=16 samples, response of the filter after PCLS optimisation.

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

d1:fapl=0.1,fapu=0.2,dBap=1,tp=16,tpr=0.08,fasl=0.05,fasu=0.25,dBas=35,Wasl=2,Wasu=4

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.94

15.96

15.98

16

16.02

16.04

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.44: IIR band-pass R=2 decimation filter with delay tp=16 samples, passband response of the filter after PCLS optimisa-
tion.

186

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

d1:fapl=0.1,fapu=0.2,dBap=1,tp=16,tpr=0.08,fasl=0.05,fasu=0.25,dBas=35,Wasl=2,Wasu=4

Figure 8.45: IIR band-pass R=2 decimation filter with delay tp=16 samples, pole-zero plot of the filter after PCLS optimisation.

187

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Comparison of IIR PCLS and FIR cl2bp() and remez() bandpass filter amplitude responses

IIR PCLS
FIR cl2bp

FIR remez

Figure 8.46: Comparison of the magnitude responses of the bandpass PCLS IIR filter and FIR filters designed by cl2bp and
remez.

Comparison with FIR band-pass filter designs

For comparison, an FIR filter was designed with the remez Octave function:

N=1+U+V+M+Q;
brz=remez(N-1,2*[0 fasl fapl fapu fasu 0.5],[0 0 1 1 0 0], ...

[Wasl Wap Wasu],'bandpass');

Similarly, an FIR filter was designed with Selesnick’s Octave function, cl2bp. The nominal passband has been adjusted to provide
a similar response to the remez and PCLS IIR filters. The specifications of the cl2bp filter design are:

wl=fapl*2*pi*0.8;
wu=fapu*2*pi*1.1;
up=10.^([-dBas, 0, -dBas]/20);
lo=[-1,1,-1].*10.^([-dBas, -dBap, -dBas]/20);
Ccl=floor(N/2)
ncl=2048;
bcl = cl2bp(Ccl,wl,wu,up,lo,512);

The FIR filter designs are linear phase with filter length set to the number of coefficients of the IIR PCLS filter. Hence the group
delay of the FIR filters is 15 samples compared to 16 samples for the IIR PCLS filter.

The responses of the FIR filters and the IIR PCLS filter are compared in Figure 8.46.

188

-0.4 -0.2 0 0.2 0.4

-1.1
-1

-0.9
-0.8
-0.7
-0.6

Hilbert filter initial response : td=5.5,fpt=0.1

A
m

pl
itu

de

-0.4 -0.2 0 0.2 0.4
-2

-1.5
-1

-0.5
0

Ph
as

e(
ra

d.
/π

)

-0.4 -0.2 0 0.2 0.4
0

10
20
30
40
50

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.47: Response of the initial Hilbert filter designed by tarczynski_hilbert_test.m with R = 2 and td = 5.5. The phase
response shown is adjusted for the nominal delay.

8.2.7 Hilbert transform R=2 decimation filter

A Hilbert transform filter[13, p.118] has the transfer function

Hd (ω) = −ısign (ω) e−ıωtd

The Octave script iir_sqp_slb_hilbert_test.m designs a Hilbert transform filter with U = 7, V = 2, M = 4, Q = 4, R = 2
and the group-delay of the filter is td = U+M

2 = 5.5 samples. An initial filter was designed by the method of Tarczynski et al.
with the Octave script tarczynski_hilbert_test.m. The initial filter coefficients are, in gain-pole-zero form:

Ux0=7,Vx0=2,Mx0=4,Qx0=4,Rx0=2
x0 = [-0.0579070563, ...

-1.8392381463, -0.9615148009, -0.6828657116, -0.1324638964, ...
0.4144408755, 0.8764727958, 1.0642620006, ...

-0.2222843944, 0.9249477970, ...
1.6409631909, 1.7962206812, ...
1.0002149769, 2.0743536199, ...
0.2451693027, 0.3859904966, ...
1.6839788704, 0.1454473496]';

The amplitude, group delay and phase response of the initial filter, as calculated by the Octave functions iirA, iirT and iirP are
shown in Figure 8.47. The script defines a phase response “don’t-care”transition band of fpt = ±0.05 about ω = 0. Similarly,
the group delay transition band is fpt = ±0.075. Note that the iirA function can return a negative amplitude if, as in this case,
the gain coefficient is negative. I do this so that ∂A

∂K is well-defined at K = 0 (since the absolute value of K is not differentiable
at 0). Consequently, the phase returned by the iirP function does not include the sign of the gain coefficient. The phase response,
relative to π, is shown adjusted for the group-delay by adding ωtd where ω is the angular frequency vector for which the response
is calculated.

MMSE optimisation of the Hilbert transform R=2 decimator

Figure 8.48 shows the response after MMSE optimisation of the initial filter. The phase response shown is adjusted for the
nominal delay. The relative weights of the amplitude, group delay and phase were Wap = 1, Wtp = 0.0001 and Wpp =

189

-0.4 -0.2 0 0.2 0.4
-1.02
-1.01

-1
-0.99
-0.98

Hilbert filter x1(mmse):Wap=1,ftt=0.15,td=5.5,Wtp=0.0001,fpt=0.1,Wpp=0.001

A
m

pl
itu

de

-0.4 -0.2 0 0.2 0.4

-0.56
-0.54
-0.52

-0.5
-0.48
-0.46
-0.44

Ph
as

e(
ra

d.
/π

)

-0.4 -0.2 0 0.2 0.4

-1.56
-1.54
-1.52
-1.5
-1.48
-1.46
-1.44

-0.4 -0.2 0 0.2 0.4
5.2
5.3
5.4
5.5
5.6
5.7
5.8

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.48: Response of the Hilbert filter after MMSE optimisation. The phase response shown is adjusted for the nominal
delay.

0.001 respectively. The desired PCLS constraints are superimposed on the figure. The iirP function does not calculate the
Hessian of the phase response. In the previous examples only the diagonal of the Hessian matrix of the error response is used to
initialise the SQP loop. In this case the diagonal of the Hessian of the phase response is approximated with the Octave function
iirP_hessP_DiagonalApprox.m.

PCLS optimisation of the Hilbert transform R=2 decimator

Figure 8.49 shows the response after PCLS optimisation of the MMSE optimised filter of Figure 8.48. Figure 8.50 shows the
pole-zero plot for the PCLS optimised filter. The phase response shown is adjusted for the nominal delay. The peak-to-peak
amplitude, group delay and phase ripple outside the transition band are Ar = 0.002, tdr = 0.4 and pr = 0.1 π

2 respectively. The
PCLS optimised filter coefficients are, in gain-pole-zero form

Ud1=7,Vd1=2,Md1=4,Qd1=4,Rd1=2
d1 = [-0.0109945560, ...

-2.4604072907, -0.8239900261, -0.2725157457, -0.1819858971, ...
0.3768113460, 0.4079024095, 1.2118719917, ...

-0.0916373419, 0.6773557506, ...
2.2821881888, 2.4194529598, ...
1.0194088241, 2.0525941977, ...
0.1720385975, 0.1871820819, ...
0.2186450016, 1.9433668592]';

and in transfer function form the numerator and denominator polynomials are, respectively:

N1 = [-0.0109945560, -0.0175186612, -0.0291418220, -0.0652004319, ...
-0.1323197834, -0.5253468386, 0.8093651351, 0.7129585745, ...
-0.3822616741, -0.1124851138, 0.0299945712, 0.0062778401]';

and

190

-0.4 -0.2 0 0.2 0.4
-1.002
-1.001

-1
-0.999
-0.998

Hilbert filter d1(pcls):Ar=0.002,Wap=1,td=5.5,ftt=0.15,tdr=0.32,Wtp=0.0001,fpt=0.1,pr=0.15,Wpp=0.001

A
m

pl
itu

de

-0.4 -0.2 0 0.2 0.4

-0.56
-0.54
-0.52

-0.5
-0.48
-0.46
-0.44

Ph
as

e(
ra

d.
/π

)

-0.4 -0.2 0 0.2 0.4

-1.56
-1.54
-1.52
-1.5
-1.48
-1.46
-1.44

-0.4 -0.2 0 0.2 0.4
5.2
5.3
5.4
5.5
5.6
5.7
5.8

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.49: Response of the Hilbert filter after PCLS optimisation. The phase response shown is adjusted for the nominal delay.

D1 = [1.0000000000, 0.0000000000, -0.7853312978, 0.0000000000, ...
0.0737082836, 0.0000000000, -0.0063930451, 0.0000000000, ...
0.0043968221, 0.0000000000, -0.0001272621, 0.0000000000, ...

-0.0000643679]';

191

-2 -1 0 1

-2

-1

0

1

2

Hilbert filter d1(pcls):Ar=0.002,Wap=1,td=5.5,ftt=0.15,tdr=0.32,Wtp=0.0001,fpt=0.1,pr=0.15,Wpp=0.001

Figure 8.50: Pole-zero plot of the Hilbert filter after PCLS optimisation.

192

8.2.8 R=2 differentiator filter

A differentiator filter has transfer function Hd (ω) = ıω
π e
−ıωtd . The Octave script iir_sqp_slb_differentiator_test.m designs a

differentiator filter with the specification:

tol=0.0001 % Tolerance on coef. update
ctol=5e-06 % Tolerance on constraints
U=4 % Number of real zeros
V=2 % Number of real poles
M=4 % Number of complex zeros
Q=2 % Number of complex poles
R=2 % Multiplicity of real and complex poles
n=1000 % Frequency points across the band
ft1=0.39 % Amplitude pass band first upper edge
Ar1=0.004 % Amplitude first peak-to-peak ripple
ft2=0.455 % Amplitude pass band second upper edge
Ar2=0.01 % Amplitude second peak-to-peak ripple
Wap=1 % Amplitude pass band weight
td=5.5 % Pass band group delay
tdr=0.0089 % Pass band group delay peak-to-peak ripple
Wtp=0.0135 % Pass band group delay weight
pr=0.00067 % Phase pass band peak-to-peak ripple(rad./π))
Wpp=0.0275 % Phase pass band weight

The filter is designed with the effect of a fixed zero at z = 1 removed from the desired response. That zero is added back after
optimisation is complete.

Initial filter for the R=2 differentiator filter

An initial filter was designed by the method of Tarczynski et al with the Octave script tarczynski_differentiator_test.m. The initial
filter coefficients, in gain-pole-zero form, are:

Ux0=4,Vx0=2,Mx0=4,Qx0=2,Rx0=2
x0 = [0.0032220979, ...

-0.2657598934, 0.3525812318, 1.0067973925, 2.4623083161, ...
-0.1903203457, 0.2967914127, ...
2.5879786687, 2.6254493051, ...
2.3918211428, 1.2321633423, ...
0.2195422820, ...
1.5304416128]';

Figure 8.51 shows the initial filter amplitude, phase and group delay responses. The phase response is adjusted for the nominal
group delay. Figure 8.52 shows the pole-zero plot of the initial filter.

MMSE optimisation of the R=2 differentiator filter

Figure 8.53 shows the amplitude response error and the phase and group delay responses after MMSE optimisation of the initial
filter. A zero near z = 1 is removed from the initial filter and the desired responses are adjusted to allow for a zero at exactly
z = 1. The phase response is adjusted for the nominal group delay.

PCLS optimisation of the R=2 differentiator filter

Figure 8.54 shows the amplitude response error and the phase and group delay responses after PCLS optimised filter. The zero at
z = 1 was added back after PCLS optimisation. The phase response is adjusted for the nominal group delay. Figure 8.55 shows
the pole-zero plot for the PCLS optimised R = 2 differentiator filter. Note the double poles on the real and imaginary axes. The
PCLS optimised filter coefficients are, in gain-pole-zero form:

193

0 0.1 0.2 0.3 0.4 0.5

0
0.2
0.4
0.6
0.8

1

Differentiator initial response:R=2,td=5.5

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5

-0.55
-0.5

-0.45
-0.4

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5
4

4.5
5

5.5
6

6.5
7

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.51: Amplitude, phase and group delay responses of the initial R = 2 differentiator filter. The phase response shown is
adjusted for the nominal group delay.

-2 -1 0 1 2

-2

-1

0

1

2

Differentiator initial response:R=2,td=5.5

Figure 8.52: Pole-zero plot of the initial R = 2 differentiator filter.

194

0 0.1 0.2 0.3 0.4 0.5

-0.004
-0.002

0
0.002
0.004

Differentiator MMSE response (with z-1 removed):R=2,ft1=0.39,ft2=0.455,td=5

A
m

pl
itu

de
er

ro
r

0 0.1 0.2 0.3 0.4 0.5

0.999
0.9995

1
1.0005

1.001

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5

4.995

5

5.005

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.53: Amplitude response error and phase and group delay responses of the R = 2 differentiator filter, without a zero at
z = 1, after MMSE optimisation. The phase response shown is adjusted for the nominal group delay.

Ud1=4,Vd1=2,Md1=4,Qd1=2,Rd1=2
d1 = [0.0007117689, ...

-0.2761175870, 0.3632796287, 1.0000000000, 3.7768842375, ...
-0.0476545219, 0.1288934229, ...
3.2180754135, 3.6307637819, ...
2.3068643287, 1.1211515637, ...
0.0224322214, ...
0.0426871398]';

The numerator and denominator polynomials are:

N1 = [0.0007117689, -0.0026329335, 0.0059269226, -0.0134953781, ...
0.0418161739, -0.4011669850, 0.3976281510, 0.0080248593, ...

-0.0368125791]';

and

D1 = [1.0000000000, 0.0000000000, -0.1260624742, 0.0000000000, ...
-0.0019977321, 0.0000000000, 0.0002344425, 0.0000000000, ...
-0.0000030909]';

195

0 0.1 0.2 0.3 0.4 0.5
-0.006
-0.004
-0.002

0
0.002
0.004
0.006

Differentiator PCLS response:R=2,ft1=0.39,ft2=0.455,Ar1=0.004,Ar2=0.01,td=5.5,tdr=0.0089,pr=0.00067

A
m

pl
itu

de
er

ro
r

0 0.1 0.2 0.3 0.4 0.5
1.4994
1.4996
1.4998

1.5
1.5002
1.5004
1.5006

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5

5.495

5.5

5.505

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.54: Amplitude response error and phase and group delay responses of the R = 2 differentiator filter after PCLS
optimisation. The phase response is adjusted for the nominal group delay.

-2 -1 0 1 2 3 4

-2

0

2

Differentiator PCLS response:R=2,ft1=0.39,ft2=0.455,Ar1=0.004,Ar2=0.01,td=5.5,tdr=0.0089,pr=0.00067

Figure 8.55: Pole-zero plot of the R = 2 differentiator filter after PCLS optimisation.

196

8.2.9 Low-pass differentiator filter

The Octave script iir_sqp_slb_lowpass_differentiator_test.m designs an IIR low-pass differentiator filter with the specification:

tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
fap=0.19 % Amplitude pass band upper edge
Arp=0.02 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Art=0.02 % Amplitude transition band peak-to-peak ripple
Wat_mmse=0.001 % Amplitude transition band weight(MMSE)
Wat_pcls=0.001 % Amplitude transition band weight(PCLS)
Ars=0.02 % Amplitude stop band peak-to-peak ripple
Was=2 % Amplitude stop band weight
td=10 % Pass band group delay
tdr=0.04 % Pass band group delay peak-to-peak ripple
Wtp=1 % Pass band group delay weight
pr=0.0010 % Phase pass band peak-to-peak ripple(rad./π))
Wpp=0.2 % Phase pass band weight

The filter is designed with the effect of a fixed zero at z = 1 removed from the desired response. That zero is added back after
optimisation is complete.

An initial filter was designed by the method of Tarczynski et al with the Octave script tarczynski_lowpass_differentiator_test.m.
The inital filter numerator and denominator polynomials are:

N0 = [0.0026816351, -0.0092012134, -0.0003547909, 0.0142811534, ...
0.0028657639, -0.0211581417, -0.0143670756, 0.0243951957, ...
0.0676583470, 0.0870062806, 0.0579206352, 0.0193109148]';

D0 = [1.0000000000, -1.0863118503, 0.4657654987, 0.5536912994, ...
-0.6075511069, -0.2163137246, 0.6597458862, -0.1534973411, ...
-0.5569374380, 0.6914132571, -0.3677793787, 0.0830760733]';

After conversion to gain-zero-pole form and removal of the zero at z = 1, the amplitude, group delay and phase response errors
of the initial filter are shown in Figure 8.56.

Figure 8.57 shows the response errors of the low-pass differentiator after PCLS optimisation. Figure 8.58 shows the pole-zero
plot of the low-pass differentiator filter after PCLS optimisation. The PCLS optimised filter coefficients are, in gain-zero-pole
form:

D1 = [1.0000000000, -3.2674560610, 7.1436327042, -11.1443243389, ...
13.4699929688, -12.9296287429, 9.9252695373, -6.0426956910, ...
2.8458852725, -0.9842795961, 0.2259433847, -0.0263204428]';

and, in transfer function form, the numerator and denominator polynomials are, respectively

N1 = [0.0022606054, -0.0104667379, 0.0176661514, -0.0181282090, ...
0.0160838850, -0.0152419263, 0.0022380537, 0.0148511756, ...
0.0194411986, 0.0414188880, 0.0176238947, 0.0190702624]';

and

D1 = [1.0000000000, -3.2674560610, 7.1436327042, -11.1443243389, ...
13.4699929688, -12.9296287429, 9.9252695373, -6.0426956910, ...
2.8458852725, -0.9842795961, 0.2259433847, -0.0263204428]';

197

0.1 0.2 0.3 0.4
-0.2

0
0.2
0.4
0.6
0.8

A
m

pl
itu

de

Differentiator initial response : fas=0.25,td=10

0.1 0.2 0.3 0.4
-0.01

0

0.01

0.02

0.03

0 0.05 0.1 0.15 0.2
-0.004
-0.002

0
0.002
0.004
0.006
0.008

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.05 0.1 0.15 0.2
9.8
10

10.2
10.4
10.6
10.8

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.56: Response of the initial low-pass differentiator filter. The phase response shown is adjusted for the nominal delay.

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

A
m

pl
itu

de
er

ro
r

Differentiator PCLS:fap=0.19,Arp=0.02,fas=0.25,Ars=0.02,td=10,tdr=0.04,pr=0.001

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

0 0.1 0.2 0.3 0.4 0.5
-0.001

-0.0005
0

0.0005
0.001

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
-0.04
-0.02

0
0.02
0.04

D
el

ay
er

ro
r(

sa
m

pl
es

)

Frequency

Figure 8.57: Response errors of the low-pass differentiator filter after PCLS optimisation. The phase response shown is adjusted
for the nominal delay.

198

-1 0 1 2

-1

-0.5

0

0.5

1

Differentiator PCLS:fap=0.19,Arp=0.02,fas=0.25,Ars=0.02,td=10,tdr=0.04,pr=0.001

Figure 8.58: Pole-zero plot of the low-pass differentiator filter after PCLS optimisation.

Alternate low-pass differentiator filter

The Octave script iir_sqp_slb_lowpass_differentiator_alternate_test.m designs an IIR low-pass differentiator filter with the spec-
ification:

maxiter=20000 % Maximum iterations
dmax=0.05 % SQP step-size constraint
tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
nN=11 % Correction filter order
fap=0.2 % Amplitude pass band upper edge
Arp=0.01 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Art=0.05 % Amplitude transition band peak-to-peak ripple
Wat_mmse=0.01 % Amplitude MMSE transition band weight
Wat_pcls=0.0001 % Amplitude PCLS transition band weight
Ars=0.01 % Amplitude stop band peak-to-peak ripple
Was=2 % Amplitude stop band weight
td=10 % Pass band group delay
tdr=0.02 % Pass band group delay peak-to-peak ripple
Wtp=0.5 % Pass band group delay weight
pr=0.00016 % Phase pass band peak-to-peak ripple(rad./π))
Wpp=0.5 % Phase pass band weight

The filter is designed as 1 − z−1 in series with a correction filter. An initial correction filter was designed by the method
of Tarczynski et al with the Octave script tarczynski_lowpass_differentiator_alternate_test.m. The inital filter numerator and
denominator polynomials are:

N0 = [0.0039359066, -0.0112249220, 0.0030826172, 0.0186095531, ...
-0.0147426795, -0.0154904328, 0.0060401177, 0.0265625824, ...
0.0362541610, 0.0349904584, 0.0457076604, 0.0250998774]';

199

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

Differentiator initial response (without 1− z−1) : fap=0.2,fas=0.3,td=10

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0 0.1 0.2 0.3 0.4 0.5
-0.0003
-0.0002
-0.0001

0
0.0001
0.0002
0.0003

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
9.48
9.49

9.5
9.51
9.52

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.59: Response errors of the initial low-pass differentiator correction filter. The phase response shown is adjusted for the
nominal delay.

D0 = [1.0000000000, -1.9104158148, 1.8456686876, 0.1545573719, ...
-2.4410691451, 2.9194442498, -1.3370107729, -0.6004843431, ...
1.3672608432, -0.9980098036, 0.3858541176, -0.0678526812]';

Figure 8.59 shows the amplitude, group delay and phase response errors of the initial correction filter.

The PCLS optimised filter coefficients are, in gain-zero-pole form:

Ud1z=2,Vd1z=1,Md1z=10,Qd1z=10,Rd1z=1
d1z = [0.0018945742, ...

-1.0830606334, 1.0000000000, ...
0.5602710992, ...
0.9676909826, 0.9995776248, 1.0288340162, 1.7622221275, ...
1.8610106632, ...
1.2985031209, 1.9661342836, 2.3913953606, 0.9115569752, ...
0.3015893508, ...
0.5453005049, 0.5465664814, 0.6876173756, 0.9024671868, ...
0.9687500000, ...
0.5125917328, 0.8467054952, 1.2008902084, 1.4545534686, ...
1.2993410210]';

and, in transfer function form, the numerator and denominator polynomials of the correction filter are, respectively:

N1 = [0.0018945742, -0.0054469758, 0.0054919051, 0.0001389690, ...
-0.0015025614, -0.0059024534, 0.0015329710, 0.0159328546, ...
0.0164544322, 0.0288300155, 0.0183331363, 0.0218564936]';

and

D1 = [1.0000000000, -3.4608884992, 7.6594397656, -11.8606671064, ...
14.0328542113, -13.0256052533, 9.5634654886, -5.5139817428, ...
2.4371373388, -0.7856777865, 0.1666832827, -0.0179860570]';

200

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005

0

0.005

0.01

A
m

pl
itu

de
er

ro
r

Differentiator PCLS : fap=0.2,Arp=0.01,fas=0.3,Ars=0.01,td=10,tdr=0.02,pr=0.00016

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005

0

0.005

0.01

0 0.1 0.2 0.3 0.4 0.5
-0.00015

-0.0001
-5e-05

0
5e-05

0.0001
0.00015

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
9.98
9.99

10
10.01
10.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.60: Response errors of the alternate low-pass differentiator filter after PCLS optimisation. The phase response shown is
adjusted for the nominal delay.

Figure 8.60 shows the response errors of the low-pass differentiator after PCLS optimisation of the correction filter.

Figure 8.61 shows the pole-zero plot of the low-pass differentiator after PCLS optimisation.

201

-1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Differentiator PCLS : fap=0.2,Arp=0.01,fas=0.3,Ars=0.01,td=10,tdr=0.02,pr=0.00016

Figure 8.61: Pole-zero plot of the alternate low-pass differentiator filter after PCLS optimisation.

202

8.2.10 Pink noise filter

Pink noise has equal noise power per octave. A ideal pink noise filter has the transfer function Hd (ω) = K√
ω
e−ıωtd where K

is a constant and td is the nominal filter group delay. The Octave script iir_sqp_slb_pink_test.m designs an 11th order IIR pink
noise filter with the specification:

n=1000 % Frequency points across the band
tol_mmse=2e-05 % Tolerance on coef. update (MMSE pass)
tol_pcls=2e-05 % Tolerance on coef. update (PCLS pass)
ctol=2e-05 % Tolerance on constraints
fat=0.005 % Amplitude transition band width
AdBr=0.2 % Relative amplitude peak-to-peak ripple (dB)
Wap=20 % Amplitude weight
ftt=0.025 % Group delay transition band width
tp=4.77 % Nominal filter group delay
tpr=0.02 % Filter group delay peak-to-peak ripple
Wtp=1 % Filter group delay weight
U=3 % Number of real zeros
V=1 % Number of real poles
M=8 % Number of complex zeros
Q=10 % Number of complex poles
R=1 % Denominator polynomial decimation factor

The script defines a “don’t-care” transition band from f = 0 to fat = 0.005 for the amplitude response and from f = 0 to
ftt = 0.025 for the group delay response. An initial filter was designed by the method of Tarczynski et al. in the Octave script
tarczynski_pink_test.m. The initial filter coefficients are, in gain-pole-zero form:

Ux0=3,Vx0=1,Mx0=8,Qx0=10,Rx0=1
x0 = [0.0255851293, ...

-1.5620845290, -0.4017319825, 0.7639165304, ...
0.8665502283, ...
0.6228596425, 0.7051456642, 1.5127224396, 1.5917319581, ...
2.4347551354, 1.3244577532, 0.8495364259, 1.9999966038, ...
0.5119823592, 0.5165412276, 0.5887006329, 0.6529466678, ...
0.7106518242, ...
0.4803411390, 1.6426184146, 2.7845842649, 2.3667939247, ...
1.2980134977]';

Figure 8.62 compares the amplitude response of the initial filter to the desired response. Figure 8.63 shows the amplitude and
group delay responses of the filter after MMSE and PCLS optimisation. Figure 8.64 shows the errors of the amplitude and group
delay responses of the filter after MMSE and PCLS optimisation. Figure 8.65 shows the pole-zero plot of the filter.

The PCLS optimised filter coefficients are, in gain-pole-zero form

Ud1=3,Vd1=1,Md1=8,Qd1=10,Rd1=1
d1 = [0.0008958450, ...

-2.7358474348, 0.7508348366, 0.8768265549, ...
0.9592448535, ...
0.4823685803, 0.9705710545, 3.0849991700, 3.1563453978, ...
0.0000100868, 0.0282284014, 0.6902407471, 1.8858181085, ...
0.3401655084, 0.3538210095, 0.5046880649, 0.7524946639, ...
0.9687500000, ...
2.4151439035, 1.2496890285, 0.3732670761, 0.0000019464, ...
0.0221803212]';

and in transfer function form the numerator and denominator polynomials are, respectively:

N1 = [0.0008958450, -0.0041196815, 0.0100704468, -0.0189101924, ...
0.0416643834, 0.1400826923, -0.9147623744, 1.8347122834, ...

-1.8476270820, 1.0133994485, -0.2889355872, 0.0335331751]';

and

D1 = [1.0000000000, -5.0558999933, 10.7168535715, -12.3146395106, ...
8.2882207309, -3.3272888426, 0.8394752144, -0.2087497692, ...
0.0934321900, -0.0423920802, 0.0128710099, -0.0018808476]';

203

10−3 10−2 10−1
-20

-15

-10

-5

0

5

Pink noise filter initial amplitude response : fat=0.005,ftt=0.025,tp=4.77

A
m

pl
itu

de
(d

B
)

Frequency

Tarczynski et al.

Desired

Figure 8.62: Response of the initial pink noise filter designed by tarczynski_pink_test.m.

10−3 10−2 10−1
-20

-15

-10

-5

0

5

10

Pink noise filter response : fat=0.005,AdBr=0.2,ftt=0.025,tp=4.77,tpr=0.02

A
m

pl
itu

de
(d

B
)

10−3 10−2 10−1
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.63: Amplitude and group-delay responses of the pink noise filter after PCLS optimisation.

204

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Pink noise filter response : fat=0.005,AdBr=0.2,ftt=0.025,tp=4.77,tpr=0.02

A
m

pl
itu

de
er

ro
r(

dB
)

0 0.1 0.2 0.3 0.4 0.5
4.75

4.76

4.77

4.78

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.64: Errors of the amplitude and group-delay responses of the pink noise filter after PCLS optimisation.

-3 -2 -1 0 1 2

-3

-2

-1

0

1

2

3

Pink noise filter response : fat=0.005,AdBr=0.2,ftt=0.025,tp=4.77,tpr=0.02

Figure 8.65: Pole-zero plot of the pink noise filter after PCLS optimisation.

205

8.2.11 Minimum phase R=2 low-pass filter

A minimum phase filter has all the zeros of the transfer function on or within the unit circle in the z-plane |z| ≤ 1b The Octave
script iir_sqp_slb_minimum_phase_test.m designs a minimum phase low-pass filter specified by:

n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-06 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.05 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
fas=0.25 % Stop band amplitude response edge
dBas=50 % Stop band minimum attenuation
Was=2 % Stop band amplitude weight
U=2 % Number of real zeros
V=1 % Number of real poles
M=8 % Number of complex zeros
Q=4 % Number of complex poles
R=2 % Denominator polynomial decimation factor

The initial filter coefficients are, in gain-pole-zero form:

x0=[0.004; ...
-127/128;-127/128; ...
0.6; ...
127/128*ones(4,1); ...
pi*(9:12)'/16; ...
0.6;0.6; ...
2*pi/3;pi/2];

The inital filter is optimised with the PCLS algorithm. The PCLS optimised pole and zero radiuses are contrained to be less than
255
256 . Figure 8.66 shows the response of the PCLS optimised filter. Figure 8.67 shows the pass-band detail of the response of the
PCLS optimised filter. Figure 8.68 shows the pole-zero plot for the PCLS optimised filter. The resulting filter coefficients are, in
gain-pole-zero form:

Ud1=2,Vd1=1,Md1=8,Qd1=4,Rd1=2
d1 = [0.0107324062, ...

-0.9960937500, -0.9960937500, ...
0.1304268955, ...
0.9960937500, 0.9960937500, 0.9960937500, 0.9960937500, ...
1.8904460823, 2.1402759970, 2.4460102783, 1.6322762003, ...
0.3407735535, 0.7561196161, ...
1.7382347837, 2.1431904382]';

and in transfer function form the numerator and denominator polynomials are, respectively

N1 = [0.0107324062, 0.0573555041, 0.1642776710, 0.3213942564, ...
0.4680661718, 0.5275388623, 0.4644165469, 0.3164018191, ...
0.1604648180, 0.0555874590, 0.0103204647]';

and

D1 = [1.0000000000, 0.0000000000, 0.8022563127, 0.0000000000, ...
0.6592335844, 0.0000000000, 0.0582096077, 0.0000000000, ...
0.0455157509, 0.0000000000, -0.0086592431]';

bIf the inverse filter is required then the zeros must be within the unit circle, |z| ≤ ρ < 1.

206

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

d1(pcls):fap=0.15,dBap=0.05,Wap=1,fas=0.25,dBas=50,Was=2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.66: Response of the R=2 minimum phase filter after PCLS optimisation.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01

d1(pcls):fap=0.15,dBap=0.05,Wap=1,fas=0.25,dBas=50,Was=2

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
3

4

5

6

7

8

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.67: Passband response of the R=2 minimum phase filter after PCLS optimisation.

207

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

d1(pcls):fap=0.15,dBap=0.05,Wap=1,fas=0.25,dBas=50,Was=2

2

Figure 8.68: Pole-zero plot of the R=2 minimum phase filter after PCLS optimisation.

208

8.2.12 Non-linear phase FIR low-pass filter

The Octave script iir_sqp_slb_fir_lowpass_test.m designs an FIR low-pass filter that has approximately linear phase in the pass-
band. The impulse response is not symmetric. The filter specification is:

U=0 % Number of real zeros
V=0 % Number of real poles
M=60 % Number of complex zeros
Q=0 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-05 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.2 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band amplitude weight
Wat=0.01 % Transition band amplitude weight
ftp=0.15 % Pass band group-delay response edge
td=15 % Pass band group-delay
tdr=0.3 % Pass band amplitude peak-to-peak ripple
Wtp=0.05 % Pass band group-delay weight
fas=0.2 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=60 % Stop band amplitude weight

Figure 8.69 shows the response of the PCLS optimised filter. Figure 8.70 shows the pass-band detail of the response of the PCLS
optimised filter. The coefficients of the PCLS optimised minimum phase FIR bandpass filter are, in gain-pole-zero form:

Ud1=0,Vd1=0,Md1=60,Qd1=0,Rd1=1
d1 = [0.0004974794, ...

0.4176916098, 0.8298329159, 0.8356660083, 0.8373872614, ...
0.8426705217, 0.8543379561, 0.8657487978, 0.8933334101, ...
0.9932821523, 0.9933479897, 0.9940514456, 0.9945699403, ...
0.9950648249, 0.9962495936, 0.9974506165, 0.9980572799, ...
0.9987449190, 1.0000349155, 1.0015671282, 1.0031243488, ...
1.0043952697, 1.0057798105, 1.0073920814, 1.0088707902, ...
1.0099326262, 1.0105709008, 1.0106938347, 1.4059136265, ...
1.4400542521, 2.0807821045, ...
0.0000079911, 0.0748307905, 0.2249467592, 0.3753562931, ...
0.5214427979, 0.6639408764, 0.8078823024, 0.9514604137, ...
1.4137892945, 1.5068138094, 1.6045491233, 1.3308022515, ...
1.7049302702, 1.8068430934, 1.9097134055, 1.2712429132, ...
2.0134905524, 2.1178615769, 2.2227273732, 2.3282693910, ...
2.4343906852, 2.5414970925, 2.6488506311, 2.7570559851, ...
2.8659759580, 2.9755353922, 3.0849487678, 0.6633174259, ...
0.2188633891, 3.1415857256]';

and in transfer function form the FIR polynomial is:

N1 = [0.0004974794, 0.0028140559, 0.0054919194, 0.0032569443, ...
-0.0046081208, -0.0112662498, -0.0062514271, 0.0108991624, ...
0.0233559746, 0.0096115967, -0.0290187874, -0.0540455262, ...

-0.0129543371, 0.1102304640, 0.2625284528, 0.3477646642, ...
0.3000304382, 0.1432320791, -0.0212209368, -0.0940803546, ...

-0.0562900248, 0.0245921215, 0.0628323684, 0.0309478662, ...
-0.0265208062, -0.0478427378, -0.0170924623, 0.0268527538, ...
0.0372486340, 0.0081710507, -0.0248714647, -0.0270206470, ...

-0.0001927428, 0.0236809412, 0.0198748806, -0.0041324811, ...
-0.0206997335, -0.0136078323, 0.0064923201, 0.0169595754, ...
0.0084704974, -0.0072820886, -0.0129960072, -0.0045836441, ...
0.0068529865, 0.0091351902, 0.0017433178, -0.0059006719, ...

-0.0060551975, -0.0002176118, 0.0044266136, 0.0035905669, ...
-0.0004746852, -0.0029188798, -0.0018493784, 0.0006073647, ...
0.0016524658, 0.0008232512, -0.0003283781, -0.0005133290, ...
0.0001685464]';

209

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(PCLS):fap=0.15,dBap=0.2,ftp=0.15,td=15,tdr=0.3,fas=0.2,dBas=40,Was=60

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.69: Response of the non-linear phase FIR low-pass filter after SQP PCLS optimisation.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

d1(PCLS):fap=0.15,dBap=0.2,ftp=0.15,td=15,tdr=0.3,fas=0.2,dBas=40,Was=60

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
14.85

14.9

14.95

15

15.05

15.1

15.15

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.70: Pass-band response of the non-linear phase FIR low-pass filter after SQP PCLS optimisation.

210

8.2.13 Minimum phase FIR bandpass filter

The Octave script iir_sqp_slb_fir_bandpass_test.m designs a minimum phase FIR bandpass filter specified by:

U=2,V=0,M=28,Q=0,R=1
fapl=0.1,fapu=0.2,dBap=1,Wap=1
fasl=0.05,fasu=0.25,dBas=36,Wasl=8,Wasu=2

The initial filter coefficients are, in gain-pole-zero form:

x0=[0.005, -0.7, 0.7, 0.7*ones(1,14), pi*[(1:3)/80, (13:23)/24]]';

The zero radiuses are constrained by |z| < 31
32 . The inital filter is first MMSE optimised and then optimised with the PCLS

algorithm. The radiuses of the zeros of the filter are constrained to |z| ≤ 1. Figure 8.71 shows the response of the PCLS
optimised filter. Figure 8.72 shows the pass-band detail of the response of the PCLS optimised filter. Figure 8.73 shows the
pole-zero plot for the PCLS optimised filter. The coefficients of the PCLS optimised minimum phase FIR bandpass filter are, in
gain-pole-zero form:

Ud1=2,Vd1=0,Md1=28,Qd1=0,Rd1=1
d1 = [0.0272367627, ...

0.9687500000, 0.9687500000, ...
0.1558641613, 0.8482192023, 0.8510798131, 0.9687500000, ...
0.9687500000, 0.9687500000, 0.9687500000, 0.9687500000, ...
0.9687500000, 0.9687500000, 0.9687500000, 0.9687500000, ...
0.9687500000, 0.9687500000, ...
3.1362707925, 0.8032357585, 1.0565760384, 1.6677647766, ...
2.2482297990, 2.4540378252, 2.0540390168, 2.6614364510, ...
1.8651248131, 2.9572410446, 2.9378943603, 1.5866592468, ...
0.2319802865, 0.2986053352]';

and in transfer function form the FIR polynomial is:

Nd1 = [0.0272367627, 0.0690330404, 0.0531012092, -0.0607523161, ...
-0.1900093556, -0.1776486543, 0.0162204666, 0.2247899982, ...
0.2419765004, 0.0605515163, -0.1191719998, -0.1374411508, ...

-0.0430520899, 0.0100637769, -0.0195576782, -0.0445106682, ...
-0.0002614353, 0.0606153010, 0.0633686152, 0.0148242326, ...
-0.0187064999, -0.0112252942, 0.0041325624, -0.0035094891, ...
-0.0208321547, -0.0202076130, -0.0022884036, 0.0118706318, ...
0.0102451827, 0.0023424793, 0.0001609481]';

The script also calculates the FIR filter with complementary amplitude response. The combined response is shown in Figure 8.74.
Figure 8.75 shows the pole-zero plot for complementary FIR filter.

The coefficients of the complementary FIR filter are, in gain-pole-zero form:

Uc1=2,Vc1=0,Mc1=28,Qc1=0,Rc1=1
c1 = [0.0366171299, ...

-0.6659739971, -0.6659739971, ...
0.5100745422, 0.6984488927, 0.7143935990, 0.7314159646, ...
0.7362112149, 0.7581655331, 0.9955156639, 0.9978701098, ...
1.0000000012, 1.2591877724, 1.3041908178, 1.3612435440, ...
1.3618999226, 1.3778520080, ...
0.0000024806, 1.6258930570, 2.8836128432, 2.4475973037, ...
2.0220710443, 0.1242743243, 0.7121387852, 1.1627634332, ...
0.9212375906, 0.3540295690, 1.5146751012, 2.2342707562, ...
1.8083130008, 2.6633437214]';

and in transfer function form the FIR polynomial is:

211

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(pcls):fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=36,Wasl=10,Wasu=5

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.71: Response of the minimum phase FIR bandpass filter after PCLS optimisation.

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

d1(pcls):fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=36,Wasl=10,Wasu=5

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
5

6

7

8

9

10

D
el

ay
(s

am
pl

es
)

Frequency

Figure 8.72: Passband response of the minimum phase FIR bandpass filter after PCLS optimisation.

212

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

d1(pcls):fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=36,Wasl=10,Wasu=5

Figure 8.73: Pole-zero plot of the minimum phase FIR bandpass filter after PCLS optimisation.

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005

0

0.005

0.01

Frequency

C
om

bi
ne

d
re

sp
on

se
(d

B
)

Figure 8.74: Combined response of the PCLS optimised minimum phase FIR bandpass filter and the complementary FIR filter.

213

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

c1(mmse):fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=36,Wasl=8,Wasu=12

Figure 8.75: Pole-zero plot of the complementary FIR filter.

Nc1 = [0.0366171299, 0.0285262626, 0.0591840029, -0.0189287003, ...
0.0061342698, -0.0695136674, 0.1173329117, 0.0041164596, ...
0.2342957952, -0.0668360486, 0.3560887730, -0.0863265076, ...
0.4919913409, 0.1108181494, -0.2704281094, 0.3435013481, ...
0.0990432530, -0.2191783025, -0.1258971417, 0.0169705760, ...
0.0029364599, -0.0906977106, -0.0766641577, 0.0137955732, ...
0.0737025436, 0.0485973214, 0.0092870990, -0.0147323710, ...

-0.0165213064, 0.0001623514, 0.0030447176]';

Alternatively, given an FIR filter of order N , H (z), with the desired magnitude response, |H (eıω)| ≤ 1, a more accurate com-
plementary minimum-phase FIR spectral factor of 1−z−NH

(
z−1)H (z) = 1−|H (z)|2 can be derived from the real cepstrum

method of Mian and Nainer [65] or directly by Orchard and Willson’s Newton-Raphson solution [78]. See Appendix N.1.4.

214

Chapter 9

IIR filter design using Second Order Cone
Programming

9.1 Second Order Cone Programming

Following Alizadeh and Goldfarb [54], Second Order Cone Programming (SOCP) is a class of convex optimisation problems in
which a linear function is minimised subject to a set of conic constraints

minimise f⊤x

subject to ∥Aix + bi∥ ≤ c⊤i x + hi i = 1, . . . , N

where ∥u∥ =
√
u⊤u is the Euclidean norm of the vector u, x ∈ Rp×1, f ∈ Rp×1, Ai ∈ R(p−1)×p, bi ∈ R(p−1)×1, ci ∈ Rp×1

and hi ∈ R. Each constraint is equivalent to: [
c⊤i
Ai

]
x +

[
hi

bi

]
∈ Ci

where Ci is a cone in Rp

Ci =
{[

t
u

]
: u ∈ R(p−1)×1, t ≥ 0, ∥u∥ ≤ t

}

9.2 Design of IIR filters with SOCP

Equation 2 defined the mini-max optimisation problem for the filter. Rewrite this in terms of an upper bound, ϵ, as

minimise ϵ

subject to ∥W (ωi) [H (x, ωi)−Hd (ωi)] ∥ ≤ ϵ for ωi ∈ Ω
H (x) is stable

where x is the vector of coefficients, ϵ is an auxiliary optimisation variable,W (ω) is a weighting factor,H (x, ω) is the frequency
response with coefficients x and Hd (ω) is the desired frequency response. H (x, ω) and Hd (ω) usually have complex values
in the pass band. The optimisation problem may be formulated so that H (x, ω) and Hd (ω) are complex scalars or vectors of
complex values. In the latter case the norm is assumed to be summed over a range of frequencies.

If∇xH (xk, ω) is known and the step-size, ∥x− xk∥, is small, then a useful first-order approximation to H (x, ω) is:

H (x, ω) ≈ H (xk, ω) +∇xH (xk, ω)⊤ (x− xk)

so that

W (ω) |H (x, ω)−Hd (ω)| ≈W (ω)
∣∣∣∇xH (xk, ω)⊤ (x− xk) +H (xk, ω)−Hd (ω)

∣∣∣
= W (ω)

∣∣∣∇xH (xk, ω)⊤ (x− xk) + ek

∣∣∣
215

where ek = H (xk, ω)−Hd (ω).

Similarly, a second-order approximation to H (x, ω) is:

H (x, ω) ≈ H (xk, ω) +∇xH (xk, ω)⊤ (x− xk) + 1
2 (x− xk)⊤∇2

xxH (xk, ω) (x− xk)

Unfortunately the IIR filter Hessian matrix,∇2
xxH (xk, ω), is unlikely to be positive definite.

Lu and Hinamoto [246] add linear constraints on the maximum filter response in the transition band, Ωt:

∥∇xH (xk, ωt)⊤ (x− xk) +H (xk, ωt) ∥ ≤ γ for ωt ∈ Ωt

Similar linear constraints can be added to control the peaks of the response in the pass and stop bands.

The linearised SOCP optimisation problem is

minimise ϵ

subject to ∥W (ωi)
[
∇xH (xk, ωi)⊤ (x− xk) + ek

]
∥ ≤ ϵ for ωi ∈ Ω

∥∇xH (xk, ωt)⊤ (x− xk) +H (xk, ωt) ∥ ≤ γ for ωt ∈ Ωt

∥x− xk∥ ≤ β
H (x) is stable

There are three sets of second-order cone constraints (for the desired response, the transition band response and for the coefficient
step size) and one set of linear constraints (for filter stability). The optimisation is repeated until the step size, (x− xk), is
satisfactory or the iteration limit is exceeded. Typically, ϵ minimises the weighted sum of, for example, the amplitude and delay
errors, EA and ET . Separately minimising the amplitude and delay errors implies the minimisation of of two auxiliary variables
ϵA and ϵT .

The complex frequency response can be written in terms of amplitude and phase as

H (xk, ωi) = Ha (xk, ωi) eıHp(xk,ωi)

= Ha (xk, ωi) [cosHp (xk, ωi) + ı sinHp (xk, ωi)]

so that, at each ωi, the gradient of the complex frequency response is

∇xH (xk, ωi) = [cosHp (xk, ωi)∇xHa (xk, ωi)−Ha (xk, ωi) sinHp (xk, ωi)∇xHp (xk, ωi)] . . .

+ ı [sinHp (xk, ωi)∇xHa (xk, ωi) +Ha (xk, ωi) cosHp (xk, ωi)∇xHp (xk, ωi)]

The squared magnitude of the response is used if there is no design constraint on the phase of the filter response (for example in
the stop band). In this case

|H (xk, ωi)|2 = H (xk, ωi)H (xk, ωi)∗

∇x |H (xk, ωi)|2 = (∇xH (xk, ωi))H (xk, ωi)∗ +H (xk, ωi) (∇xH (xk, ωi))∗

= 2ℜ∇xH (xk, ωi)ℜH (xk, ωi) + 2ℑ∇xH (xk, ωi)ℑH (xk, ωi)

where ∗ represents the complex conjugate. The squared-magnitude response can be used in linear constraints on the upper and
lower peaks of the pass-band and stop-band magnitude responses

|H (xk, ωi)|2 + (x− xk)⊤∇x |H (xk, ωi)|2 ≥ H2
d,l (ωi)

|H (xk, ωi)|2 + (x− xk)⊤∇x |H (xk, ωi)|2 ≤ H2
d,u (ωi)

where H2
d,l (ω) and H2

d,u (ω) are the lower and upper constraints on the squared-magnitude response. A similar linear constraint
on the phase response uses

ϕH (xk, ωi) = arctan ℑH (xk, ωi)
ℜH (xk, ωi)

∇xϕH (xk, ωi) =ℜH (xk, ωi)ℑ∇xH (xk, ωi)−ℑH (xk, ωi)ℜ∇xH (xk, ωi)
|H (xk, ωi)|2

216

9.3 Using the SeDuMi SOCP solver

In the following I use the SeDuMi (Self-Dual-Minimisation) SOCP solver originally written by Jos Sturm [225]. Lu [251, Section
III] provides an example of expressing an optimisation problem in the form accepted by SeDuMi. In Lu’s notation the problem
is:

minimise b⊤x (9.1a)

subject to ∥A⊤i x + ci∥ ≤ b⊤i x + di for i = 1, . . . , q (9.1b)

D⊤x + f ≥ 0 (9.1c)

where x ∈ Rm×1, b ∈ Rm×1, Ai ∈ Rm×(ni−1) a, ci ∈ R(ni−1)×1, bi ∈ Rm×1, di ∈ R for 1 ≤ i ≤ q, D ∈ Rm×p and
f ∈ Rp×1. The problem is cast into SeDuMi format by defining

At =
[
−D A

(1)
t . . . A

(q)
t

]
(9.2)

A
(i)
t = − [bi Ai]
bt = −b

ct =
[
f ; c

(1)
t ; . . . c

(q)
t

]
c

(i)
t = [di; ci]

The Octave commands to solve the SOCP problem with SeDuMi are

K.l = p;
K.q = q;
[xs,ys,info] = sedumi(At,bt,ct,K);
info
x = ys;

where p is the number of linear constraints in Equation 9.1c and q is a vector giving the dimensions of the q sets of conic
constraints in Equation 9.1b, q =

[
n1 n2 . . . nq

]
. The Octave script Lu_remarks_example_4_test.m shows Lu’s Example

4 [251, Section III], an SOCP problem with linear and quadratic constraints.

9.4 An example of SOCP design of an IIR filter expressed in gain-zero-pole format
with SeDuMi

The Octave script deczky3_socp_test.m implements the design of Deczky’s Example 3, used previously in Section 8.2.3, with
MMSE optimisation of the weighted response error by the SeDuMi SOCP solver. As in Part 8, the coefficients of this example
filter are expressed in gain-zero-pole form and the amplitude and group-delay are calculated with the iirA and iirT functions.
Similarly, filter stability is ensured by linear constraints on the upper and lower values of the coefficients.

As for the filter design in Section 8.2.3, the deczky3_socp_test.m script has two phases. First, starting with the “IPSZ-1” coeffi-
cients the sum of the coefficient step-size and MMSE error is minimised in the the Octave function iir_socp_mmse.m. Linesearch
along the minimal direction is not required. The minimisation variables are

x =

 ϵ
β
δ

where ϵ is the MMSE error, δ is the step direction from coefficent vector xk, and β is the constraint on the coefficient step-size,
∥δ∥ ≤ β.

In a similar fashion to the MMSE error used in Part 8, the MMSE frequency response constraint can be expressed as a weighted
sum of pass-band amplitude response, A, stop-band amplitude response, S, and group-delay response, T . In this example I do
not attempt to control the transition band amplitude response. In SeDuMi format

A⊤i =

 0 Wa (ωs)∇xA (xk, ωa)
0 Wt (ωt)∇xT (xk, ωt)
0 Ws (ωs)∇xS (xk, ωs)

ani − 1 to allow for the column bi in the matrix A

(i)
t and di in the column vector c

(i)
t

217

b⊤i =
[

1 0 0
]

ci =

 Wa (ωa) [A (xk, ωa)−Ad (ωa)]
Wt (ωt) [T (xk, ωt)− Td (ωt)]
Ws (ωs) [S (xk, ωs)− Sd (ωs)]

di = 0

where ωa ∈ Ωa, ωt ∈ Ωt and ωs ∈ Ωs are the pass band amplitude, and pass band group delay and stop band amplitude response
grid frequencies and Ad (ωa), Td (ωt) and Sd (ωs) are the desired pass band amplitude, pass band delay and stop band amplitude
responses, respectively.

The gain-zero-pole coefficients have upper and lower constraints, xu and xl respectively, ensuring stability with

− (x− xk)− (xk − xu) ≥ 0
(x− xk)− (xl − xk) ≥ 0

The stability constraint is a linear constraint on the coefficients

D⊤ =
[

0 −I
0 I

]
f =

[
− (xk − xu)
− (xl − xk)

]

During the second, PCLS, phase, the Octave function, iir_slb.m minimises the sum of the coefficient step-size and the MMSE
error subject to linear constraints on the pass-band amplitude response, stop-band amplitude response and group-delay response.
For example, the pass-band amplitude response upper and lower constraints are

Adu (xk, ωau)−
[
A (xk, ωau) +∇xA (xk, ωau)⊤ δ

]
≥ 0

−Adl (xk, ωal) +
[
A (xk, ωal) +∇xA (xk, ωal)⊤ δ

]
≥ 0

where ωau ∈ Ωau and ωal ∈ Ωal are the upper and lower pass-band amplitude response constraint frequencies. These constraints
are added to the SeDuMi problem as linear constraints. The constraint frequencies are determined by the PCLS peak-exchange
algorithm of Selesnick et al. shown in Algorithm 8.1.

The deczky3_socp_test.m script has somewhat tighter constraints on the pass-band group-delay ripple than the SQP design of
deczky3_sqp_test.m shown in Section 8.2.3. The filter specification is

n=500 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-05 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.1 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.25 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.003 % Pass band group delay peak-to-peak ripple
Wtp=1 % Pass band group delay weight
fas=0.3 % Stop band amplitude response edge
dBas=33 % Stop band minimum attenuation
Was=1 % Stop band amplitude weight
U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=1 % Denominator polynomial decimation factor

The result of the PCLS SOCP pass in deczky3_socp_test.m is shown in Figure 9.1 with pass-band details shown in Figure 9.2
and pole-zero plot shown in Figure 9.3.

The estimate of the SOCP PCLS optimised filter vector is, in the gain, zeros and poles form of Equation 8.2:

218

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d2(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=33,Was=1,tp=10,tpr=0.003

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.1: Deczky Example 3, PCLS response after SOCP optimisation.

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

d2(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=33,Was=1,tp=10,tpr=0.003

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
9.9985

9.999

9.9995

10

10.001

10.001

10.002

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.2: Deczky Example 3, PCLS passband response after SOCP optimisation.

219

-1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

d2(pcls):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=33,Was=1,tp=10,tpr=0.003

Figure 9.3: Deczky Example 3, PCLS pole-zero plot after SOCP optimisation.

Ud2=0,Vd2=0,Md2=10,Qd2=6,Rd2=1
d2 = [0.0034352390, ...

1.0142167915, 1.0568423581, 1.3897353151, 1.7955610908, ...
2.1734118934, ...
2.0101283605, 2.7152949030, 1.7674544856, 0.7324611712, ...
0.1753051231, ...
0.4968946423, 0.5911774015, 0.6332304070, ...
0.3523987661, 1.0993086491, 1.4431872258]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N2 = [0.0034352390, -0.0124353690, 0.0119557516, -0.0064774001, ...
0.0193257438, -0.0112886817, -0.0345263836, -0.0055423202, ...
0.1036105933, 0.1287076613, 0.1160880770]';

and

D2 = [1.0000000000, -1.6309320112, 1.7351691218, -1.2247748845, ...
0.6001977822, -0.1977871000, 0.0346009321]';

220

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d2(pcls):fap=0.15,dBap=0.2,Wap=1,fas=0.3,dBas=50,Was=2,tp=10,tpr=0.8

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.4: Deczky Example 3, PCLS response after SOCP optimisation, alternative specification.

For comparison, the deczky3a_socp_test.m script has looser constraints on the pass-band group-delay ripple and increases the
required stop-band attenuation:

n=500 % Frequency points across the band
tol=2e-05 % Tolerance on relative coefficient update size
ctol=2e-05 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.2 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.25 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.8 % Pass band group delay peak-to-peak ripple
Wtp=0.1 % Pass band group delay weight
fas=0.3 % Stop band amplitude response edge
dBas=50 % Stop band minimum attenuation
Was=2 % Stop band amplitude weight
U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=1 % Denominator polynomial decimation factor

The result of the PCLS SOCP pass in deczky3a_socp_test.m is shown in Figure 9.4 with pass-band details shown in Figure 9.5
and pole-zero plot shown in Figure 9.6. The estimate of the SOCP PCLS optimised filter vector is, in the gain, zeros and poles
form of Equation 8.2:

Ud2=0,Vd2=0,Md2=10,Qd2=6,Rd2=1
d2 = [0.0024085237, ...

1.0757207923, 1.0770594716, 1.1394947756, 1.6132256567, ...
2.1416452439, ...
1.9101686254, 2.7459482411, 2.0914338105, 0.3770820547, ...
1.0592438580, ...
0.6699523174, 0.7374149832, 0.7784073816, ...
0.3559820006, 1.0082977483, 1.4625220543]';

221

0 0.05 0.1 0.15 0.2 0.25
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

d2(pcls):fap=0.15,dBap=0.2,Wap=1,fas=0.3,dBas=50,Was=2,tp=10,tpr=0.8

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
9.4

9.6

9.8

10

10.2

10.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.5: Deczky Example 3, PCLS passband response after SOCP optimisation, alternative specification.

-1 -0.5 0 0.5 1 1.5

-2

-1

0

1

2

d2(pcls):fap=0.15,dBap=0.2,Wap=1,fas=0.3,dBas=50,Was=2,tp=10,tpr=0.8

Figure 9.6: Deczky Example 3, PCLS pole-zero plot after SOCP optimisation, alternative specification.

222

In Section 8.1.1, I expressed the filter design problem as a sequential quadratic programming, or SQP, problem:

minimise q (x) = 1
2x⊤Qx + a⊤x + β

where Q is positive definite and symmetric and linear constraints are neglected for clarity. This SQP optimisation problem can
be converted to an SOCP problem by rearranging q (x):

q (x) = 1
2∥Q

1
2 x + Q−

1
2 a∥2 + β − 1

2a⊤Q−1a

See Alizadeh and Goldfarb [54, Section 2.1] or Antoniou and Lu [2, Section 14.7.2].

The Octave script deczky3_socp_bfgs_test.m implements the design of Deczky’s Example 3, with the SeDuMi SOCP solver, as
in Section 9.4, but with MMSE optimisation of the weighted response error, E (x), represented as ∥Q

1
2 x + Q−

1
2∇xE (x) ∥,

where Q is initialised with the diagonal of ∇2
xxE (x) and updated with the BFGS Hessian matrix update algorithm shown in

Appendix K.7.1.

The filter specification is

U=0 % Number of real zeros
V=0 % Number of real poles
M=10 % Number of complex zeros
Q=6 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol=1e-06 % Tolerance on relative coefficient update size
ctol=1e-06 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.1 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
ftp=0.25 % Pass band group delay response edge
tp=10 % Nominal filter group delay
tpr=0.08 % Pass band group delay peak-to-peak ripple
Wtp=0.2 % Pass band group delay weight
fas=0.3 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=10 % Stop band amplitude weight

The result of the PCLS SOCP pass in deczky3_socp_bfgs_test.m is shown in Figure 9.7 with pass-band details shown in Figure 9.8
and pole-zero plot shown in Figure 9.9.

The estimate of the SOCP PCLS optimised filter vector is, in the gain, zeros and poles form of Equation 8.2:

Ud2=0,Vd2=0,Md2=10,Qd2=6,Rd2=1
d2 = [0.0028603111, ...

1.1153479370, 1.1326276048, 1.1339470248, 1.8249200328, ...
2.1304862453, ...
2.7293066409, 2.0494174580, 1.8375912877, 0.7412308781, ...
0.2300938324, ...
0.5590032117, 0.6426477932, 0.7101803655, ...
0.3514326070, 1.0470003164, 1.4478415767]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N2 = [0.0028603111, -0.0090270543, 0.0046356931, 0.0042885497, ...
0.0125876510, -0.0167148545, -0.0287899470, 0.0082897177, ...
0.0946954276, 0.1063564366, 0.0887235618]';

and

D2 = [1.0000000000, -1.8667421650, 2.1994797792, -1.7319712394, ...
0.9458082016, -0.3424437920, 0.0650896550]';

223

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

Deczky Ex.3(PCLS-BFGS):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=40,Was=10,ftp=0.25,tp=10,tpr=0.08,Wtp=0.2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.7: Deczky Example 3, PCLS response after SOCP optimisation with BFGS update of the Hessian.

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Deczky Ex.3(PCLS-BFGS):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=40,Was=10,ftp=0.25,tp=10,tpr=0.08,Wtp=0.2

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
9.92
9.94
9.96
9.98

10
10.02
10.04
10.06

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.8: Deczky Example 3, PCLS passband response after SOCP optimisation with BFGS update of the Hessian.

224

-1 0 1 2

-1

-0.5

0

0.5

1

Deczky Ex.3(PCLS-BFGS):fap=0.15,dBap=0.1,Wap=1,fas=0.3,dBas=40,Was=10,ftp=0.25,tp=10,tpr=0.08,Wtp=0.2

Figure 9.9: Deczky Example 3, PCLS pole-zero plot after SOCP optimisation with BFGS update of the Hessian.

225

9.5 SOCP design of a non-linear phase FIR low-pass filter

The Octave script iir_socp_slb_fir_lowpass_test.m designs an FIR low-pass filter that has approximately linear phase in the
pass-band. The impulse response is not symmetric. The filter specification is:

U=2 % Number of real zeros
V=0 % Number of real poles
M=54 % Number of complex zeros
Q=0 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-06 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=0.5 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band amplitude weight
Wat=0.0001 % Transition band amplitude weight
ftp=0.15 % Pass band group-delay response edge
td=15 % Pass band group-delay
tdr=0.3 % Pass band amplitude peak-to-peak ripple
Wtp=0.01 % Pass band group-delay weight
fas=0.2 % Stop band amplitude response edge
dBas=50 % Stop band minimum attenuation
Was=1 % Stop band amplitude weight

Figure 9.10 shows the response of the PCLS optimised filter. Figure 9.11 shows the pass-band detail of the response of the PCLS
optimised filter. The coefficients of the PCLS optimised minimum phase FIR bandpass filter are, in gain-pole-zero form:

Ud1=2,Vd1=0,Md1=54,Qd1=0,Rd1=1
d1 = [0.00183850, ...

-1.16373624, 0.86741439, ...
0.86794030, 0.87007422, 0.87081645, 0.87271561, ...
0.87279405, 0.88806783, 0.93790891, 0.94529516, ...
0.95353423, 0.95607372, 0.96403101, 0.96949825, ...
0.97335201, 0.97615592, 0.97827153, 0.97992807, ...
0.98129188, 0.98250161, 0.98369124, 0.98449833, ...
0.98507460, 0.98696215, 0.98986566, 0.99331110, ...
0.99866283, 1.33714311, 1.35104590, ...
0.47289031, 0.31206724, 0.15947847, 0.78063685, ...
0.62941581, 0.94160151, 1.49199847, 1.59212881, ...
1.40443036, 1.70032366, 1.80330121, 1.90661167, ...
2.01087552, 2.11603991, 2.22192878, 2.32836579, ...
2.43519213, 2.54227288, 2.64948515, 1.32286734, ...
2.75673341, 2.86397147, 2.97139551, 3.07844038, ...
1.26478669, 0.66461304, 0.22194839]';

and in transfer function form the FIR polynomial is:

N1 = [0.00183850, 0.00669618, 0.00984558, 0.00489649, ...
-0.00706684, -0.01450198, -0.00581601, 0.01532408, ...
0.02709522, 0.00816303, -0.03460740, -0.05781437, ...

-0.01074535, 0.11514994, 0.26190158, 0.33750113, ...
0.28616910, 0.13701575, -0.01506488, -0.08306147, ...

-0.05276947, 0.01654807, 0.05191135, 0.02912870, ...
-0.01716374, -0.03740211, -0.01656459, 0.01784183, ...
0.03003786, 0.01244805, -0.01178609, -0.01724316, ...

-0.00219781, 0.01372983, 0.01331000, -0.00085223, ...
-0.01215537, -0.00939889, 0.00244786, 0.00990551, ...
0.00616403, -0.00308754, -0.00761775, -0.00380997, ...
0.00294171, 0.00541357, 0.00212080, -0.00244456, ...

-0.00359293, -0.00106224, 0.00182174, 0.00225987, ...
0.00044621, -0.00150146, -0.00205694, -0.00138083, ...

-0.00045085]';

226

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(PCLS):fap=0.15,dBap=0.5,ftp=0.15,td=15,tdr=0.3,fas=0.2,dBas=50,Was=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.10: Response of the non-linear phase FIR low-pass filter after SOCP PCLS optimisation.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

d1(PCLS):fap=0.15,dBap=0.5,ftp=0.15,td=15,tdr=0.3,fas=0.2,dBas=50,Was=1

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
14.8

14.9

15

15.1

15.2

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.11: Pass-band response of the non-linear phase FIR low-pass filter after SOCP PCLS optimisation.

227

The Octave script iir_socp_slb_fir_lowpass_alternate_test.m designs an alternative minimum-phase FIR low-pass filter that has
approximately linear phase in the pass-band. The filter specification is:

U=2 % Number of real zeros
V=0 % Number of real poles
M=28 % Number of complex zeros
Q=0 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=500 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=1e-06 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=3 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band amplitude weight
Wat=1e-06 % Transition band amplitude weight
ftp=0.14 % Pass band group-delay response edge
td=10 % Pass band group-delay
tdr=0.6 % Pass band amplitude peak-to-peak ripple
Wtp=0.25 % Pass band group-delay weight
fas=0.2 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=10 % Stop band amplitude weight

Figure 9.12 shows the response of the PCLS optimised filter. Figure 9.13 shows the pass-band detail of the response of the PCLS
optimised filter. The coefficients of the PCLS optimised alternative minimum phase FIR bandpass filter are, in gain-pole-zero
form:

Ud1=2,Vd1=0,Md1=28,Qd1=0,Rd1=1
d1 = [0.00680980, ...

-0.96180950, 2.23804734, ...
0.79806377, 0.80484222, 0.80648473, 0.94366224, ...
0.94520949, 0.94677469, 0.94771816, 0.94980865, ...
0.95007443, 0.95599489, 0.96348362, 0.97995414, ...
0.99656804, 1.67870264, ...
0.16044623, 0.47499265, 0.81349725, 2.54423189, ...
2.34407390, 2.74375403, 2.14458744, 2.94180934, ...
1.93894152, 1.74561785, 1.55778974, 1.38974327, ...
1.27394340, 0.40169462]';

and in transfer function form the FIR polynomial is:

N1 = [0.00680980, -0.00618917, -0.01820481, -0.01586487, ...
0.00818593, 0.04389894, 0.05260043, -0.00252628, ...

-0.12056356, -0.24808837, -0.31084705, -0.26689404, ...
-0.14161792, -0.00984964, 0.05960469, 0.05184468, ...
0.00505133, -0.02856448, -0.02612038, -0.00249740, ...
0.01366102, 0.01014706, -0.00315731, -0.00952879, ...

-0.00389843, 0.00539214, 0.00765763, 0.00190095, ...
-0.00539991, -0.00765377, -0.00467825]';

228

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1(PCLS):fap=0.15,dBap=3,ftp=0.14,td=10,tdr=0.6,fas=0.2,dBas=40,Was=10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.12: Response of the alternative non-linear phase FIR low-pass filter after SOCP PCLS optimisation.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-3

-2

-1

0

1

d1(PCLS):fap=0.15,dBap=3,ftp=0.14,td=10,tdr=0.6,fas=0.2,dBas=40,Was=10

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
9.5

10

10.5

11

11.5

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.13: Pass-band response of the alternative non-linear phase FIR low-pass filter after SOCP PCLS optimisation.

229

9.6 Comparison of FIR and IIR low-pass filters having approximately flat pass-
band group delay with symmetric FIR filters

The Octave script compare_fir_iir_socp_slb_lowpass_test.m compares the performance of FIR and IIR implementations of a
low-pass filter having 31 coefficients and a pass-band group delay of approximately 10 samples designed by the SeDuMi solver
with symmetric FIR low-pass filters having 21 and 31 coefficients designed by the Octave remez function. The low-pass filter
pass-band and stop-band edges are 0.15 and 0.2, respectively, and the allowed pass-band ripple is 3dB. The IIR filter specification
is:

U=1 % Number of real zeros
V=1 % Number of real poles
M=14 % Number of complex zeros
Q=14 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=0.0001 % Tolerance on constraints
rho=0.992188 % Constraint on pole radius
fap=0.15 % Pass band amplitude response edge
dBap=1 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band amplitude weight
Wat=0.001 % Transition band amplitude weight
ftp=0.15 % Pass band group-delay response edge
td=10 % Pass band group-delay
tdr=0.2 % Pass band amplitude peak-to-peak ripple
Wtp=0.05 % Pass band group-delay weight
Wtt=0.001 % Transition band group-delay weight
fas=0.2 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=45 % Stop band amplitude weight

The gain-zero-pole FIR filter specification is:

U=2 % Number of real zeros
V=0 % Number of real poles
M=28 % Number of complex zeros
Q=0 % Number of complex poles
R=1 % Denominator polynomial decimation factor
n=1000 % Frequency points across the band
tol=0.0005 % Tolerance on relative coefficient update size
ctol=0.0001 % Tolerance on constraints
fap=0.15 % Pass band amplitude response edge
dBap=3 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band amplitude weight
ftp=0.15 % Pass band group-delay response edge
td=10 % Pass band group-delay
tdr=0.6 % Pass band amplitude peak-to-peak ripple
Wtp=0.005 % Pass band group-delay weight
fas=0.2 % Stop band amplitude response edge
dBas=40 % Stop band minimum attenuation
Was=50 % Stop band amplitude weight

The symmetric FIR filters were designed with:

d10=remez(20,[0 0.15 0.2 0.5]*2,[1 1 0 0],[1 7]);

and

d15=remez(30,[0 0.15 0.2 0.5]*2,[1 1 0 0],[1 50]);

Figure 9.14 compares the amplitude responses of the four filters and Figure 9.15 compares the delay responses (the flat delay of
15 samples of the order 30 symmetric FIR filter is not shown).

230

0 0.1 0.2 0.3 0.4 0.5
-5

-4

-3

-2

-1

0

1

2

Amplitude response

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-55

-50

-45

-40

-35

-30

-25

FIR
IIR
Symmetric FIR(21 coef.)

Symmetric FIR(31 coef.)

Figure 9.14: Comparison of FIR and IIR low-pass filters, amplitude responses.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
9.6

9.8

10

10.2

10.4

Frequency

D
el

ay
(s

am
pl

es
)

Group delay response

FIR
IIR
Symmetric FIR(21 coef.)

Figure 9.15: Comparison of FIR and IIR low-pass filters, group delay responses.

231

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

x0:fapl=0.1,fapu=0.2,dBap=0.3,Wap=1,fasl=0.05,fasu=0.25,dBas=30,Wasl=0.5,Wasu=1,tp=16,Wtp=

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.16: IIR band-pass R=2 decimation filter, response of the initial filter calculated with the WISE method of Tarcynzki et
al. .

9.7 SOCP MMSE design of a bandpass R=2 filter expressed in gain-zero-pole for-
mat with SeDuMi

The Octave script iir_socp_slb_bandpass_test.m uses the SeDuMi SOCP solver to design an R = 2 bandpass filter similar to that
designed with the SQP solver in Section 8.2.6. After some experimentation, the filter specification is:

n=500 % Frequency points across the band
tol=0.0001 % Tolerance on relative coefficient update size
ctol=0.0001 % Tolerance on constraints
fasl=0.05 % Stop band amplitude response lower edge
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
fasu=0.25 % Stop band amplitude response upper edge
dBap=0.3 % Pass band amplitude peak-to-peak ripple
dBas=30 % Stop band amplitude peak-to-peak ripple
Wasl=0.5 % Lower stop band weight
Wap=1 % Pass band weight
Wasu=1 % Upper stop band weight
ftpl=0.09 % Pass band group delay response lower edge
ftpu=0.21 % Pass band group delay response upper edge
tp=16 % Nominal filter group delay
tpr=0.032 % Pass band group delay peak-to-peak ripple
Wtp=1 % Pass band group delay weight
U=2 % Number of real zeros
V=0 % Number of real poles
M=18 % Number of complex zeros
Q=10 % Number of complex poles
R=2 % Denominator polynomial decimation factor

The SeDuMi solver seems to require the initial filter to be a closer approximation than that required by the SQP solver. In this
case, the initial filter is calculated by the Octave function tarczynski_bandpass_test.m. The response of the initial filter is shown
in Figure 9.16. After PCLS SOCP optimimisation, the response of the resulting filter is shown in Figure 9.17 with pass-band

232

detail shown in Figure 9.18. The corresponding pole-zero plot is shown in Figure 9.19. The estimate of the optimised filter vector
is, in the gain, zeros and poles form of Equation 8.2:

Ud1=2,Vd1=0,Md1=18,Qd1=10,Rd1=2
d1 = [0.0189068439, ...

-0.2550677149, 0.8026098317, ...
0.9896659144, 0.9928948767, 0.9932682145, 0.9959532021, ...
0.9991992291, 1.0444000165, 1.0643550757, 1.2902588866, ...
1.3017427646, ...
0.2707539494, 1.9965366659, 1.7728857750, 1.6002474463, ...
2.5504312119, 2.2763848464, 2.9949146789, 0.7867781878, ...
1.1057353974, ...
0.6133623871, 0.6167106744, 0.6570179043, 0.7203289359, ...
0.7589708989, ...
2.4178101455, 1.8725788107, 1.3265411207, 2.7422379028, ...
1.0292509442]';

and the corresponding transfer function numerator and denominator polynomials (found with Octave function x2tf) are, respec-
tively:

N1 = [0.0189068439, 0.0180109547, 0.0290193716, 0.0362383670, ...
0.0549790686, 0.0605938912, 0.0383480080, 0.0214119958, ...
0.0016246892, -0.0030383978, -0.0494406630, -0.0942418434, ...

-0.0817501122, 0.0159008175, 0.1421378605, 0.1709076687, ...
0.1033767849, -0.0232265551, -0.0643291842, -0.0636640611, ...

-0.0127288382]';

and

D1 = [1.0000000000, 0.0000000000, 1.5128709762, 0.0000000000, ...
1.7004084218, 0.0000000000, 1.7166098547, 0.0000000000, ...
1.5478766430, 0.0000000000, 1.1446382750, 0.0000000000, ...
0.7605817975, 0.0000000000, 0.4157257731, 0.0000000000, ...
0.2001925731, 0.0000000000, 0.0714589474, 0.0000000000, ...
0.0184613558]';

233

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

d1:fapl=0.1,fapu=0.2,dBap=0.3,Wap=1,fasl=0.05,fasu=0.25,dBas=30,Wasl=0.5,Wasu=1,tp=16,Wtp=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.17: IIR band-pass R=2 decimation filter with delay tp=16 samples, response of the filter after PCLS SOCP optimisation.

0.1 0.12 0.14 0.16 0.18 0.2

-0.4

-0.2

0

0.2

d1:fapl=0.1,fapu=0.2,dBap=0.3,Wap=1,fasl=0.05,fasu=0.25,dBas=30,Wasl=0.5,Wasu=1,tp=16,Wtp=1

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.98

15.99

16

16.01

16.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.18: IIR band-pass R=2 decimation filter with delay tp=16 samples, passband response of the filter after PCLS SOCP
optimisation.

234

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

d1:fapl=0.1,fapu=0.2,dBap=0.3,Wap=1,fasl=0.05,fasu=0.25,dBas=30,Wasl=0.5,Wasu=1,tp=16,Wtp=1

Figure 9.19: IIR band-pass R=2 decimation filter with delay tp=16 samples, pole-zero plot of the filter after PCLS SOCP
optimisation.

235

9.8 SOCP MMSE design of a multi-band-pass filter expressed in gain-zero-pole
format with SeDuMi

The Octave script iir_socp_slb_multiband_test.m implements the design of a multi-band-pass IIR filter expressed in gain-pole-
zero format with SOCP and PCLS optimisation using SeDuMi. The specification of the filter is:

tol=0.0001 % Tolerance on combined response
mtol=0.0001 % Tolerance on MMSE update
ptol=0.0001 % Tolerance on PCLS update
ctol=0.0001 % Tolerance on constraints
maxiter=500 % SOCP iteration limit
npoints=500 % Frequency points across the band
nplot=500 % Frequency points plotted across the band
rho=0.999900 % Constraint on pole radius
fas1u=0.05 % Amplitude stop band 1 upper edge
fap1l=0.075 % Amplitude pass band 1 lower edge
fap1u=0.1 % Amplitude pass band 1 upper edge
fas2l=0.125 % Amplitude stop band 2 lower edge
fas2u=0.15 % Amplitude stop band 2 upper edge
fap2l=0.175 % Amplitude pass band 2 lower edge
fap2u=0.225 % Amplitude pass band 2 upper edge
fas3l=0.25 % Amplitude stop band 3 lower edge
dBas1=20 % Amplitude stop band 1 attenuation
dBap1=0.5 % Amplitude pass band 1 peak-to-peak ripple
dBas2=20 % Amplitude stop band 2 attenuation
dBap2=0.5 % Amplitude pass band 2 peak-to-peak ripple
dBas3=20 % Amplitude stop band 3 attenuation
Was1=1 % Amplitude stop band 1 weight
Wap1=1 % Amplitude pass band 1 weight
Was2=1 % Amplitude stop band 2 weight
Wap2=1 % Amplitude pass band 2 weight
Was3=1 % Amplitude stop band 3 weight
ftp1l=0.08 % Delay pass band 1 lower edge
ftp1u=0.095 % Delay pass band 1 upper edge
ftp2l=0.185 % Delay pass band 2 lower edge
ftp2u=0.215 % Delay pass band 2 upper edge
tp1=21 % Nominal pass band 1 filter group delay
tp2=12 % Nominal pass band 2 filter group delay
tpr1=2 % Delay pass band 1 peak-to-peak ripple
tpr2=4 % Delay pass band 2 peak-to-peak ripple
Wtp1=0.0001 % Delay pass band 1 weight
Wtp2=0.0001 % Delay pass band 2 weight

The initial filter is designed by frequency transformation of a prototype elliptic filter. The gain-zero-pole description of the SOCP
PCLS optimised filter is:

Ux2=2,Vx2=0,Mx2=18,Qx2=20,Rx2=1
x2 = [0.0502596081, ...

-0.9961275860, 0.9930631866, ...
0.9135162576, 0.9302346419, 0.9473744518, 0.9690485531, ...
0.9698188869, 0.9799202602, 0.9958962684, 0.9968095782, ...
0.9977177614, ...
0.4772312911, 1.0586799798, 1.5039045996, 0.8498218010, ...
0.6608220278, 0.4355677165, 1.0891590910, 1.4236806266, ...
0.6349861296, ...
0.9079743178, 0.9422193664, 0.9495733620, 0.9554948943, ...
0.9661518000, 0.9828244933, 0.9873943588, 0.9944620161, ...
0.9953330348, 0.9967046066, ...
1.2417239145, 0.5678343079, 0.5041507413, 1.3961284923, ...
1.1210210960, 0.6282663990, 0.4688251663, 1.4155836184, ...
1.0980512522, 0.6329518479]';

The numerator and denominator polynomials of the SOCP PCLS optimised filter are:

236

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

D
el

ay
(s

am
pl

es
)

Frequency

Figure 9.20: IIR multi-band filter, response after SOCP PCLS optimisation.

N2 = [0.0502596081, -0.5059674490, 2.5649087948, -8.6120652367, ...
21.2808577996, -40.6877518260, 61.4589104744, -72.9790806268, ...
64.8134995109, -34.5032266034, -8.6318012330, 47.8649716207, ...

-68.9682690106, 68.0811735749, -51.9379578273, 31.5563726113, ...
-15.2447571014, 5.7184046305, -1.5817894973, 0.2901263066, ...
-0.0268098084]';

D2 = [1.0000000000, -11.1837638559, 64.1217291833, -248.2648641779, ...
724.0491462064, -1684.3732486992, 3234.2185491611, -5238.3466455247, ...

7258.1764872940, -8679.9007375001, 9002.9872928950, -8112.0552474656, ...
6339.8173145332, -4276.7486117574, 2468.4463735916, -1202.0740432300, ...
483.3479152202, -155.1126967928, 37.5259826481, -6.1378230584, ...

0.5155076298]';

Figure 9.20 shows the amplitude and delay responses of the PCLS SOCP optimised filter, calculated with the iirA and iirT
functions respectively. Figure 9.21 shows the pass-band response of the filter. Figure 9.22 shows the pole-zero plot of the filter.

237

0 0.1 0.2 0.3 0.4 0.5

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
19

20

21

22

23

Frequency

D
el

ay
(s

am
pl

es
)

0 0.1 0.2 0.3 0.4 0.5
10

11

12

13

14

Figure 9.21: IIR multi-band filter, pass-band response after SOCP PCLS optimisation.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 9.22: Pole-zero plot of the IIR multi-band filter after SOCP PCLS optimisation.

238

Chapter 10

IIR filter design with a pre-defined structure

In this chapter I describe the design of IIR filters with a predefined structure.

10.1 Design of an IIR filter composed of second-order sections

In this section I consider the MMSE design of an IIR filter consisting of a cascade of second-order sections (with one first-order
section if the transfer function polynomial order is odd). The stability of the IIR filter is ensured by a linear constraint on the
coefficients of the denominator second-order sections. (See Lu and Hinamoto [245]).

10.1.1 Linear constraints on the stability of second-order filter sections

A digital filter is stable if its poles (the zeros of the denominator polynomial of the filter transfer function) lie within the unit
circle in the z-plane, |z| < 1. Suppose the filter denominator polynomial is decomposed into one first order section, z + d0, and
second order sections of the form z2 + d1z + d2. The pole location of the first order section is constrained by

d0 > −1
−d0 > −1

If the roots of the second order polynomial lie within the unit circle |z| < 1 then∣∣∣∣∣−d1 ±
√
d2

1 − 4d2

2

∣∣∣∣∣ < 1

If the roots are complex then d2
1 ≤ 4d2 and

d2
1 + 4d2 − d2

1
4 < 1

so −d2 > −1.

If the roots are real then d2
1 ≥ 4d2 and ∣∣∣∣∣−d1 ±

√
d2

1 − 4d2

2

∣∣∣∣∣ < 1

±
√
d2

1 − 4d2 < 2± d1

Squaring both sides

±d1 + d2 > −1

If a margin 0 < τ ≪ 1 is applied to the first and second order sections then:

d0 > −1 + τ

239

−d0 > −1 + τ

d1 + d2 > −1 + τ

−d1 + d2 > −1 + τ

−d2 > −1 + τ

Suppose the denominator polynomial has odd order 2L + 1. Define the coefficients of the corresponding first and second order
sections and the stability constraint matrixes as

d =

d0
d1
...

dL

 where di =
[
di1
di2

]

C =

c1 0

c2
. . .

0 c2

 where c1 =
[

1
−1

]
and c2 =

 1 1
−1 1

0 1

e =

e1
e2
...
e2

 where e1 =
[

1
1

]
and e2 =

 1
1
1

The stability constraint on the filter denominator polynomial is

Cd + (1− τ) e ≥ 0

Suppose the coefficient vector, d, is perturbed by δ. Then the stability constraint becomes

Cδ + h ≥ 0

where h = Cd + (1− τ) e.

10.1.2 Linear constraints on limit-cycle oscillations in second-order filter sections

Section 3.2 states that second-order section limit-cycle oscillations can be suppressed by adding the constraint:

|d1|+ |d2| ≤ 1

so that, in addition to the stability constraints shown in the previous section:

d1 − d2 > −1 + τ

−d1 − d2 > −1 + τ

and

e2 =

1
1
1
1
1

c2 =

1 1
−1 1

1 −1
−1 −1

0 1

240

10.1.3 Design of an IIR filter composed of second order sections with SeDuMi

For the IIR filter transfer function

H (z) = a (z)
d (z)

where

a (z) =
n∑

i=0
aiz
−i

and d (z) is a polynomial of order r expressed as a product of second order sections (with one first order section if r is odd)

d (z) =
{(

1 + d0z
−1)∏ r−1

2
i=1

(
1 + di1z

−1 + di2z
−2) , if r odd∏ r

2
i=1
(
1 + di1z

−1 + di2z
−2) , if r even

Define the two filter coefficient vectors as

a =
[
a0 a1 . . . an

]⊤
and

d =

d0
d1
...

dL

di =

[
di1
di2

]
, for 1 ≤ i ≤ L

L =
{

r−1
2 , if r odd

r
2 , if r even

The frequency response of the filter is

H (ω) = a⊤v (ω)
d (ω)

where

v (ω) = c (ω)− ıs (ω)

c (ω) =
[

1 . . . cosnω
]⊤

s (ω) =
[

0 . . . − sinnω
]⊤

v1 (ω) = cosω − ı sinω

v2 (ω) =
[

cosω
cos 2ω

]
− ı
[

sinω
sin 2ω

]
and

d (ω) =

[1 + d0v1 (ω)]
∏L

i=1

[
1 + d⊤i v2 (ω)

]
, if r odd∏L

i=1

[
1 + d⊤i v2 (ω)

]
, if r even

The gradients of H (ω) with respect to the coefficients are

∂H (ω)
∂a

= v (ω)
d (ω)

∂H (ω)
∂d0

= −H (ω) v1 (ω)
1 + d0v1 (ω)

∂H (ω)
∂di

= −H (ω) v2 (ω)
1 + d⊤i v2 (ω)

for 1 ≤ i ≤ L

241

In this case we optimise the complex frequency response (gain and delay). For each of the response frequencies the format for
solution by SeDuMi is

A⊤i = W (ωi)
[

0 ℜ∇xH (ωi)⊤

0 ℑ∇xH (ωi)⊤

]
b⊤i =

[
1 0

]
ci = W (ωi)

[
0 ℜ [H (ωi)−Hd (ωi)]
0 ℑ [H (ωi)−Hd (ωi)]

]
di = 0

where x represents the vector of coefficients and the desired low pass filter frequency response is

Hd (ω) =
{
e−ıωtd if 0 ≤ ω ≤ ωpass

10−
dBstop

20 if ωpass < ω

The Octave script lowpass2ndOrderCascade_socp_test.m calls the Octave function lowpass2ndOrderCascade_socp to imple-
ment MMSE SOCP design of a low pass filter similar to that of Deczky’s Example 3:

tol=1e-06 % Tolerance on coefficient update vector
mn=10 % Numerator order (mn+1 coefficients)
mr=6 % Denominator order (mr coefficients)
tau=0.1 % Second order section stability parameter
n=400 % Number of frequency points
td=10 % Pass band group delay
fpass= 0.15 % Pass band edge
Wpass=1 % Pass band weight
fstop= 0.3 % Stop band edge
Wstop=100 % Stop band weight
dBstop=80 % Stop band attenuation

The filter coefficients are initialised with the “IPZS-1” set. The script does not enforce the limit-cycle constraints. After SOCP
MMSE optimisation, the numerator and denominator polynomials are respectively:

a = [-0.0021092647, 0.0004069328, 0.0076883394, 0.0051931734, ...
-0.0115231075, -0.0210543663, 0.0019486080, 0.0417050317, ...
0.0578424347, 0.0390044904, 0.0123776723]';

and

d = [1.0000000000, -2.4277939765, 3.0446749922, -2.3351332894, ...
1.1383562680, -0.3371599419, 0.0468622434]';

The overall frequency response of the MMSE SOCP design is shown in Figure 10.1 with pass-band details shown in Figure 10.2
and pole-zero plot shown in Figure 10.3.

Additionally, the Octave function lowpass2ndOrderCascade_socp.m optimises only the squared-magnitude response and ignores
the group delay response. The resulting overall magnitude and delay responses are shown in Figure 10.4, the passband responses
are shown in Figure 10.5 and the pole-zero plot is shown in Figure 10.6.

242

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Deczky ex.3,SOCP,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.1: Deczky Example 3, response with 2nd order sections and MMSE SOCP optimisation.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-1

-0.5

0

0.5

1

Deczky ex.3,SOCP,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

9.8

9.9

10

10.1

10.2

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.2: Deczky Example 3, passband response with 2nd order sections and MMSE SOCP optimisation.

243

-1 0 1 2

-1

-0.5

0

0.5

1

Deczky ex.3,SOCP,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

Figure 10.3: Deczky Example 3, pole-zero plot with 2nd order sections and MMSE SOCP optimisation.

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Deczky ex.3,SOCP Sq.Mag.,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.4: Deczky Example 3, response with 2nd order sections and MMSE SOCP optimisation of the squared-magnitude
response.

244

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-0.01

-0.005

0

0.005

0.01

Deczky ex.3,SOCP Sq.Mag.,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
9

9.5

10

10.5

11

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.5: Deczky Example 3, passband response with 2nd order sections and MMSE SOCP optimisation of the squared-
magnitude response.

-3 -2 -1 0 1 2

-1

0

1

Deczky ex.3,SOCP Sq.Mag.,td=10,fpass=0.15,fstop=0.3,Wstop=100,dBstop=80

Figure 10.6: Deczky Example 3, pole-zero plot with 2nd order sections and MMSE SOCP optimisation of the squared-magnitude
response.

245

10.1.4 Some notes on the design of an IIR filter composed of second order sections with SeDuMi

Some notes on SOCP optimisation of a filter composed of a cascade of second order sections with SeDuMi:

• when running SeDuMi under Octave with the default options, SeDuMi sometimes fails due to numerical problems. This
indicates that the optimisation problem is not feasible with the current constraints.

• a better response is obtained by using a single constraint on the summed response error (MMSE) rather than a large number
of separate frequency response constraints.

• the response is sensitive to the stop band weight.

• the passband response is improved if the desired stop band amplitude response is set to a small non-zero value.

• I did not find a useful filter when attempting to optimise the complex response in the pass band simultaneously with the
squared-magnitude response in the stop band.

• a second order section may have complex conjugate roots or two real roots. In the gain-zero-pole format the total number
of real and complex conjugate roots is specified in advance.

246

10.2 Design of an IIR filter as the sum of two all-pass filters

In this section I consider the design of a low-pass IIR filter that is the sum of two parallel all-pass filters, A (z) and B (z)

H (z) = A (z) +B (z)
2 (10.1)

Vaidyanathan et al. [179] demonstrate that the “classical” odd-order lowpass digital filter approximations can be implemented as
the sum of two allpass filters. The resulting filters have low sensitivity to coefficient quantisation.

10.2.1 Design of an IIR filter as the sum of two all-pass filters each composed of second-order sec-
tions

Following Lu and Hinamoto [245], the transfer functions of the A (z) and B (z) filters are expressed as the product of second-
order sections. As shown in Section 10.1.1, the second-order filter sections permit a simple linear stability constraint on the
coefficients of each section.

Assume that the order of H (z) is odd and that that

a (z) =
(
1 + a0z

−1) m−1
2∏

k=1
1 + ak1z

−1 + ak2z
−2

A (z) = z−m a
(
z−1)
a (z)

and

b (z) =
n
2∏

k=1
1 + bk1z

−1 + bk2z
−2

B (z) = z−n b
(
z−1)
b (z)

Here the coefficients ak1 etc. are real, m is odd, n is even and the order of H is p = n+m. In the following, references to A (z)
apply to B (z) as appropriate. The frequency response of A (z) is:

A (ω) = e−ımω a (−ω)
a (ω)

a (ω) = (1 + a0v1)
m−1

2∏
k=1

1 + v2ak

where ak =
[
ak1
ak2

]
, v1 = cosω − ı sinω, v2 =

[
cosω cos 2ω

]
− ı
[

sinω sin 2ω
]

and A (ω) is understood to mean

A (eıω).

The gradients of A (z) with respect to its coefficients a0, ak1 and ak2 are

∂A (z)
∂a0

= A (z) z − z−1

1 + a2
0 + a0 (z + z−1)

∂A (z)
∂ak1

= A (z)
(
z − z−1) (1− ak2)

1 + a2
k1 + a2

k2 + ak1 (1 + ak2) (z + z−1) + ai2 (z2 + z−2)
∂A (z)
∂ak2

= A (z)
(
z − z−1) (ak1 + z + z−1)

1 + a2
k1 + a2

k2 + ak1 (1 + ak2) (z + z−1) + ak2 (z2 + z−2)

The Octave function allpass2ndOrderCascade.m returns the complex frequency response and gradient of an allpass filter con-
sisting of a cascade of 2nd-order allpass sections (with a single additional first order section if the filter order is odd).

Similarly to Section 9.4, the parallel allpass filter design problem can be expressed in SOCP form as

minimise ϵ, β

247

subject to ∥W (ωi)
[
ℜ∇H (ak, bk, ωi)⊤

ℑ∇H (ak, bk, ωi)⊤

]
δ +W (ωi)

[
ℜH (ak, bk, ωi)−ℜHd (ωi)
ℑH (ak, bk, ωi)−ℑHd (ωi)

]
∥ ≤ ϵ

∥δ∥ ≤ β
Cδ + h ≥ 0

where δ =
[

a− ak

b− bk

]
H (ak, bk, ωi) = 0.5 [A (ak, ωi) +B (bk, ωi)]
∇H (ak, bk, ωi) = 0.5 [∇aA (ak, ωi) +∇bB (bk, ωi)]

A quadratic constraint on the squared-magnitude response at the stop-band frequencies is

∥∇H2 (ak, bk, ωi)⊤ δ +H2 (ak, bk, ωi) ∥ ≤ |Hd (ωi)|2

where

H2 (ak, bk, ωi) = ∥H (ak, bk, ωi) ∥2

= 0.25 [ℜA (ak, ωi) + ℜB (bk, ωi)]2 + 0.25 [ℑA (ak, ωi) + ℑB (bk, ωi)]2

∇H2 (ak, bk, ωi) = 0.5 [ℜA (ak, ωi) + ℜB (bk, ωi)] [ℜ∇aA (ak, ωi) + ℜ∇bB (bk, ωi)] + . . .

0.5 [ℑA (ak, ωi) + ℑB (bk, ωi)] [ℑ∇aA (ak, ωi) + ℑ∇bB (bk, ωi)]

Design of an IIR filter as the sum of two 2nd order cascade all-pass filters with MMSE optimisation of the complex
response

The Octave script allpass2ndOrderCascade_socp_test.m calls the Octave function allpass2ndOrderCascade_socp to design a
low-pass filter composed of two parallel all-pass filters with MMSE optimisation of the complex response of the filter. The filter
specification is similar to Deczky’s Example 3. The desired low pass filter frequency response is:

Hd (ω) =
{
e−ıωtd if 0 ≤ ω ≤ ωpass

0 if ωpass < ω

and the filter specification is

tol=1e-06 % Tolerance on coefficient update vector
ma=11 % Order of filter A
mb=12 % Order of filter B
tau=0.001 % Second order section stability parameter
n=1000 % Number of frequency points
resp="complex" % Flat passband group delay or squared-magnitude
fp= 0.15 % Pass band edge
td=11.5 % Pass band nominal group delay
Wp=2 % Pass band weight
fs= 0.2 % Stop band edge
Ws=20 % Stop band weight

The initial allpass filters were designed by the Octave script tarczynski_allpass2ndOrderCascade_test.m with flat_delay =
true. The initial response is shown in Figure 10.7.

After optimisation with the SeDuMi SOCP solver the response is shown in Figure 10.8 with passband detail shown in Figure 10.9
and pole-zero plot shown in Figure 10.10. The second-order section coefficients are

a1 = [0.6633914912, 0.0814907517, 0.3631050430, -1.1902766262, ...
0.4909956847, -0.6364899703, 0.5204352646, 1.1134122429, ...
0.2456655839, -0.1910909588, -0.2858567007]';

and

b1 = [-0.2621457649, 0.0752261038, -0.0146249222, 0.3528100144, ...
1.1954081752, 0.3589309964, 0.3222312861, -0.4008746221, ...

-0.9697179449, 0.2653072759, -0.8822769049, 0.8651325258]';

248

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel all-pass 2nd order cascade initial response : ma=11,mb=12

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10.5

11

11.5

12

12.5

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.7: Parallel 2nd order cascaded allpass filters, initial response found with the WISE barrier function.

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel all-pass 2nd order cascade : ma=11,mb=12

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.8: Parallel 2nd order cascade allpass filters, response after SOCP optimisation.

249

0 0.05 0.1 0.15 0.2

-0.2

-0.1

0

0.1

Parallel all-pass 2nd order cascade : ma=11,mb=12

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2
10.5

11

11.5

12

12.5

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.9: Parallel 2nd order cascade allpass filters, pass-band response after SOCP optimisation.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Parallel all-pass 2nd order cascade : ma=11,mb=12

Figure 10.10: Parallel 2nd order cascade allpass filters, pole-zero plot after SOCP optimisation.

250

The corresponding allpass filter denominator polynomials are

Da1 = [1.0000000000, -0.1595630695, -0.4253296980, 0.5343547601, ...
-0.1495588393, -0.0933684176, 0.1191926192, -0.0438668272, ...
0.0133239686, 0.0114994145, -0.0142010213, -0.0043225424]';

and

Db1 = [1.0000000000, -0.6111260756, 0.0430031207, 0.8370204526, ...
-0.5985320838, 0.0193691464, 0.1327051221, -0.1425225781, ...
0.0659398513, 0.0100223744, -0.0160424753, 0.0049737734, ...

-0.0008765179]';

Design of an IIR filter as the sum of two 2nd order cascade all-pass filters with MMSE optimisation of the squared-
magnitude response

The Octave script allpass2ndOrderCascade_socp_sqmag_test.m calls the Octave function allpass2ndOrderCascade_socp to de-
sign a low-pass filter composed of two parallel all-pass filters with MMSE optimisation of the squared-magnitude response of
the filter. The filter specification is

tol=1e-08 % Tolerance on coefficient update vector
ma=5 % Order of filter A
mb=6 % Order of filter B
tau=0.001 % Second order section stability parameter
n=1000 % Number of frequency points
resp="sqmag" % Flat passband group delay or squared-magnitude
fp= 0.15 % Pass band edge
Wp=1 % Pass band weight
fs= 0.17 % Stop band edge
Ws=2000 % Stop band weight

The initial allpass filters were designed by the Octave script tarczynski_allpass2ndOrderCascade_test.m with flat_delay =
false. The initial response is shown in Figure 10.11.

After optimisation with the SeDuMi SOCP solver the response is shown in Figure 10.12 and the pole-zero plot is shown in
Figure 10.13. The second-order section coefficients are

a1 = [-0.6949656665, -1.2758556915, 0.6784984923, -1.1578595447, ...
0.9076672356]';

and

b1 = [-1.2017642733, 0.8111469603, -1.1485263029, 0.9728748591, ...
-1.3547829769, 0.5434986238]';

The corresponding allpass filter denominator polynomials are

Da1 = [1.0000000000, -3.1286809028, 4.7547759494, -4.0726352414, ...
1.9666266813, -0.4279951971]';

and

Db1 = [1.0000000000, -3.7050735532, 6.8919119845, -7.6650818292, ...
5.3550404960, -2.2108959160, 0.4288989414]';

For comparison, Figures 10.14 and 10.15 show the response and pole-zero plot of an elliptic filter designed with a similar
specification:

251

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel all-pass 2nd order cascade initial response (squared-magnitude) : ma=5,mb=6

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.11: Parallel 2nd order allpass cascade filters (squared magnitude), initial response found with the WISE barrier func-
tion.

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.08

-0.06

-0.04

-0.02

0

A
m

pl
itu

de
(d

B
)

Parallel all-pass 2nd order cascade (squared-magnitude): ma=5,mb=6

0 0.1 0.2 0.3 0.4 0.5
-90

-88

-86

-84

-82

-80

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.12: Parallel 2nd order cascade allpass filters (squared magnitude), response after SOCP optimisation.

252

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Parallel all-pass 2nd order cascade (squared-magnitude): ma=5,mb=6

Figure 10.13: Parallel 2nd order cascade allpass filters (squared magnitude), pole-zero plot after SOCP optimisation.

ma=5,mb=6,fap=0.15,dBap=0.02,fas=0.17,dBas=84
[Nellip,Dellip]=ellip(ma+mb,dBap,dBas,fap*2);

The corresponding filter polynomials are:

Nellip = [0.0009293269, -0.0007898645, 0.0031439811, -0.0008194769, ...
0.0035413538, 0.0013979326, 0.0013979326, 0.0035413538, ...
-0.0008194769, 0.0031439811, -0.0007898645, 0.0009293269];

and

Dellip = [1.0000000000, -6.4891487546, 21.1744373739, -44.7352568821, ...
67.2938395531, -75.1847257433, 63.4160244544, -40.2860479200, ...
18.8696899055, -6.2066204107, 1.2918999342, -0.1292850044];

253

0 0.1 0.2 0.3 0.4 0.5
-0.025

-0.02

-0.015

-0.01

-0.005

0

A
m

pl
itu

de
(d

B
)

Order 11 elliptic amplitude response plot : fap=0.15,dBap=0.02,fas=0.17,dBas=84

0 0.1 0.2 0.3 0.4 0.5
-84.06

-84.04

-84.02

-84

-83.98

-83.96

Figure 10.14: Response of an elliptic filter with fap=0.15, dBap=0.02, dBas=84.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 10.15: Pole-zero plot of an elliptic filter with fap=0.15, dBap=0.02, dBas=84.

254

0 0.1 0.2 0.3 0.4 0.5
-4

-3

-2

-1

0

1

Initial 2nd order all-pass phase adjusted for delay D=10

Ph
as

e(
ra

d.
)

Frequency

Figure 10.16: Parallel all-pass 2nd order cascade filter and delay, phase response of the initial all-pass filter adjusted for the group
delay of the fixed delay branch.

10.2.2 Design of an IIR filter as the sum of an all-pass filter composed of second-order sections and
a delay

The Octave script allpass2ndOrderCascadeDelay_socp_test.m designs a lowpass filter consisting of an allpass filter in parallel
with a pure delay. The allpass filter is composed of a cascade of second-order sections, as described in Section 10.2.1. The filter
specification is:

n=500 % Number of frequency points
tol=1e-06 % Tolerance on coefficient update vector
tau=0.05 % Second order section stability parameter
ma=11 % Order of allpass filter
D=10 % Parallel delay in samples
td=10 % Nominal filter group delay in samples
fap= 0.15 % Pass band edge
Wap=1 % Pass band weight
fas= 0.2 % Stop band edge
Was=10 % Stop band weight (complex response)
Was_sqm=200 % Stop band weight (squared-magnitude)

This script produces two designs. The first attempts to optimise the filter for flat group-delay in the passband and the second
ignores the phase response and optimises the weighted squared-magnitude response. The relative weights in each case are shown
in the specification. The initial allpass filter was designed by the Octave script tarczynski_allpass_phase_shift_test.m to have a
phase shift of 0 radians in the pass band and π radians in the stop band. The phase response of the initial allpass filter is shown
in Figure 10.16. The phase has been adjusted by ωD, where D is the number of samples in the pure delay branch.

The allpass filter polynomial found for the optimised delay case is:

Da1 = [1.0000000000, -0.4940632914, 0.3737009597, 0.1807528323, ...
0.0198375902, -0.0547182792, -0.0506744693, -0.0144919076, ...
0.0113201529, 0.0138227844, 0.0045376389, -0.0041454492]';

255

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel delay and 2nd order all-pass : ma=11,D=10,td=10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.17: Parallel all-pass 2nd order cascade filter and delay, overall response optimised for flat pass band group delay.

with the overall filter response shown in Figure 10.17.

The allpass filter polynomial found for the optimised squared-magnitude case is:

Da1sqm = [1.0000000000, -0.5292155426, 0.3637414508, 0.1968593387, ...
0.0368342352, -0.0661347500, -0.0989859293, -0.0823773849, ...
-0.0478345361, -0.0194755173, -0.0051849899, -0.0007373686]';

with the overall filter response shown in Figure 10.18. At the filter band edges the change in phase of the allpass branch produces
a corresponding transient in the group delay response.

256

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel delay and 2nd order all-pass squared-magnitude: ma=11,D=10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.18: Parallel all-pass 2nd order cascade filter and delay, overall response optimised for squared-magnitude.

257

10.2.3 Design of an IIR filter as the sum of two all-pass filters each represented in pole-zero form

Rewriting Equation 10.1 in terms of the phase responses of the component all-pass filters gives

H (z) = eıϕ1(z) + eıϕ2(z)

2

where ϕ1 (z) = ϕA1 (z) and ϕ2 (z) = ϕA2 (z). The squared magnitude response and phase of the frequency response, H (ω),
are:

|H (ω)|2 = 1 + cos (ϕ1 (ω)− ϕ2 (ω))
2

ϕH (ω) = ϕ1 (ω) + ϕ2 (ω)
2

The group delay response is

T (ω) = −1
2

[
∂ϕ1 (ω)
∂ω

+ ∂ϕ2 (ω)
∂ω

]
The partial derivatives of the squared-magnitude, phase and group delay with respect to the real and complex conjugate pole
radiuses of filters A1 and A2 (for convenience all represented here by r), are:

∂ |H (ω)|2

∂r
= −1

2 sin (ϕ1 (ω)− ϕ2 (ω))
{
∂ϕ1 (ω)
∂r

− ∂ϕ2 (ω)
∂r

}
∂ϕH (ω)
∂r

= 1
2

{
∂ϕ1 (ω)
∂r

+ ∂ϕ2 (ω)
∂r

}
∂T (ω)
∂r

= −1
2

{
∂2ϕ1 (ω)
∂r∂ω

+ ∂2ϕ2 (ω)
∂r∂ω

}
The partial derivatives with respect to the filter pole angles, θ, are similar. Appendix I.1 derives the phase response of an
all-pass filter and the partial derivatives of the phase response with respect to the real and complex conjugate pole locations.
The Octave function allpassP calculates the phase response and partial derivatives of the phase response of an all-pass IIR
filter. The Octave function allpassT calculates the group delay response and partial derivatives of the group delay response of
an all-pass IIR filter. The Octave function parallel_allpassAsq calls allpassP to calculate the squared-magnitude and partial
derivatives of the squared magnitude response of the parallel combination of two allpass IIR filters and is exercised by the test
script parallel_allpassAsq_test.m. Similarly, the Octave function parallel_allpassP calls allpassP to calculate the phase and
partial derivatives of the phase response of the parallel combination of two all-pass IIR filters and is exercised by the test script
parallel_allpassP_test.m. Finally, the Octave function parallel_allpassT calls allpassT to calculate the group delay and partial
derivatives of the group delay response of the parallel combination of two all-pass IIR filters and is exercised by the test script
parallel_allpassT_test.m.

Design of an IIR filter as the sum of two all-pass filters each represented in pole-zero form with no constraints on the
group delay

The Octave script parallel_allpass_socp_slb_test.m calls the Octave function parallel_allpass_slb to perform the PCLS design
of a low-pass filter composed of two parallel all-pass filters in terms of the all-pass filter pole locations. This script does not
constrain the group delay of the filter. The PCLS algorithm of Selesnick, Lang and Burrus was reviewed in Section 8.1.2. At
each iteration of the PCLS optimisation the Octave function parallel_allpass_socp_mmse optimises the filter response subject to
the current constraints. The filter specification is

polyphase=0 % Use polyphase combination
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-10 % Tolerance on constraints
n=2000 % Frequency points across the band
ma=5 % Allpass model filter A denominator order
K=10 % Scale factor
Va=1 % Allpass model filter A no. of real poles
Qa=4 % Allpass model filter A no. of complex poles
Ra=1 % Allpass model filter A decimation
mb=6 % Allpass model filter B denominator order
Vb=0 % Allpass model filter B no. of real poles
Qb=6 % Allpass model filter B no. of complex poles
Rb=1 % Allpass model filter B decimation

258

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Parallel allpass initial response : ma=5,mb=6,fap=0.15,fas=0.171

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0
5

10
15
20
25
30
35

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.19: Parallel all-pass filters, initial response found with the WISE barrier function.

fap=0.15 % Pass band amplitude response edge
dBap=0.020000 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
fas=0.171 % Stop band amplitude response edge
dBas=84.020000 % Stop band amplitude response ripple
Was_mmse=10000 % Stop band amplitude response weight(MMSE)
Was_pcls=1e-06 % Stop band amplitude response weight(PCLS)
rho=0.999000 % Constraint on allpass pole radius

Compare this filter with the elliptic filter shown in Figure 10.14. The response of that filter is slightly wider than the specification.
The response of the filter shown here is intended to match that slight extra width in the transition band.

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_test.m (with flat_delay =
false), using the WISE method described in Section 8.1.5. The response of the initial filter is shown in Figure 10.19. The
pole-zero plot of the initial filter is shown in Figure 10.20.

The script first runs an MMSE pass on the initial filter. The squared-amplitude error weighting function increases linearly near
the band edges. The resulting MMSE optimised response is shown in Figure 10.21.

The PCLS pass does not attempt to minimise the stop-band response minimum mean-squared squared-amplitude error. Instead
the stop-band squared-amplitude response is controlled by the PCLS constraints. In this case, the desired stop-band attenuation
is more than 80dB and the filter response is scaled to make the stop-band squared-amplitude greater than the machine precision.
The default SeDuMi pars.eps is of the same order as the desired stop-band attenuation and must be reduced to avoid the PCLS
algorithm cycling between solutions. The denominator polynomials of the two all-pass filters are:

Da1 = [1.0000000000, -2.9455518072, 4.3142522553, -3.5602027423, ...
1.6652150634, -0.3491170464]';

and

Db1 = [1.0000000000, -3.5167501028, 6.3330834752, -6.8239319233, ...
4.6386856751, -1.8606678188, 0.3509796721]';

259

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Parallel allpass initial response : ma=5,mb=6,fap=0.15,fas=0.171

Figure 10.20: Parallel all-pass filters, pole zero plot of the initial response found with the WISE barrier function.

0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.3

-0.2

-0.1

0

Parallel allpass MMSE response : ma=5,mb=6,fap=0.15,fas=0.171

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-80

-70

-60

-50

-40

Figure 10.21: Parallel all-pass filters, response found with MMSE SOCP optimisation.

260

0 0.1 0.2 0.3 0.4 0.5
-0.025

-0.02

-0.015

-0.01

-0.005

0

Parallel allpass PCLS response : ma=5,mb=6,fap=0.15,dBap=0.02,fas=0.17100,dBas=84.02

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-84.06

-84.04

-84.02

-84

-83.98

-83.96

Figure 10.22: Parallel all-pass filters, response after PCLS SOCP optimisation.

The corresponding filter numerator and denominator polynomials of the overall filter are:

Nab1 = [0.0009313129, -0.0007620771, 0.0031292942, -0.0007387239, ...
0.0035407150, 0.0014623756, 0.0014623756, 0.0035407150, ...

-0.0007387239, 0.0031292942, -0.0007620771, 0.0009313129]';

and

Dab1 = [1.0000000000, -6.4623019101, 21.0061053515, -44.2107072039, ...
66.2470087738, -73.7166439302, 61.9124178201, -39.1501822298, ...
18.2453297310, -5.9674151127, 1.2340474900, -0.1225329864]';

The PCLS filter response is shown in Figure 10.22 and the pole-zero plot is shown in Figure 10.23. The pole-zero plots of the
allpass filters are shown in Figure 10.24 and Figure 10.25.

261

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Parallel allpass PCLS response : ma=5,mb=6,fap=0.15,dBap=0.02,fas=0.17100,dBas=84.02

Figure 10.23: Parallel all-pass filters, pole-zero plot after PCLS SOCP optimisation.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Allpass filter A

Figure 10.24: Parallel all-pass filters, pole-zero plot of the A allpass filter branch after PCLS SOCP optimisation.

262

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Allpass filter B

Figure 10.25: Parallel all-pass filters, pole-zero plot of the B allpass filter branch after PCLS SOCP optimisation.

263

Design of an IIR filter as the sum of two all-pass filters each represented in pole-zero form with constraints on the group
delay

Design of an IIR lowpass filter with a flat passband delay as the sum of two allpass filters The Octave script paral-
lel_allpass_socp_slb_flat_delay_test.m calls the Octave function parallel_allpass_slb to perform the PCLS design of a low-pass
filter composed of two parallel all-pass filters in terms of the all-pass filter pole locations. This script does constrain the group de-
lay of the filter. The PCLS algorithm of Selesnick, Lang and Burrus was reviewed in Section 8.1.2. At each iteration of the PCLS
optimisation the Octave function parallel_allpass_socp_mmse optimises the filter response subject to the current constraints. The
filter specification is

polyphase=0 % Use polyphase combination
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
ma=11 % Allpass filter A denominator order
Va=1 % Allpass filter A no. of real poles
Qa=10 % Allpass filter A no. of complex poles
Ra=1 % Allpass filter A decimation
mb=12 % Allpass filter B denominator order
Vb=2 % Allpass filter B no. of real poles
Qb=10 % Allpass filter B no. of complex poles
Rb=1 % Allpass filter B decimation
fap=0.15 % Pass band amplitude response edge
dBap=3.000000 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
fas=0.2 % Stop band amplitude response edge
dBas=40.000000 % Stop band amplitude response ripple
Was=1000 % Stop band amplitude response weight
ftp=0.175 % Pass band group delay response edge
td=11.5 % Pass band nominal group delay
tdr=0.08 % Pass band nominal group delay ripple
Wtp=1 % Pass band group delay response weight
rho=0.992188 % Constraint on allpass pole radius

The initial parallel allpass filters were designed by the Octave script tarczynski_parallel_allpass_test.m (with flat_delay =
true), using the WISE method described in Section 8.1.5. The response of the initial filter is shown in Figure 10.26. Figure 10.27
shows the PCLS optimised filter response. Figure 10.28. shows the PCLS optimised filter response in the pass-band. Figure 10.29
shows the phase responses of the two all-pass fiters. Figures 10.30 and 10.31 show the pole-zero plots of the branch allpass filters.
Figure 10.32 shows the pole-zero plot of the overall filter.

The denominator polynomials of the two all-pass filters are

Da1 = [1.0000000000, -0.0122119128, -0.1279494152, 0.2212226697, ...
-0.4686558617, -0.0603137264, 0.2469642378, -0.0991656341, ...
0.0977119168, 0.0535015596, -0.0821047228, 0.0199210629]';

and

Db1 = [1.0000000000, -0.5394052346, 0.2594295088, 0.5254619760, ...
-0.5152180694, 0.2931141913, 0.1632746039, -0.3244879230, ...
0.1908398619, -0.0203957064, -0.0994683236, 0.0790253088, ...

-0.0431536769]';

The corresponding filter numerator and denominator polynomials of the overall filter are

Nab1 = [-0.0116163070, -0.0066489753, 0.0040227512, 0.0095907235, ...
0.0250617941, 0.0107058427, -0.0233942410, -0.0322404105, ...

-0.0146229267, 0.0534148450, 0.1537195885, 0.2142456550, ...
0.2142456550, 0.1537195885, 0.0534148450, -0.0146229267, ...

-0.0322404105, -0.0233942410, 0.0107058427, 0.0250617941, ...
0.0095907235, 0.0040227512, -0.0066489753, -0.0116163070]';

264

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Initial parallel allpass : ma=11,mb=12

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
11

11.2

11.4

11.6

11.8

12

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.26: Parallel all-pass filters with flat pass-band delay, initial response found with the WISE barrier function.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Parallel allpass : ma=11,mb=12,dBap=3.00,dBas=40.0,td=11.5,tdr=0.08

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
4

6

8

10

12

14

16

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.27: Parallel all-pass filters with flat pass-band delay, response after PCLS SOCP optimisation.

265

0 0.05 0.1 0.15
-3

-2

-1

0

1

Parallel allpass : ma=11,mb=12,dBap=3.00,dBas=40.0,td=11.5,tdr=0.08

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15
11.4

11.45

11.5

11.55

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.28: Parallel all-pass filters with flat pass-band delay, pass-band response after PCLS SOCP optimisation.

0 0.1 0.2 0.3 0.4 0.5
-1.5

-1

-0.5

0

0.5

1

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

Allpass phase responses adjusted for linear phase : ma=11,mb=12,td=11.5

Filter A
Filter B

Figure 10.29: Parallel all-pass filters with flat pass-band delay, phase responses after PCLS SOCP optimisation.

266

-1 0 1 2

-1

-0.5

0

0.5

1

Allpass filter A

Figure 10.30: Parallel all-pass filters with flat pass-band delay, pole-zero plot of the A allpass filter branch after PCLS SOCP
optimisation.

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Allpass filter B

Figure 10.31: Parallel all-pass filters with flat pass-band delay, pole-zero plot of the B allpass filter branch after PCLS SOCP
optimisation.

267

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Lowpass filter with flat pass-band delay

Figure 10.32: Parallel all-pass filters with flat pass-band delay, pole-zero plot of the overall filter after PCLS SOCP optimisation.

and

Dab1 = [1.0000000000, -0.5516171474, 0.1380672633, 0.8125330995, ...
-1.1428133469, 0.4820468240, 0.4997756883, -0.9722509567, ...
0.6637946823, 0.0534559602, -0.5545821930, 0.5202064069, ...

-0.1487906400, -0.1667677583, 0.2345644419, -0.1218453486, ...
-0.0133644039, 0.0700949449, -0.0514374507, 0.0121556824, ...
0.0077718638, -0.0107786548, 0.0051173888, -0.0008596671]';

The overall numerator polynomial is symmetric to within the precision of the calculations and has pairs of reciprocal zeros
that do not lie on the unit circle. This should be compared with the pole-zero plot resulting when the delay is not constrained,
Figure 10.23, and the pole-zero plot for the elliptic filter example, Figure 10.15.

Design of an IIR low-pass differentiator filter as the sum of two all-pass filters Section 8.2.9 shows the design of a low-
pass differentiator filter with coefficients given in gain-pole-zero forma. The resulting direct form IIR filter has 23 multipliers.
The Octave script parallel_allpass_socp_slb_lowpass_differentiator_test.m uses the SeDuMi SOCP solver to design a low-pass
differentiator filter consisting of 1 − z−1 followed by a correction filter, implemented as the sum of two all-pass filters, with 23
multipliers. The script calls the Octave function parallel_allpass_slb to perform the PCLS design of the filter in terms of the
all-pass filter pole locations with constraints on the filter group-delay and phase. Unfortunately, I did not find a combination of
weights and constraints for which the amplitude error response achieved that of the filter designed in Section 8.2.9.

The parallel all-pass low-pass differentiator filter specification is:

polyphase=0 % Use polyphase combination
difference=0 % Use difference combination
tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-06 % Tolerance on constraints
n=1000 % Frequency points across the band
ma=11 % Allpass correction filter A denominator order

aThe numerator polynomial of the filter designed in Section 8.2.9 is not symmetric so that filter cannot be decomposed into allpass filters with the spectral
factorisation method described in Appendix M.2.

268

0 0.1 0.2 0.3 0.4 0.5
0

0.2
0.4
0.6
0.8

1

Initial parallel allpass : ma=11,mb=12

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5
-0.004
-0.002

0
0.002
0.004

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
11.8
11.9

12
12.1

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.33: Initial response of the low-pass differentiator filter implemented as the sum of two all-pass filters. The phase
response shown is adjusted for the nominal delay.

Va=1 % Allpass correction filter A no. of real poles
Qa=10 % Allpass correction filter A no. of complex poles
Ra=1 % Allpass correction filter A decimation
mb=12 % Allpass correction filter B denominator order
Vb=0 % Allpass correction filter B no. of real poles
Qb=12 % Allpass correction filter B no. of complex poles
Rb=1 % Allpass correction filter B decimation
fap=0.2 % Pass band amplitude response edge
Arp=0.100000 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
Art=0.100000 % Transition band amplitude response ripple
Wat=1 % Transition band amplitude response weight
fas=0.3 % Stop band amplitude response edge
Ars=0.100000 % Stop band amplitude response ripple
Was=1 % Stop band amplitude response weight
td=12 % Pass band nominal group delay
tdr=0.1 % Pass band nominal group delay ripple
Wtp=1 % Pass band group delay response weight
pr=0.002 % Pass band nominal phase ripple
Wpp=0.01 % Pass band phase response weight
rho=0.990000 % Constraint on allpass pole radius

The Octave script tarczynski_parallel_allpass_lowpass_differentiator_test.m designs an initial low-pass differentiator correction
filter with the WISE method described in Section 8.1.5. Figure 10.33. shows the initial low-pass differentiator filter response.
The phase response shown is adjusted for the nominal delay.

After PCLS optimisation, the denominator polynomials of the all-pass filters in the low-pass differentiator filter are:

Da1 = [1.0000000000, 0.4063453090, 0.1014411478, 0.1103865249, ...
0.1983013218, 0.1074193281, 0.0346896520, 0.0532479264, ...
0.0550997193, 0.0165566975, 0.0095795569, 0.0248756471]';

Db1 = [1.0000000000, -0.2384229134, -0.1179791128, -0.0969763935, ...

269

0 0.1 0.2 0.3 0.4 0.5
0

0.2
0.4
0.6
0.8

1

Parallel allpass : ma=11,mb=12,Arp=0.10,Ars= 0.1,td=12,tdr=0.1

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5
-0.002
-0.001

0
0.001
0.002

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
11.9

11.95
12

12.05

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.34: Response of the low-pass differentiator filter implemented as the sum of two all-pass filters after PCLS SOCP
optimisation. The phase response shown is adjusted for the nominal delay.

-0.0166881370, -0.0367114327, -0.0144876273, 0.0110421289, ...
0.0114570740, -0.0057760357, -0.0044548468, 0.0047214128, ...
0.0079819398]';

The corresponding filter numerator and denominator polynomials of the overall filter are:

Nab1 = [0.0164287934, 0.0058067346, 0.0048056395, 0.0206917437, ...
0.0237877705, 0.0146142336, 0.0384796041, 0.0603967521, ...
0.0073204591, -0.0337894464, 0.0909409511, 0.2839270800, ...
0.2839270800, 0.0909409511, -0.0337894464, 0.0073204591, ...
0.0603967521, 0.0384796041, 0.0146142336, 0.0237877705, ...
0.0206917437, 0.0048056395, 0.0058067346, 0.0164287934]';

Dab1 = [1.0000000000, 0.1679223957, -0.1134199975, -0.0587160217, ...
0.1039206687, -0.0062135306, -0.0561198878, 0.0126622886, ...
0.0350070228, -0.0168987327, -0.0178484765, 0.0173562324, ...
0.0002254427, -0.0032353463, -0.0031658698, 0.0013502646, ...
0.0013899982, 0.0004008104, 0.0005716371, 0.0008410830, ...
0.0003316156, 0.0000665664, 0.0001939116, 0.0001985559]';

Figure 10.34. shows the low-pass differentiator filter response after PCLS optimisation. The phase response shown is adjusted
for the nominal delay.

Figure 10.35 shows the phase responses of the low-pass differentiator filter parallel allpass filters, including 1− z−1, after PCLS
SOCP optimisation.

Figure 10.36 shows the pole-zero plot of the low-pass differentiator after PCLS optimisation.

270

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

Allpass phase response adjusted for linear phase : ma=11,mb=12,td=12

Filter A and 1 − z−1

Filter B and 1 − z−1

Figure 10.35: Phase responses of the low-pass differentiator filter parallel allpass filters after PCLS SOCP optimisation.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Parallel allpass filters

Figure 10.36: Pole-zero plot of the parallel-allpass low-pass differentiator filter after PCLS SOCP optimisation.

271

Design of an IIR filter as the difference of two all-pass filters each represented in pole-zero form with constraints on the
group delay

If the filter of Equation 10.1 is rewritten as the difference of two all-pass filters:

H (z) = eıϕ1(z) − eıϕ2(z)

2

then the squared magnitude response and phase of the frequency response, H (ω), are, with simple trigonometry

|H (ω)|2 = 1− cos (ϕ1 (ω)− ϕ2 (ω))
2

ϕH (ω) = ϕ1 (ω) + ϕ2 (ω)
2 + π

2

The group delay response is:

T (ω) = −1
2

[
∂ϕ1 (ω)
∂ω

+ ∂ϕ2 (ω)
∂ω

]

The Octave script parallel_allpass_socp_slb_bandpass_test.m uses the SeDuMi SOCP solver to design a band-pass filter con-
sisting of the difference of two all-pass filters. The script calls the Octave function parallel_allpass_slb to perform the PCLS
design of the filter in terms of the all-pass filter pole locations with constraints on the filter group-delay. The PCLS algorithm
of Selesnick, Lang and Burrus was reviewed in Section 8.1.2. At each iteration of the PCLS optimisation the Octave function
parallel_allpass_socp_mmse optimises the filter response subject to the current constraints. The filter specification is

polyphase=0 % Use polyphase combination
difference=1 % Use difference of all-pass filters
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
rho=0.999000 % Constraint on allpass pole radius
n=1000 % Frequency points across the band
ma=10 % Allpass model filter A denominator order
Va=0 % Allpass model filter A no. of real poles
Qa=10 % Allpass model filter A no. of complex poles
Ra=1 % Allpass model filter A decimation
mb=10 % Allpass model filter B denominator order
Vb=0 % Allpass model filter B no. of real poles
Qb=10 % Allpass model filter B no. of complex poles
Rb=1 % Allpass model filter B decimation
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=1.780000 % Pass band amplitude response ripple(dB)
Wap=1 % Pass band amplitude response weight
Watl=0.01 % Lower transition band amplitude response weight
Watu=0.01 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=50.000000 % Stop band amplitude response ripple(dB)
Wasl=5000 % Lower stop band amplitude response weight
Wasu=2000 % Upper stop band amplitude response weight
ftpl=0.09 % Pass band group-delay response lower edge
ftpu=0.21 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response (samples)
tdr=0.040000 % Pass band group-delay response ripple(samples)
Wtp=2 % Pass band group-delay response weight

The original initial filter was designed by the Octave script tarczynski_parallel_allpass_bandpass_test.m using the WISE method
described in Section 8.1.5. The response of the initial filter is shown in Figure 10.37.

The denominator polynomials of the all-pass filters in the final band-pass filter are:

Da1 = [1.0000000000, -2.7094014702, 4.6425148098, -5.3435429588, ...
4.5069706392, -2.7512506077, 1.1527420642, -0.2517406877, ...

-0.0073227422, 0.0289398308, 0.0028825455]';

272

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Initial parallel allpass bandpass : ma=10,mb=10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.37: Band-pass filter implemented as the difference of two all-pass filters, initial response found with the WISE barrier
function.

Db1 = [1.0000000000, -3.3494255218, 5.8841350301, -6.7754548160, ...
5.6407177776, -3.3679072342, 1.3443336262, -0.2675371762, ...

-0.0036811102, 0.0043154452, 0.0062485880]';

Figure 10.38 and Figure 10.39 show the PCLS optimised parallel allpass bandpass filter response.

Figure 10.40 shows the pole-zero plot of the PCLS optimised parallel allpass bandpass filter.

Figure 10.41 compares the phase responses of the parallel all-pass filters.

273

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Parallel allpass bandpass : ma=10,mb=10,dBap=1.78,dBas=50

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.38: Band-pass filter implemented as the difference of two all-pass filters, response after PCLS SOCP optimisation.

0.1 0.12 0.14 0.16 0.18 0.2
-3

-2

-1

0

1

Parallel allpass bandpass : ma=10,mb=10,dBap=1.78,dBas=50

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.96

15.98

16

16.02

16.04

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.39: Band-pass filter implemented as the difference of two all-pass filters, pass-band response after PCLS SOCP
optimisation.

274

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

Parallel allpass filters

Figure 10.40: Band-pass filter implemented as the difference of two all-pass filters, pole-zero plot after PCLS SOCP optimisation.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

Frequency

A
ll-

pa
ss

fil
te

rp
ha

se
(r

ad
./π

)

Allpass phase response adjusted for linear phase ma=10,mb=10,td=16

Filter A
Filter B

Figure 10.41: Band-pass filter implemented as the difference of two all-pass filters, comparison of all-pass filter phase responses
after PCLS SOCP optimisation.

275

Design of an IIR filter as the difference of two all-pass filters each represented in pole-zero form with constraints on the
group delay and phase

The Octave script parallel_allpass_socp_slb_bandpass_hilbert_test.m uses the SeDuMi SOCP solver to design a band-pass
Hilbert filter consisting of the difference of two all-pass filters. The script calls the Octave function parallel_allpass_slb to
perform the PCLS design of the filter in terms of the all-pass filter pole locations with constraints on the filter group-delay and
phase. The filter specification is

polyphase=0 % Use polyphase combination
difference=1 % Use difference of all-pass filters
tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
rho=0.999 % Constraint on allpass pole radius
n=1000 % Frequency points across the band
ma=10 % Allpass model filter A denominator order
Va=0 % Allpass model filter A no. of real poles
Qa=10 % Allpass model filter A no. of complex poles
Ra=1 % Allpass model filter A decimation
mb=10 % Allpass model filter B denominator order
Vb=0 % Allpass model filter B no. of real poles
Qb=10 % Allpass model filter B no. of complex poles
Rb=1 % Allpass model filter B decimation
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=0.04 % Pass band amplitude response ripple(dB)
Wap=1 % Pass band amplitude response weight
Watl=0.001 % Lower transition band amplitude response weight
Watu=0.001 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=40 % Stop band amplitude response ripple(dB)
Wasl=200 % Lower stop band amplitude response weight
Wasu=200 % Upper stop band amplitude response weight
ftpl=0.12 % Pass band group-delay response lower edge
ftpu=0.18 % Pass band group-delay response upper edge
td=16 % Pass band nominal group-delay response (samples)
tdr=0.01 % Pass band group-delay response ripple(samples)
Wtp=10 % Pass band group-delay response weight
fppl=0.12 % Pass band phase response lower edge
fppu=0.18 % Pass band phase response upper edge
pd=1.5 % Pass band initial phase response (rad./pi)
pdr=0.0001 % Pass band phase response ripple(rad./pi)
Wpp=100 % Pass band phase response weight

The initial filter was designed by the Octave script tarczynski_parallel_allpass_bandpass_hilbert_test.m using the WISE method
described in Section 8.1.5.

The denominator polynomials of the all-pass filters in the final band-pass filter are:

Da1 = [1.0000000000, -1.5657310974, 1.5733464353, 0.2680370733, ...
-1.7301352706, 2.1779579522, -0.7114370076, -0.5852231690, ...
1.1544937435, -0.6773856184, 0.2374225520]';

Db1 = [1.0000000000, -2.2960113835, 2.2221133253, 0.1861849095, ...
-2.6398427832, 2.9607459700, -0.9237898881, -1.0084365012, ...
1.5247224659, -0.8519278953, 0.2420491726]';

The final filter response is shown in Figure 10.42 and Figure 10.43. The phase response shown is adjusted for the nominal delay.

276

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

Parallel allpass bandpass Hilbert : ma=10,mb=10,dBap=0.04,dBas=40,td=16

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

0.5
1

1.5
2

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5
10
15
20
25
30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.42: Band-pass Hilbert filter implemented as the difference of two all-pass filters, response after PCLS SOCP optimi-
sation. The phase response shown is adjusted for the nominal delay.

0.1 0.12 0.14 0.16 0.18 0.2
-0.06
-0.04
-0.02

0
0.02

Parallel allpass bandpass Hilbert : ma=10,mb=10,dBap=0.04,dBas=40,td=16

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
1.4999

1.5
1.5

1.5001
1.5001

Ph
as

e(
ra

d.
/π

)

0.1 0.12 0.14 0.16 0.18 0.2
15.99

15.995
16

16.005
16.01

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.43: Band-pass Hilbert filter implemented as the difference of two all-pass filters, pass-band response after PCLS SOCP
optimisation. The phase response shown is adjusted for the nominal delay.

277

10.2.4 Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero
form

Kunold [84] suggests realisation of a low-pass filter with flat pass-band delay by the parallel combination of a wave-digital lattice
filter and a pure delay. The parallel fixed delay means that the all-pass filter phase change during the pass-band to stop-band
transition of the overall amplitude response must result in a large peak in the group delay response over that transition band.

Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero form using SOCP

The Octave script parallel_allpass_delay_socp_slb_test.m uses the SeDuMi SOCP solver to design a low-pass filter consisting
of an all-pass filter in parallel with a delay. The script calls the Octave function parallel_allpass_delay_slb to perform the PCLS
design of the filter in terms of the all-pass filter pole locations. The PCLS algorithm of Selesnick, Lang and Burrus was reviewed
in Section 8.1.2. At each iteration of the PCLS optimisation the Octave function parallel_allpass_delay_socp_mmse optimises
the filter response subject to the current constraints. The filter specification is

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
n=1000 % Frequency points across the band
m=12 % Allpass filter denominator order
V=0 % Allpass filter no. of real poles
Q=12 % Allpass filter no. of complex poles
R=1 % Allpass filter decimation
DD=11 % Parallel delay
fap= 0.15 % Pass band amplitude response edge
dBap= 0.50 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
fas= 0.20 % Stop band amplitude response edge
dBas=66.00 % Stop band amplitude response ripple
Was=100000 % Stop band amplitude response weight
rho=0.992188 % Constraint on allpass pole radius

There are no group delay constraints.

The initial allpass filter was designed by the Octave script tarczynski_parallel_allpass_delay_test.m using the WISE method
described in Section 8.1.5. The response of the initial filter is shown in Figure 10.44.

The final filter response is shown in Figure 10.45 with pass-band and stop-band details shown in Figure 10.46. The pole-zero
plot of the filter is shown in Figure 10.47. The denominator polynomial of the final all-pass filter is

Da1 = [1.0000000000, -0.5306119261, 0.3600779810, 0.1924164868, ...
0.0375479235, -0.0530508762, -0.0701563968, -0.0406597376, ...

-0.0023928238, 0.0197144079, 0.0216873176, 0.0130269420, ...
0.0045043166]';

278

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Initial parallel allpass and delay : m=12,DD=11

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10

12

14

16

18

20

22

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.44: Parallel delay and all-pass filter, initial response found with the WISE barrier function.

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel allpass and delay : m=12,DD=11,dBap=0.50,dBas=66.0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10
12
14
16
18
20
22
24

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.45: Parallel delay and all-pass filter, response after PCLS SOCP optimisation.

279

0 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Parallel allpass and delay : m=12,DD=11,dBap=0.50,dBas=66.0

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-70

-69

-68

-67

-66

-65

-64

-63

Figure 10.46: Parallel delay and all-pass filter, detail of the pass-band and stop-band responses after PCLS SOCP optimisation.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Parallel allpass and delay : m=12,DD=11,dBap=0.50,dBas=66.0

Figure 10.47: Parallel delay and all-pass filter, pole-zero plot of the filter after PCLS SOCP optimisation.

280

Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero form using SQP

The Octave script parallel_allpass_delay_sqp_slb_test.m repeats the design example of Section 10.2.4 with the SQP solver. The
script calls the Octave function parallel_allpass_delay_slb to perform the PCLS design of the filter in terms of the all-pass filter
pole locations. At each iteration of the PCLS optimisation the Octave function parallel_allpass_delay_sqp_mmse optimises the
filter response subject to the current constraints. The filter specification is

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=1000 % Frequency points across the band
m=12 % Allpass filter denominator order
V=0 % Allpass filter no. of real poles
Q=12 % Allpass filter no. of complex poles
R=1 % Allpass filter decimation
DD=11 % Parallel delay
fap= 0.15 % Pass band amplitude response edge
dBap= 0.04 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
fas= 0.20 % Stop band amplitude response edge
dBas=40.00 % Stop band amplitude response ripple
Was=50 % Stop band amplitude response weight
rho=0.990000 % Constraint on allpass pole radius
dmax=0.005000 % Constraint on coefficent step-size

There are no group delay constraints.

The final filter response is shown in Figure 10.48 with pass-band and stop-band details shown in Figure 10.49. Figure 10.50 shows
the phase response of the all-pass branch of the filter after adjustment for the delay of the fixed delay branch. The denominator
polynomial of the final all-pass filter is

Da1 = [1.0000000000, -0.4847371904, 0.3789473088, 0.1792423699, ...
0.0158065380, -0.0578229254, -0.0446805604, -0.0057755179, ...
0.0252529604, 0.0300005309, 0.0074664837, -0.0005120252, ...
0.0000175183]';

281

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Parallel allpass and delay : m=12,DD=11,dBap=0.04,dBas=40.0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
10

12

14

16

18

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.48: Parallel delay and all-pass filter, response after PCLS SQP optimisation.

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.03

-0.02

-0.01

0

0.01

Parallel allpass and delay : m=12,DD=11,dBap=0.04,dBas=40.0

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-45

-44

-43

-42

-41

-40

Figure 10.49: Parallel delay and all-pass filter, detail of the pass-band and stop-band responses after PCLS SQP optimisation.

282

0 0.1 0.2 0.3 0.4 0.5
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Frequency

Ph
as

e(
ra

d.
/π

)

All-pass phase response adjusted for delay DD=11

Figure 10.50: Parallel delay and all-pass filter, phase response of the all-pass filter branch after PCLS SQP optimisation. The
response has been adjusted for the group delay of the fixed delay branch.

283

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Initial parallel allpass and delay : m=12,DD=11,td=10.5

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.51: Parallel delay and all-pass filter, with delay constraint, initial response found with the WISE barrier function.

Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero form using SOCP with a group
delay constraint

The Octave script parallel_allpass_flat_delay_socp_slb_test.m uses the SeDuMi SOCP solver to design a low-pass filter con-
sisting of an all-pass filter in parallel with a delay with a constraint on the pass-band delay. The script calls the Octave function
parallel_allpass_delay_slb to perform the PCLS design of the filter in terms of the all-pass filter pole locations. The PCLS
algorithm of Selesnick, Lang and Burrus was reviewed in Section 8.1.2. At each iteration of the PCLS optimisation the Octave
function parallel_allpass_delay_socp_mmse optimises the filter response subject to the current constraints. The filter specifica-
tion is

tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-06 % Tolerance on constraints
n=1000 % Frequency points across the band
m=12 % Allpass filter denominator order
V=2 % Allpass filter no. of real poles
Q=10 % Allpass filter no. of complex poles
R=1 % Allpass filter decimation
DD=11 % Parallel delay
fap= 0.17 % Pass band amplitude response edge
dBap= 0.55 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
Wat=1 % Transition band amplitude response weight
fas= 0.20 % Stop band amplitude response edge
dBas=40.00 % Stop band amplitude response ripple
Was=100 % Stop band amplitude response weight
ftp= 0.15 % Pass band group delay response edge
td=10.5 % Pass band nominal group delay
tdr=0.7 % Pass band nominal group delay ripple
Wtp=1 % Pass band group delay response weight
rho=0.992188 % Constraint on allpass pole radius

The initial allpass filter was designed by the Octave script tarczynski_parallel_allpass_delay_test.m using the WISE method
described in Section 8.1.5. The response of the initial filter is shown in Figure 10.51.

The final filter response is shown in Figure 10.52 with pass-band and stop-band details shown in Figure 10.53. The pole-zero
plot of the filter is shown in Figure 10.54. The denominator polynomial of the final all-pass filter is

284

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Parallel allpass and delay : m=12,DD=11,dBap=0.55,td=10.5,dBas=40.0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.52: Parallel delay and all-pass filter, with delay constraint, response after PCLS SOCP optimisation.

Da1 = [1.0000000000, -0.3546496991, 0.4763258615, 0.2299780453, ...
0.0269068157, -0.0645171213, -0.0526779520, -0.0054587571, ...
0.0285812992, 0.0174527983, 0.0066967347, -0.0179407959, ...

-0.0119021797]';

285

0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0

0.2

A
m

pl
itu

de
(d

B
)

Parallel allpass and delay : m=12,DD=11,dBap=0.55,td=10.5,dBas=40.0

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

0 0.1 0.2 0.3 0.4 0.5
10

10.2

10.4

10.6

10.8

11

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.53: Parallel delay and all-pass filter, with delay constraint, detail of the pass-band and stop-band responses after PCLS
SOCP optimisation.

-1 0 1

-1

-0.5

0

0.5

1

Parallel allpass and delay : m=12,DD=11,dBap=0.55,td=10.5,dBas=40.0

Figure 10.54: Parallel delay and all-pass filter, with delay constraint, pole-zero plot of the filter after PCLS SOCP optimisation.

286

10.2.5 Design of an IIR filter as the polyphase decomposition into two all-pass filters each repre-
sented in pole-zero form

The IIR filter of Equation 10.1 can be represented in “polyphase” form [142, 143] as

H (z) = 1
R

R−1∑
k=0

z−kAk

(
zR
)

(10.2)

Where theAk are all-pass filters. In the following I consider an example withR = 2, in other words, a half-band decimation filter
suitable for use in an efficient half-band filter-bank. The Octave functions parallel_allpassP and parallel_allpassAsq support the
calculation of the phase and squared magnitude response, respectively, of the polyphase combination of two all-pass filters with
R = 2.

Design of an IIR filter as the polyphase decomposition into two all-pass filters each represented in pole-zero form with no
constraints on the group delay

The Octave script polyphase_allpass_socp_slb_test.m calls the Octave function parallel_allpass_slb to design a low-pass filter
composed of the polyphase combination of two parallel all-pass filters in terms of the allpass filter pole locations. The response
of the filter is optimised with the PCLS algorithm described in Section 8.1.2. The filter specification is:

polyphase=1 % Use polyphase combination
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
n=500 % Frequency points across the band
ma=11 % Allpass model filter A denominator order
K=100 % Scale factor
Va=5 % Allpass model filter A no. of real poles
Qa=6 % Allpass model filter A no. of complex poles
Ra=2 % Allpass model filter A decimation
mb=11 % Allpass model filter B denominator order
Vb=5 % Allpass model filter B no. of real poles
Qb=6 % Allpass model filter B no. of complex poles
Rb=2 % Allpass model filter B decimation
fap=0.24 % Pass band amplitude response edge
dBap=0.000010 % Pass band amplitude response ripple
Wap=1 % Pass band amplitude response weight
fas=0.26 % Stop band amplitude response edge
dBas=100.000000 % Stop band amplitude response ripple
Was=0.01 % Stop band amplitude response weight
rho=0.999000 % Constraint on allpass pole radius

As in Section 10.2.3, the script does not optimise for a flat filter group delay.

At first, the initial parallel all-pass filters were designed by the Octave script tarczynski_polyphase_allpass_test.m using the WISE
method described in Section 8.1.5. In this case the script has flat_delay = false. These initial allpass filters have 3 real poles
and 4 complex pole pairs. I find that better stop-band attenuation is obtained by modifying these initial allpass filters to use 5 real
poles and 3 complex pole pairs. The response after PCLS optimisation with the SeDuMi SOCP solver is shown in Figure 10.55
and Figure 10.56. The denominator polynomials of the two all-pass filters are

Da1 = [1.0000000000, 0.0000000000, 1.8220723186, 0.0000000000, ...
0.2664783725, 0.0000000000, -0.9415975587, -0.0000000000, ...

-0.2632589462, -0.0000000000, 0.1489176987, 0.0000000000, ...
0.0163768796, 0.0000000000, -0.0120817555, -0.0000000000, ...
0.0004909597, 0.0000000000, 0.0003251953, 0.0000000000, ...
0.0000758760, 0.0000000000, -0.0000654862]';

and

Db1 = [1.0000000000, 0.0000000000, 2.3220040662, 0.0000000000, ...
1.0524924991, 0.0000000000, -0.9735769286, -0.0000000000, ...

-0.6925429370, -0.0000000000, 0.1078034160, 0.0000000000, ...
0.0838004992, 0.0000000000, -0.0161474801, -0.0000000000, ...

-0.0029520540, -0.0000000000, 0.0007377702, 0.0000000000, ...
0.0001985491, 0.0000000000, -0.0000472205]';

287

0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

Polyphase allpass : ma=11,mb=11,dBap=1e-05,dBas=100

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

20
40
60
80

100
120
140

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.55: Polyphase combination of two allpass filters, response after PCLS SOCP optimisation.

0 0.1 0.2 0.3 0.4 0.5
-2e-08

-1.5e-08

-1e-08

-5e-09

0

Polyphase allpass : ma=11,mb=11,dBap=1e-05,dBas=100

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-102

-101

-100

-99

-98

Figure 10.56: Polyphase combination of two allpass filters, detail of response after PCLS SOCP optimisation.

288

Design of an IIR filter as the polyphase decomposition into two all-pass filters each represented in pole-zero form with
constraints on the group delay

The Octave script polyphase_allpass_socp_slb_flat_delay_test.m calls the Octave function parallel_allpass_slb to design a low-
pass filter composed of the polyphase combination of two parallel all-pass filters in terms of the all-pass filter pole locations. The
response of the filter is optimised with the PCLS algorithm described in Section 8.1.2. The filter specification is:

polyphase=1 % Use polyphase combination
rho=0.968750 % Constraint on allpass pole radius
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=500 % Frequency points across the band
ma=11 % Allpass model filter A denominator order
Va=1 % Allpass model filter A no. of real poles
Qa=10 % Allpass model filter A no. of complex poles
Ra=2 % Allpass model filter A decimation
mb=11 % Allpass model filter B denominator order
Vb=1 % Allpass model filter B no. of real poles
Qb=10 % Allpass model filter B no. of complex poles
Rb=2 % Allpass model filter B decimation
ftp=0.22 % Pass band group delay response edge
td=22 % Pass band nominal group delay
tdr=0.08 % Pass band nominal group delay ripple
Wtp=1 % Pass band group delay response weight
fas=0.28 % Stop band amplitude response edge
dBas=60.000000 % Stop band amplitude response ripple
Was=1 % Stop band amplitude response weight

In this case the script ignores the pass band amplitude, optimises the stop band amplitude and optimises for a flat filter group
delay across the pass band.

The initial parallel allpass filters were designed by the Octave script tarczynski_polyphase_allpass_test.m with the WISE method
described in Section 8.1.5. In this case that script has flat_delay = true. Figure 10.57 shows the response after PCLS
optimisation with the SeDuMi SOCP solver. Figure 10.58 shows the pass band response. The denominator polynomials of the
all-pass filters are

Da1 = [1.0000000000, 0.0000000000, -0.0083065220, -0.0000000000, ...
0.0030785456, 0.0000000000, -0.0014650915, -0.0000000000, ...
0.0009621123, 0.0000000000, -0.0007567236, -0.0000000000, ...
0.0005791330, 0.0000000000, -0.0005000820, -0.0000000000, ...
0.0003241321, 0.0000000000, -0.0000853982, -0.0000000000, ...

-0.0001577143, -0.0000000000, -0.0000420635]';

and

Db1 = [1.0000000000, 0.0000000000, 0.4884597853, 0.0000000000, ...
-0.1212629461, -0.0000000000, 0.0577080160, 0.0000000000, ...
-0.0330663648, -0.0000000000, 0.0205569819, 0.0000000000, ...
-0.0133357283, -0.0000000000, 0.0086886240, 0.0000000000, ...
-0.0057377042, -0.0000000000, 0.0037897471, 0.0000000000, ...
-0.0023437980, -0.0000000000, 0.0020095339]';

289

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Polyphase allpass : ma=11,mb=11,td=22,tdr=0.08,dBas=60

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
20
22
24
26
28
30
32
34

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.57: Polyphase combination of two all-pass filters with flat pass-band delay, response after PCLS SOCP optimisation.

0 0.05 0.1 0.15 0.2 0.25
-8e-06

-6e-06

-4e-06

-2e-06

0

Polyphase allpass : ma=11,mb=11,td=22,tdr=0.08,dBas=60

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
21.96

21.98

22

22.02

22.04

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.58: Polyphase combination of two all-pass filters with flat pass-band delay, pass-band response after PCLS SOCP
optimisation.

290

10.3 Design of an IIR Schur lattice filter

There is a large literature describing adaptive IIR lattice filters. For example, Regalia [170] describes adaptive IIR lattice filter
algorithms with O (N) complexity. The lattice structure has the advantage that the allpass “reflection” coefficients, ki, have
a simple filter stability criterion: |ki| < 1 (see, for example, Vaidyanathan and Mitra [177]). This section describes the PCLS
design of the squared magnitude, phase and group delay responses of one-multplier and normalised scaled IIR Schur lattice filters
by SOCP and SQP optimisation of the lattice coefficients. The calculation of the Schur lattice filter squared-magnitude, phase
and group delay responses and gradients is calculated in three steps:

1. calculate the state variable representation of the lattice filter and the gradients of the state variable matrixes with respect to
each of the lattice coefficients

2. calculate the lattice filter complex frequency response and gradients

3. calculate the lattice filter squared magnitude, phase and group delay responses and gradients

Chapter 5 reviews the Schur decomposition of an IIR transfer function into an IIR tapped-lattice structure. Algorithm 5.4 shows
the factorisation of the state variable description of the one-multiplier lattice filter. Algorithm 5.8 shows the factorisation of the
state variable description of the normalised-scaled lattice filter. Section 1.9.4 reviews the sensitivities of the complex transfer
function with respect to the state variable coefficients. Appendix J shows the gradients of the squared-magnitude, phase and
group delay responses with respect to the components of the state variable matrixes. The state-transition matrix, A, generated by
Algorithm 5.4 or Algorithm 5.8 is lower Hessenberg. The matrix resolvent, (zI −A)−1 is calculated by direct matrix inversion
rather than Le Verrier’s algorithm (see Algorithm 1.6). Xu Zhong [255] gives an algorithm that calculates the inverse of a lower
Hessenberg matrix. That algorithm is implemented in Octave as the function zhong_inverse.m and, for a matrix with complex
elements, in the oct-file complex_zhong_inverse.cc. The Octave function Abcd2H, exercised by the Octave script Abcd2H_test.m,
calculates the response of a state variable filter and the gradients of the complex response with respect to frequency and with
respect to the components of the state variable matrixes. The Octave function Abcd2H assumes that the components of the state
variable matrixes are first order combinations of the lattice coefficients. In other words, Abcd2H does not support gradients with
respect to the square-roots of the k and c lattice coefficients derived in Chapter 5. The results of this section are intended to
be used in the following Part III to optimise the choice of fixed-point lattice coefficients. The k and c lattice coefficients of an
“exact” transfer function can be calculated from a transfer function optimised in the gain-pole-zero form.

10.3.1 Design of an IIR one-multiplier Schur lattice low-pass filter using SOCP

The Octave script schurOneMlattice_socp_slb_lowpass_test.m implements the design of a lowpass IIR one-multiplier Schur
lattice filter using the SeDuMi SOCP solver with PCLS constraints. The filter specification is similar to that of the Deczky3
gain-pole-zero SQP and SOCP optimisation examples in Sections 8.2.3 and 9.4:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-06 % Tolerance on constraints
n=500 % Frequency points across the band
% length(c0)=10 % Tap coefficients
% length(k0~=0)=9 % Num. non-zero all-pass coef.s
rho=0.992188 % Constraint on allpass coefficients
fap=0.15 % Amplitude pass band edge
dBap=0.1 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftp=0.25 % Delay pass band edge
tp=9 % Nominal pass band filter group delay
tpr=0.02 % Delay pass band peak-to-peak ripple
Wtp=1 % Delay pass band weight
fas=0.35 % Amplitude stop band edge
dBas=47 % Amplitude stop band peak-to-peak ripple
Was=100 % Amplitude stop band weight

The initial filter is a heavily modified version of the “IPZS-1” filter of Section 8.2.3. Figures 10.59 and 10.60 show the overall
and passband response after SOCP PCLS optimisation. Figure 10.61 shows the pole-zero plot of the resulting filter after SOCP
PCLS optimisation.

The PCLS SOCP optimised Schur one-multiplier all-pass lattice and numerator tap coefficients of the low-pass filter are:

291

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur one-multiplier lattice lowpass filter SOCP PCLS response : fap=0.15,dBap=0.1,fas=0.35,dBas=47

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.59: Schur one-multiplier lattice lowpass filter, response after PCLS SOCP optimisation.

0 0.05 0.1 0.15 0.2 0.25
-0.15

-0.1

-0.05

0

0.05

Schur one-multiplier lattice lowpass filter SOCP PCLS response : fap=0.15,dBap=0.1,fas=0.35,dBas=47

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
8.98

8.99

9

9.01

9.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.60: Schur one-multiplier lattice lowpass filter, passband response after PCLS SOCP optimisation.

292

-1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

Schur one-multiplier lattice lowpass filter SOCP PCLS response : fap=0.15,dBap=0.1,fas=0.35,dBas=47

Figure 10.61: Schur one-multiplier lattice lowpass filter, pole-zero plot after PCLS SOCP optimisation.

k2 = [-0.6805896882, 0.6554707502, -0.5345555025, 0.3522006886, ...
-0.1701042028, 0.0464958011, -0.0000000000, 0.0000000000, ...
0.0000000000];

epsilon2 = [-1, -1, -1, -1, ...
1, -1, 1, -1, ...

-1];

p2 = [1.0572014786, 0.4608943466, 1.0102970565, 0.5564059140, ...
0.8038815715, 0.9545365441, 1.0000000000, 1.0000000000, ...
1.0000000000];

c2 = [0.4221917396, 0.9215162682, 0.0845637922, -0.1284245257, ...
-0.0468041909, 0.0148832977, 0.0204119363, 0.0022524223, ...
-0.0078339795, -0.0041454449];

The PCLS SOCP optimised Schur one-multiplier low-pass filter numerator and denominator polynomials are:

n2 = [-0.0041454449, -0.0006492081, 0.0079134864, 0.0073784188, ...
-0.0088622901, -0.0303332588, -0.0027853027, 0.0955230298, ...
0.1350770445, 0.0866034669];

d2 = [1.0000000000, -1.7331725827, 1.9097044166, -1.4065810831, ...
0.7229035801, -0.2503217091, 0.0464958011];

293

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur one-multiplier lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.4,fas=0.3,dBas=46

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.62: Schur one-multiplier lattice lowpass filter, response after SQP PCLS optimisation.

10.3.2 Design of an IIR one-multiplier Schur lattice low-pass filter using SQP

The Octave script schurOneMlattice_sqp_slb_lowpass_test.m implements the design of a lowpass IIR one-multiplier Schur lattice
filter with SQP and PCLS. The specification of the filter is:

tol=4e-05 % Tolerance on coefficient update vector
ctol=4e-05 % Tolerance on constraints
n=400 % Frequency points across the band
% length(c0)=11 % Tap coefficients
% sum(k0~=0)=6 % Num. non-zero lattice coefficients
dmax=0.050000 % Constraint on norm of coefficient SQP step size
rho=0.992188 % Constraint on lattice coefficient magnitudes
fap=0.15 % Amplitude pass band edge
dBap=0.4 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftp=0.25 % Delay pass band edge
tp=10 % Nominal pass band filter group delay
tpr=0.08 % Delay pass band peak-to-peak ripple
Wtp_mmse=0.1 % Delay pass band weight for MMSE
Wtp_pcls=1 % Delay pass band weight for PCLS
fas=0.3 % Amplitude stop band edge
dBas=46 % amplitude stop band peak-to-peak ripple
Was_mmse=1e+08 % Amplitude stop band weight for MMSE
Was_pcls=1e+08 % Amplitude stop band weight for PCLS

The initial filter is the “IPZS-1” of Section 8.2.3. As for the examples of Chapter 8 the SQP BFGS update is initialised by the
diagonal of the Hessian matrix of the squared error. The diagonals of the Hessian matrixes of the squared-magnitude, phase and
group delay are given in Appendix J.

Figures 10.62 and 10.63 show the overall and passband response of the filter after SQP PCLS optimisation. Figure 10.64 shows
the pole-zero plot of the filter after SQP PCLS optimisation.

The SQP PCLS optimised Schur one-multiplier all-pass lattice and numerator tap coefficients of the low-pass filter are:

294

0 0.05 0.1 0.15 0.2 0.25
-0.4

-0.2

0

0.2

0.4

Schur one-multiplier lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.4,fas=0.3,dBas=46

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25

9.95

10

10.05

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.63: Schur one-multiplier lattice lowpass filter, passband response after SQP PCLS optimisation.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Schur one-multiplier lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.4,fas=0.3,dBas=46

Figure 10.64: Schur one-multiplier lattice lowpass filter, pole-zero plot after SQP PCLS optimisation.

295

k2 = [-0.7375771181, 0.7329492530, -0.6489740765, 0.4943363006, ...
-0.2824593372, 0.0878212134, -0.0000000000, -0.0000000000, ...
-0.0000000000, -0.0000000000];

epsilon2 = [-1, -1, -1, -1, ...
-1, -1, 1, 1, ...
1, 1];

p2 = [1.5591179441, 0.6059095195, 1.5434899280, 0.7121418051, ...
1.2242208323, 0.9157168850, 1.0000000000, 1.0000000000, ...
1.0000000000, 1.0000000000];

c2 = [0.2287455707, 0.7274997803, 0.1030199742, -0.0659731942, ...
-0.0487519200, -0.0063882219, 0.0239044428, 0.0157765877, ...
-0.0023124161, -0.0090627662, -0.0052625492];

The PCLS SQP optimised Schur one-multiplier low-pass filter numerator and denominator polynomials are:

n2 = [-0.0052625492, 0.0027205868, 0.0029400838, 0.0075076108, ...
-0.0035447126, -0.0182712642, -0.0123464150, 0.0278035927, ...
0.0723506870, 0.0702344183, 0.0382923739];

d2 = [1.0000000000, -2.2390960503, 2.8579123328, -2.3665133117, ...
1.3229965619, -0.4769209831, 0.0878212134, 0.0000000000, ...

-0.0000000000, -0.0000000000, -0.0000000000];

296

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur normalised-scaled lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.2,fas=0.3,dBas=40

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.65: Schur normalised-scaled lattice lowpass filter, response after SQP PCLS optimisation.

10.3.3 Design of an IIR Schur normalised-scaled lattice low-pass filter using SQP

The Octave script schurNSlattice_sqp_slb_lowpass_test.m implements the design of a lowpass IIR normalised-scaled structure
Schur lattice filter with SQP and PCLS. The filter coefficients are allowed to vary independently and the resulting filter is not, in
fact, normalised-scaled. The specification of the filter is:

tol=0.0001 % Tolerance on coefficient update vector for MMSE
ctol=1e-06 % Tolerance on constraints
n=800 % Frequency points across the band
sxx_symmetric=0 % Enforce s02=-s20 and s22=s00
dmax=0.050000 % Constraint on norm of coefficient SQP step size
rho=0.999900 % Constraint on lattice coefficient magnitudes
fap=0.15 % Amplitude pass band edge
dBap=0.2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftp=0.25 % Delay pass band edge
tp=10 % Nominal pass band filter group delay
tpr=0.08 % Delay pass band peak-to-peak ripple
Wtp=0.1 % Delay pass band weight
fas=0.3 % Amplitude stop band edge
dBas=40 % amplitude stop band peak-to-peak ripple
Was=1000 % Amplitude stop band weight

The initial filter is the “IPZS-1” of Section 8.2.3. As for the examples of Chapter 8 the SQP BFGS update is initialised by the
diagonal of the Hessian matrix of the squared error.

Figures 10.65 and 10.66 show the overall and passband response of the filter after SQP PCLS optimisation. Figure 10.67 shows
the pole-zero plot of the filter after SQP PCLS optimisation.

The SQP PCLS optimised Schur normalised-scaled all-pass lattice and numerator tap coefficients of the low-pass filter are:

s10_2 = [1.0279396548, 0.1935260157, -0.0916241858, -0.0653808722, ...
0.0142448015, 0.0129142652, 0.0024737017, -0.0069440305, ...

-0.0051571508, 0.0012782823];

297

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Schur normalised-scaled lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.2,fas=0.3,dBas=40

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25

9.95

10

10.05

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.66: Schur normalised-scaled lattice lowpass filter, passband response after SQP PCLS optimisation.

-1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

Schur normalised-scaled lattice lowpass filter SQP PCLS response : fap=0.15,dBap=0.2,fas=0.3,dBas=40

Figure 10.67: Schur normalised-scaled lattice lowpass filter, pole-zero plot after SQP PCLS optimisation.

298

s11_2 = [0.8040534037, 0.9316660442, 0.9941967593, 1.0261479817, ...
0.9249817439, 1.1144246585, 1.3100056198, 1.3019852097, ...
1.3079771599, 0.8138627835];

s20_2 = [-0.6889239260, 0.4752667630, -0.4961994741, 0.3970745806, ...
-0.1697955137, 0.0441000000, 0.0000000000, 0.0000000000, ...
0.0000000000, 0.0000000000];

s00_2 = [0.9883987249, 0.4926734214, 0.7408301356, 0.8854322120, ...
0.9273987541, 0.4059507633, 1.0000000000, 1.0000000000, ...
1.0000000000, 1.0000000000];

s02_2 = [0.6857383075, -0.5440075919, 0.6572742436, -0.5692084825, ...
0.2760979095, -0.3613674206, -0.0000000000, -0.0000000000, ...

-0.0000000000, -0.0000000000];

s22_2 = [0.7436318730, 0.7278805905, 0.6313750134, 0.9450728519, ...
0.2005128923, 0.9990271218, 1.0000000000, 1.0000000000, ...
1.0000000000, 1.0000000000];

The diagonal of the state covariance matrix, K, of the optimised filter is:

diag(K) = [0.0889, 0.0488, 0.1119, 0.1415, ...
0.1496, 0.1658, 1.0000, 1.0000, ...
1.0000, 1.0000]';

The SQP loop for this example is called from the Octave function schurNSlattice_sqp_mmse exercised by the Octave script
schurNSlattice_sqp_mmse_test.m. The schurNSlattice_sqp_mmse function includes code that forces s02 = −s20 and s22 = s00.
In neither case does this function enforce normalised-scaling with the relations s02 =

√
1− s2

00 and s22 =
√

1− s2
20. For

simplicity, I have assumed that all relationships between coefficients are linear.

10.3.4 Design of an IIR low-pass differentiator filter with a Schur one-multiplier lattice correction
filter using SOCP

The Octave script schurOneMlattice_socp_slb_lowpass_differentiator_alternate_test.m calls schurOneMlattice_slb to improve
the filter designed with iir_sqp_slb in Section 8.2.9. I attempted unsuccessfully to use the initial filter used for that design,
found with tarczynski_lowpass_differentiator_alternate_test.m. The Schur one-multiplier lattice coefficients for the lowpass
differentiator design found in Section 8.2.9 are:

k2 = [-0.2812722202, 0.9749403828, -0.6337173090, 0.6916463537, ...
-0.7006149013, 0.6768687830, -0.6151392256, 0.4882615035, ...
-0.2899281212, 0.1044693405, -0.0179860570]';

epsilon2 = [1, 1, 1, -1, ...
-1, -1, -1, -1, ...
1, -1, 1];

c2 = [-0.0060644902, -0.0147766987, 1.4111830129, 0.7359763899, ...
0.0202599449, -0.1608163928, 0.0095506693, 0.0372475745, ...

-0.0058292666, -0.0058904477, 0.0011302632, 0.0018945742]';

299

10.3.5 Design of an IIR low-pass filter with parallel Schur one-multiplier all-pass lattice filters using
SOCP

The Octave script schurOneMPAlattice_socp_slb_lowpass_test.m implements the design of a low-pass IIR filter composed of the
sum of two parallel one-multiplier Schur lattice all-pass filters with SOCP and PCLS optimisation. For such a filter the all-pass
reflection coefficient sign assignments can be recalculated without affecting the response. The specification of the filter is:

tol=1e-07 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=400 % Frequency points across the band
m1=11 % Allpass filter 1 denominator order
m2=12 % Allpass filter 2 denominator order
rho=0.992188 % Constraint on allpass coefficients
fap=0.125 % Amplitude pass band edge
dBap=0.1 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Amplitude transition band weight
fas=0.25 % Amplitude stop band edge
dBas=60 % amplitude stop band peak-to-peak ripple
Was=10 % Amplitude stop band weight
ftp=0.175 % Delay pass band edge
td=11.5 % Nominal pass band filter group delay
tdr=0.08 % Delay pass band peak-to-peak ripple
Wtp=2 % Delay pass band weight

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_test.m (with flat_delay =
true). These initial filters are those used in Section 10.2.3.

Figures 10.68 and 10.69 show the overall and passband responses of the filter after SOCP PCLS optimisation and Figure 10.70
shows the pole-zero plot of the filter. Figure 10.71 shows the coefficient sensitivity responses of the filter.

The low-pass filter SOCP PCLS optimised Schur one-multiplier all-pass lattice coefficients are:

A1k = [0.7708884723, -0.0881113352, -0.2676988107, -0.0638149974, ...
-0.0591391496, 0.2444844859, -0.1442540300, -0.0042931090, ...
0.1646157559, -0.1595339245, 0.0537213303];

A1epsilon = [1, 1, 1, 1, ...
1, -1, 1, 1, ...
1, 1, -1];

A2k = [0.3876343601, -0.2734688172, 0.1867648662, 0.1638998031, ...
-0.0461823074, 0.0417459541, -0.2010119927, 0.1801872215, ...
0.0055480902, -0.1784785436, 0.1504874613, -0.0547333984];

A2epsilon = [1, 1, 1, -1, ...
1, -1, -1, -1, ...

-1, -1, -1, 1];

300

0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

Parallel Schur one-multiplier lattice response : fap=0.125,dBap=0.1,fas=0.25,dBas=60,ftp=0.175,td=11.5

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.68: Parallel Schur one-multiplier all-pass lattice low-pass filter, response after SOCP PCLS optimisation.

0 0.05 0.1 0.15
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Parallel Schur one-multiplier lattice passband response : fap=0.125,dBap=0.1,ftp=0.175,td=11.5,tdr=0.08

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15

11.45

11.5

11.55

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.69: Parallel Schur one-multiplier all-pass lattice low-pass filter, passband response after SOCP PCLS optimisation.

301

-6 -4 -2 0 2

-1

0

1

Parallel Schur one-multiplier lattice pole zero plot : fap=0.125,dBap=0.1,ftp=0.175,td=11.5,tdr=0.08

Figure 10.70: Parallel Schur one-multiplier all-pass lattice low-pass filter, pole-zero plot after SOCP PCLS optimisation.

0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

Pa
ss

ba
nd

sq
ua

re
d

am
pl

itu
de

se
ns

iti
vi

ty

Parallel Schur one-multiplier lattice : coefficient sensitivity responses

0 0.1 0.2 0.3 0.4 0.5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

St
op

ba
nd

sq
ua

re
d

am
pl

itu
de

se
ns

iti
vi

ty

0 0.1 0.2 0.3 0.4 0.5
-15

-10

-5

0

5

10

15

Pa
ss

ba
nd

de
la

y
se

ns
iti

vi
ty

Frequency

Figure 10.71: Parallel Schur one-multiplier all-pass lattice low-pass filter, coefficient sensitivity responses after SOCP PCLS
optimisation.

302

10.3.6 Design of an IIR low-pass filter with a delay in parallel with a Schur one-multiplier all-pass
lattice filter using SOCP

The Octave script schurOneMPAlatticeDelay_socp_slb_lowpass_test.m implements the design of a low-pass IIR filter composed
of the sum of a delay and a one-multiplier Schur lattice all-pass filter with SOCP and PCLS optimisation. For such a filter
the all-pass reflection coefficient sign assignments can be recalculated without affecting the response. The filter specification is
similar to that described in Section 10.2.4:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
n=1000 % Frequency points across the band
m=12 % Allpass filter order
DD=11 % Delay order
rho=0.992188 % Constraint on allpass coefficients
fap=0.15 % Amplitude pass band edge
dBap=0.2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Transition pass band weight
fas=0.2 % Amplitude stop band edge
dBas=66 % amplitude stop band peak-to-peak ripple
Was=1000 % Amplitude stop band weight

The initial all-pass filter was designed with the Octave function WISE_DA.m using the WISE method described in Section 8.1.5
and is the same as that used in Section 10.2.4.

Figure 10.72 shows the passband and stopband responses of the filter after SOCP PCLS optimisation. Figure 10.73 shows the
pole-zero plot of the filter.

The low-pass filter SOCP PCLS optimised Schur one-multiplier all-pass lattice coefficients are:

A1k = [-0.4532082796, 0.5777631833, 0.2620106323, 0.0065336365, ...
-0.1293958797, -0.1398009443, -0.0802310587, -0.0130474053, ...
0.0238568035, 0.0277585923, 0.0159663428, 0.0049013158];

A1epsilon = [1, 1, -1, -1, ...
1, 1, 1, 1, ...
1, -1, -1, 1];

303

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.15

-0.1

-0.05

0

Parallel all-pass filter and delay : m=12, DD=11

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-70

-68

-66

-64

-62

Figure 10.72: Parallel delay and Schur one-multiplier all-pass lattice low-pass filter, response after SOCP PCLS optimisation.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Parallel all-pass filter and delay : m=12, DD=11

Figure 10.73: Parallel delay and Schur one-multiplier all-pass lattice low-pass filter, pole-zero plot after SOCP PCLS optimisa-
tion.

304

10.3.7 Design of a parallel IIR Schur approximately normalised scaled all-pass lattice low-pass filter
using SOCP

The Octave script schurNSPAlattice_socp_slb_lowpass_test.m implements the design of a low-pass IIR filter composed of the
difference of two parallel normalised scaled Schur lattice all-pass filters with SOCP and PCLS optimisation. In fact, this design
is only approximately normalised-scaled since the s20 and s00 coefficients are assumed to be independent rather than related by
σ00 =

√
1− σ2

20. The design enforces σ02 = −σ20 and σs22 = σ00. The specification of the filter is:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=800 % Frequency points across the band
rho=0.999000 % Constraint on allpass coefficients
fap=0.125 % Amplitude pass band edge
dBap=0.5 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0.1 % Amplitude transition band weight
fas=0.25 % Amplitude stop band edge
dBas=50 % amplitude stop band peak-to-peak ripple
Was=100 % Amplitude stop band weight
ftp=0.175 % Delay pass band edge
tp=11.5 % Nominal pass band filter group delay
tpr=0.04 % Delay pass band peak-to-peak ripple
Wtp=1 % Delay pass band weight

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_test.m. Figure 10.74 shows the
overall and passband amplitude and group delay responses of the filter after SOCP PCLS optimisation. The low-pass filter SOCP
PCLS optimised Schur approximately normalised scaled all-pass lattice coefficients are:

A1s20 = [0.7826068084, -0.0715318417, -0.2753485196, -0.1033053980, ...
-0.1063206142, 0.2250584958, -0.1250438973, 0.0241666042, ...
0.1771383054, -0.1634787221, 0.0455727965]';

A1s00 = [0.6217587012, 0.9968938006, 0.9612357765, 0.9949745620, ...
0.9952436941, 0.9744124228, 0.9927586547, 0.9989803736, ...
0.9841653331, 0.9870112649, 0.9989618410]';

A2s20 = [0.3669967705, -0.2966516032, 0.2228106613, 0.2137610541, ...
-0.0177252131, 0.0462558612, -0.1985691961, 0.1845563398, ...
0.0089803087, -0.1825231075, 0.1437135688, -0.0577663211]';

A2s00 = [0.9296536101, 0.9539737686, 0.9749870428, 0.9773523825, ...
0.9989586311, 0.9987940556, 0.9817076268, 0.9832851987, ...
0.9989579343, 0.9835433149, 0.9897787021, 0.9987447934]';

305

0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0

0.2

A
m

pl
itu

de
(d

B
)

Parallel all-pass lowpass : dBap=0.5,dBas=50

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

0 0.1 0.2 0.3 0.4 0.5
11.48

11.49

11.5

11.51

11.52

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.74: Response of a parallel Schur approximately normalised scaled all-pass lattice low-pass filter after SOCP PCLS
optimisation.

306

10.3.8 Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass filter using SOCP

The Octave script schurOneMPAlattice_socp_slb_bandpass_test.m implements the design of a band-pass IIR filter composed of
the difference of two parallel one-multiplier Schur lattice all-pass filters with SOCP and PCLS optimisation. The specification
of the filter is:

m1=10 % Allpass model filter 1 denominator order
m2=10 % Allpass model filter 2 denominator order
difference=1 % Use difference of all-pass filters
tol=0.0001 % Tolerance on coefficient update vector
ctol=5e-08 % Tolerance on constraints
rho=0.992188 % Constraint on allpass pole radius
n=1000 % Frequency points across the band
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=2.000000 % Pass band amplitude response ripple(dB)
Wap=1 % Pass band amplitude response weight
Watl=0.1 % Lower transition band amplitude response weight
Watu=0.1 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=53.000000 % Stop band amplitude response ripple(dB)
Wasl=10000 % Lower stop band amplitude response weight
Wasu=10000 % Upper stop band amplitude response weight
ftpl=0.09 % Pass band group-delay response lower edge
ftpu=0.21 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response(samples)
tdr=0.080000 % Pass band group-delay response ripple(samples)
Wtp=0.1 % Pass band group-delay response weight

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_bandpass_test.m. These initial
filters are those used in Section 10.2.3. Figures 10.75 and 10.76 show the overall and passband responses of the filter after SOCP
PCLS optimisation. The band-pass filter SOCP PCLS optimised Schur one-multiplier all-pass lattice coefficients are:

A1k = [-0.3939153326, 0.6791864167, 0.4869936857, -0.5227238042, ...
0.6064097122, -0.2245313023, -0.1690034563, 0.4339350463, ...

-0.2820570054, 0.1648134004];

A1epsilon = [1, 1, -1, -1, ...
-1, -1, 1, 1, ...
1, -1];

A2k = [-0.7513025795, 0.7499737529, 0.4817203757, -0.5676365983, ...
0.6227597171, -0.1388366090, -0.1232165270, 0.4248774867, ...

-0.3098492108, 0.1516632902];

A2epsilon = [-1, -1, 1, -1, ...
-1, 1, 1, 1, ...
1, -1];

307

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0

Parallel allpass bandpass : m1=10,m2=10,dBap=2,dBas=53

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.75: Parallel Schur one-multiplier all-pass lattice band-pass filter, response after SOCP PCLS optimisation.

0.1 0.12 0.14 0.16 0.18 0.2
-3

-2

-1

0

1

Parallel allpass bandpass : m1=10,m2=10,dBap=2,dBas=53

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2

15.95

16

16.05

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.76: Parallel Schur one-multiplier all-pass lattice band-pass filter, passband response after SOCP PCLS optimisation.

308

10.3.9 Design of an IIR one-multiplier Schur lattice band-pass filter using SQP

The Octave script schurOneMlattice_sqp_slb_bandpass_test.m implements the design of a band-pass IIR one-multiplier Schur
lattice filter with SQP and PCLS. The specification of the filter is:

tol_mmse=2e-05 % Tolerance on coef. update for MMSE
tol_pcls=1e-05 % Tolerance on coef. update for PCLS
ctol=1e-05 % Tolerance on constraints
n=500 % Frequency points across the band
% length(c0)=21 % Tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
dmax=0.050000 % Constraint on norm of coefficient SQP step size
rho=0.992188 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
tpr=0.08 % Delay pass band peak-to-peak ripple
Wtp_mmse=1 % Delay pass band weight(MMSE)
Wtp_pcls=1 % Delay pass band weight(PCLS)
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
dBas=36 % Amplitude stop band peak-to-peak ripple
Wasl_mmse=100000 % Ampl. lower stop band weight(MMSE)
Wasu_mmse=400000 % Ampl. upper stop band weight(MMSE)
Wasl_pcls=100000 % Ampl. lower stop band weight(PCLS)
Wasu_pcls=400000 % Ampl. upper stop band weight(PCLS)

The initial filter is that of the Octave script iir_sqp_slb_bandpass_test.m, as shown in Section 8.2.6. The denominator polynomial
of the filter has coefficients in z2 only.

Figure 10.77 shows the overall response of the band-pass filter after SQP MMSE optimisation. Figures 10.78 and 10.79 show
the overall and passband response of the band-pass filter after SQP PCLS optimisation. Figure 10.80 shows the pole-zero plot of
the band-pass filter after SQP PCLS optimisation.

The SQP PCLS optimised Schur one-multiplier allpass lattice and numerator tap coefficients of the band-pass filter are:

k2 = [0.0000000000, 0.6672955640, 0.0000000000, 0.4964341949, ...
0.0000000000, 0.3462544804, 0.0000000000, 0.4174442880, ...
0.0000000000, 0.2972266682, 0.0000000000, 0.2512374722, ...
0.0000000000, 0.1512063085, 0.0000000000, 0.1021208736, ...
0.0000000000, 0.0362871687, 0.0000000000, 0.0150432836];

epsilon2 = [0, 1, 0, -1, ...
0, 1, 0, -1, ...
0, 1, 0, -1, ...
0, -1, 0, 1, ...
0, -1, 0, -1];

p2 = [1.1347075754, 1.1347075754, 0.5068820974, 0.5068820974, ...
0.8737911640, 0.8737911640, 0.6089034442, 0.6089034442, ...
0.9498011634, 0.9498011634, 0.6990888887, 0.6990888887, ...
0.9037123550, 0.9037123550, 1.0524603142, 1.0524603142, ...
0.9499484805, 0.9499484805, 0.9850681834, 0.9850681834];

c2 = [0.0704221417, -0.0128119538, -0.2992871552, -0.4821902862, ...
-0.1624798794, 0.1224163794, 0.3957922392, 0.3003821423, ...
0.0171930791, -0.0825256371, -0.0795022560, -0.0125415926, ...

-0.0099075145, -0.0352745191, -0.0255813129, 0.0048306421, ...
0.0246321541, 0.0165314320, 0.0027523861, 0.0012900332, ...
0.0058051915];

309

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur 1-multiplier SQP MMSE:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=1,Was=100000

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.77: Schur one-multiplier lattice band-pass filter, response after SQP MMSE optimisation.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur 1-multiplier SQP PCLS:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=1,Was=100000

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.78: Schur one-multiplier lattice band-pass filter, response after SQP PCLS optimisation.

310

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1

0

1

2

Schur 1-multiplier SQP PCLS:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=1,Was=100000

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2

15.95

16

16.05

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.79: Schur one-multiplier lattice band-pass filter, passband response after SQP PCLS optimisation.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Schur 1-multiplier SQP PCLS:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=1,Was=100000

Figure 10.80: Schur one-multiplier lattice band-pass filter, pole-zero plot after SQP PCLS optimisation.

311

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur 1-multiplier SOCP PCLS:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=4,Was=500000

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.81: Schur one-multiplier lattice band-pass filter, response after SOCP PCLS optimisation.

The Octave script schurOneMlattice_socp_slb_bandpass_test.m runs a PCLS SOCP pass starting with the k2, epsilon2, p2
and c2 found above and the constraint tpr = tp/400. Figures 10.81 and 10.82 show the overall and passband response of the
band-pass filter after SOCP PCLS optimisation.

The SOCP PCLS optimised Schur one-multiplier allpass lattice and numerator tap coefficients of the band-pass filter are:

k3 = [0.0000000000, 0.6606880654, 0.0000000000, 0.4941519607, ...
0.0000000000, 0.3428225897, 0.0000000000, 0.4122471209, ...
0.0000000000, 0.2866612230, 0.0000000000, 0.2442437414, ...
0.0000000000, 0.1437048239, 0.0000000000, 0.0969655072, ...
0.0000000000, 0.0332013284, 0.0000000000, 0.0142748957];

epsilon3 = [0, 1, 0, -1, ...
0, 1, 0, -1, ...
0, 1, 0, -1, ...
0, -1, 0, 1, ...
0, -1, 0, -1];

p3 = [1.1299629201, 1.1299629201, 0.5107633510, 0.5107633510, ...
0.8778232446, 0.8778232446, 0.6140999624, 0.6140999624, ...
0.9519125162, 0.9519125162, 0.7087822734, 0.7087822734, ...
0.9094413647, 0.9094413647, 1.0510416622, 1.0510416622, ...
0.9536205800, 0.9536205800, 0.9858255516, 0.9858255516];

c3 = [0.0720225098, -0.0121370667, -0.2985655612, -0.4829959396, ...
-0.1634197124, 0.1208005840, 0.3919384761, 0.2962671586, ...
0.0154030969, -0.0830746748, -0.0776318106, -0.0109900562, ...

-0.0090269506, -0.0339610266, -0.0245173699, 0.0059251362, ...
0.0244517007, 0.0150950869, 0.0015193045, 0.0014569594, ...
0.0066575132];

312

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1

0

1

2

Schur 1-multiplier SOCP PCLS:fapl=0.1,fapu=0.2,dBap=2,fasl=0.05,fasu=0.25,dBas=36,Wtp=4,Was=500000

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.96

15.98

16

16.02

16.04

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.82: Schur one-multiplier lattice band-pass filter, passband response after SOCP PCLS optimisation.

313

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

Schur normalised-scaled SQP PCLS:fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=30,Wtp=0.1,Was=10

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.83: Schur normalised-scaled lattice band-pass filter, response after SQP PCLS optimisation.

10.3.10 Design of an IIR normalised-scaled Schur lattice band-pass filter using SQP

The Octave script schurNSlattice_sqp_slb_bandpass_test.m implements the design of a band-pass IIR normalised-scaled Schur
lattice filter with SQP and PCLS. The specification of the filter is:

tol=0.0005 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
n=500 % Frequency points across the band
dmax=0.050000 % Constraint on norm of coefficient SQP step size
rho=0.999500 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=1 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftpl=0.1 % Delay pass band lower edge
ftpu=0.2 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
tpr=0.16 % Delay pass band peak-to-peak ripple
Wtp=0.1 % Delay pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
dBas=30 % Amplitude stop band peak-to-peak ripple
Wasl=10 % Ampl. lower stop band weight
Wasu=20 % Ampl. upper stop band weight

The initial filter is that of the Octave script iir_sqp_slb_bandpass_test.m, as shown in Section 8.2.6. The denominator polynomial
of the filter has coefficients in z2 only.

Figures 10.83 and 10.84 show the overall and passband response of the band-pass filter after SQP PCLS optimisation. Fig-
ure 10.85 shows the pole-zero plot of the band-pass filter after SQP PCLS optimisation.

The SQP PCLS optimised Schur normalised-scaled allpass lattice and numerator tap coefficients of the band-pass filter are:

s00_2 = [1.0000000000, 0.6015702535, 1.0000000000, 0.5651781546, ...

314

0.1 0.12 0.14 0.16 0.18 0.2
-0.1

-0.05

0

0.05

0.1

Schur normalised-scaled SQP PCLS:fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=30,Wtp=0.1,Was=10

A
m

pl
itu

de
(d

B
)

0.1 0.12 0.14 0.16 0.18 0.2
15.85

15.9

15.95

16

16.05

16.1

16.15

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.84: Schur normalised-scaled lattice band-pass filter, passband response after SQP PCLS optimisation.

-4 -3 -2 -1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

Schur normalised-scaled SQP PCLS:fapl=0.1,fapu=0.2,dBap=1,fasl=0.05,fasu=0.25,dBas=30,Wtp=0.1,Was=10

Figure 10.85: Schur normalised-scaled lattice band-pass filter, pole-zero plot after SQP PCLS optimisation.

315

1.0000000000, 0.6367949055, 1.0000000000, 0.9419804568, ...
1.0000000000, 0.9995000000, 1.0000000000, 0.9940995400, ...
1.0000000000, 0.6377660448, 1.0000000000, 0.9995000000, ...
1.0000000000, 0.5989182413, 1.0000000000, 0.4577769299];

s02_2 = [-0.0000000000, -0.9995000000, -0.0000000000, -0.4935228884, ...
-0.0000000000, -0.2375465427, -0.0000000000, -0.4724957994, ...
-0.0000000000, -0.1109187578, -0.0000000000, -0.7354877589, ...
-0.0000000000, -0.4396317784, -0.0000000000, -0.3799666368, ...
-0.0000000000, -0.1018439118, -0.0000000000, -0.3478706620];

s22_2 = [1.0000000000, 0.8758284602, 1.0000000000, 0.5073522918, ...
1.0000000000, 0.8285926520, 1.0000000000, 0.9977995890, ...
1.0000000000, 0.9959146745, 1.0000000000, 0.9995000000, ...
1.0000000000, 0.9995000000, 1.0000000000, 0.7222364027, ...
1.0000000000, 0.9995000000, 1.0000000000, 0.9925820455];

s20_2 = [0.0000000000, -0.0616903588, 0.0000000000, 0.4788369334, ...
0.0000000000, 0.2806806733, 0.0000000000, 0.3214029581, ...
0.0000000000, 0.1771552795, 0.0000000000, 0.1085226405, ...
0.0000000000, 0.5623312263, 0.0000000000, 0.9995000000, ...
0.0000000000, -0.4579827469, 0.0000000000, 0.1215766546];

s10_2 = [1.1982748037, -1.2597728611, -1.6233410972, -0.5997049897, ...
0.9982265097, 1.0120343898, 0.5933868988, -0.1607613690, ...

-0.4898843328, -0.2741564072, 0.0998863662, -0.8176734627, ...
-0.5334533481, -0.2914227863, 0.2576370075, 0.1553509410, ...
-0.2955846923, -0.0549844725, 0.1408984852, 0.0030518433];

s11_2 = [2.3547789567, 0.4526484852, 0.8658658676, 1.2313287402, ...
1.4233264123, 0.9447810730, 1.0144989253, 1.1159644303, ...
1.4676479655, 1.3115770244, 2.9847622369, 0.9593530290, ...
0.5071572859, 1.5230072404, 1.5813201875, 1.2442750840, ...
1.5031333885, 0.7951123219, 0.6012008211, 0.1760856374];

316

0 0.1 0.2 0.3 0.4 0.5
-0.2
-0.1

0
0.1
0.2

Hilbert filter PCLS:ft=0.08,dBap=0.1,tp=6.5,pr=0.016,Wap=1,Wpp=200

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

-0.505

-0.5

-0.495

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5

6.45

6.5

6.55

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.86: Schur one-multiplier lattice Hilbert filter, response after SOCP PCLS optimisation.

10.3.11 Design of an IIR one-multiplier Schur lattice Hilbert filter using SOCP

The Octave script schurOneMlattice_socp_slb_hilbert_test.m implements the design of an IIR one-multiplier Schur lattice Hilbert
filter with SOCP and PCLS. The specification of the filter is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=0.0001 % Tolerance on constraints
n=256 % Frequency points across the band
rho=0.999900 % Constraint on lattice coefficient magnitudes
ft=0.08 % Transition band width [0,ft]
dBap=0.1 % Amplitude pass band peak-to-peak ripple
Wat=0.001 % Amplitude transition band weight
Wap_mmse=2 % Amplitude pass band weight for MMSE
Wap_pcls=1 % Amplitude pass band weight for PCLS
tp=6.5 % Nominal pass band filter group delay
tpr=0.08 % Group delay pass band peak-to-peak ripple
Wtt=0 % Group delay transition band weight
Wtp=0.25 % Group delay pass band weight
pr=0.016 % Phase pass band peak-to-peak ripple(rad.)
Wpt=0.001 % Phase transition band weight
Wpp=200 % Phase pass band weight

The initial filter is that of the Octave script iir_sqp_slb_hilbert_test.m designed by the method of Tarczynski et al. with the
Octave script tarczynski_hilbert_test.m, as shown in Section 8.2.7. The denominator polynomial of the filter has coefficients in
z2 only. Figure 10.86 shows the response of the Hilbert filter after SOCP PCLS optimisation. The phase response shown has
been adjusted by the nominal group delay, ωτp. The values shown on the phase axis of the phase response plot are multiples of
π radians. Figure 10.87 shows the pole-zero plot of the Hilbert filter after SOCP PCLS optimisation.

The SOCP PCLS optimised Schur one-multiplier all-pass lattice and numerator tap coefficients of the Hilbert filter are:

k2 = [0.0000000000, -0.8873317870, 0.0000000000, 0.4195519592, ...
0.0000000000, -0.0282518482, 0.0000000000, 0.0019331635, ...
0.0000000000, 0.0025886595, 0.0000000000, 0.0002474435];

317

-2 -1 0 1

-2

-1

0

1

2

Hilbert filter PCLS:ft=0.08,dBap=0.1,tp=6.5,pr=0.016,Wap=1,Wpp=200

Figure 10.87: Schur one-multiplier lattice Hilbert filter, pole-zero plot after SOCP PCLS optimisation.

epsilon2 = [0, -1, 0, -1, ...
0, 1, 0, -1, ...
0, -1, 0, -1];

p2 = [2.5321258966, 2.5321258966, 0.6186740081, 0.6186740081, ...
0.9675108467, 0.9675108467, 0.9952420802, 0.9952420802, ...
0.9971679092, 0.9971679092, 0.9997525871, 0.9997525871];

c2 = [0.0448018770, 0.0542649672, 0.2298451918, 0.2951135430, ...
0.2718302390, 0.7129233456, -0.5850959945, -0.1584099969, ...

-0.0729709690, -0.0378245150, -0.0196809886, -0.0108624780, ...
-0.0051606020];

The corresponding denominator and numerator transfer function polynomials are:

d2 = [1.0000000000, -0.0000000000, -1.2715156655, -0.0000000000, ...
0.4559383943, -0.0000000000, -0.0295366321, -0.0000000000, ...

-0.0012455532, -0.0000000000, 0.0022740311, -0.0000000000, ...
0.0002474435];

n2 = [-0.0051606020, -0.0108597901, -0.0131143324, -0.0239088648, ...
-0.0500984734, -0.1146485598, -0.4986067194, 0.8730567206, ...
0.9706846806, -0.7733973297, -0.4648979103, 0.2041186618, ...
0.0595326924];

318

0 0.1 0.2 0.3 0.4 0.5

-0.2
-0.1

0
0.1
0.2

Hilbert filter PCLS:R=2,ft1=0.05,ft2=0.075,dBap=0.1,tp=5.5,tpr=0.5,pr=0.01,Wap=1,Wtp=0.005,Wpp=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-0.52
-0.51

-0.5
-0.49
-0.48

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5

4
5
6
7

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.88: Schur one-multiplier lattice Hilbert filter, response after SQP PCLS optimisation.

10.3.12 Design of an IIR one-multiplier Schur lattice Hilbert filter using SQP

The Octave script schurOneMlattice_sqp_slb_hilbert_test.m implements the design of an IIR one-multiplier Schur lattice Hilbert
filter with SQP and PCLS. The specification of the filter is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=0.0001 % Tolerance on constraints
n=400 % Frequency points across the band
dmax=0.100000 % Constraint on norm of coefficient SQP step size
rho=0.999900 % Constraint on lattice coefficient magnitudes
ft1=0.05 % First transition band [0,ft1]
ft2=0.075 % Second transition band [ft1,ft2]
dBap=0.1 % Amplitude pass band peak-to-peak ripple
Wat=0.05 % Amplitude transition band weight
Wap=1 % Amplitude pass band weight
tp=5.5 % Nominal pass band filter group delay
tpr=0.5 % Pass band filter group delay peak-to-peak ripple
Wtp=0.005 % Pass band group delay weight
pr=0.01 % Pass band peak-to-peak phase ripple(rad.)
Wpp=1 % Pass band phase weight

The initial filter is that of the Octave script iir_sqp_slb_hilbert_test.m designed by the method of Tarczynski et al. with the Octave
script tarczynski_hilbert_test.m, as shown in Section 8.2.7. The denominator polynomial of the filter has coefficients in z2 only.
Figure 10.88 shows the response of the Hilbert filter after SQP PCLS optimisation. The phase response shown has been adjusted
by the nominal group delay, ωτp. The values shown on the phase axis of the phase response plot are multiples of π radians.
Figure 10.89 shows the pole-zero plot of the Hilbert filter after SQP PCLS optimisation.

The SQP PCLS optimised Schur one-multiplier all-pass lattice and numerator tap coefficients of the Hilbert filter are:

k2 = [0.0000000000, -0.9135081373, 0.0000000000, 0.5546428086, ...
0.0000000000, -0.0966755724, 0.0000000000, 0.0007462344, ...
0.0000000000, -0.0020582170, 0.0000000000, 0.0015840384];

319

-2 -1 0 1

-2

-1

0

1

2

Hilbert filter PCLS:R=2,ft1=0.05,ft2=0.075,dBap=0.1,tp=5.5,tpr=0.5,pr=0.01,Wap=1,Wtp=0.005,Wpp=1

Figure 10.89: Schur one-multiplier lattice Hilbert filter, pole-zero plot after SQP PCLS optimisation.

epsilon2 = [0, -1, 0, -1, ...
0, 1, 0, -1, ...
0, 1, 0, -1];

p2 = [2.2748006766, 2.2748006766, 0.4836328779, 0.4836328779, ...
0.9036013965, 0.9036013965, 0.9956211212, 0.9956211212, ...
0.9963643653, 0.9963643653, 0.9984172142, 0.9984172142];

c2 = [0.0435189928, 0.0508921400, 0.2428519501, 0.2882277492, ...
0.1877845013, 0.2854412265, 0.6862739758, -0.5909939643, ...

-0.1639093080, -0.0790058477, -0.0435858016, -0.0252833113, ...
-0.0155222724];

The corresponding denominator and numerator transfer function polynomials are:

d2 = [1.0000000000, -0.0000000000, -1.4738762062, -0.0000000000, ...
0.6926629918, -0.0000000000, -0.0993577339, -0.0000000000, ...
0.0048769769, -0.0000000000, -0.0043928883, -0.0000000000, ...
0.0015840384];

n2 = [-0.0155222724, -0.0252432615, -0.0206388520, -0.0415129856, ...
-0.1099263712, -0.4898681275, 0.8953685695, 1.0719004668, ...
-0.9469562885, -0.6486747906, 0.3460726376, 0.1328074276, ...
-0.0279441389];

320

10.3.13 Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass Hilbert filter using
SOCP

The Octave script schurOneMPAlattice_socp_slb_bandpass_hilbert_test.m implements the design of a band-pass IIR Hilbert
filter composed of the difference of two parallel one-multiplier Schur lattice all-pass filters with SOCP and PCLS optimisation.
The specification of the filter is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=4e-06 % Tolerance on constraints
difference=1 % Use difference of all-pass filters
rho=0.999000 % Constraint on all-pass pole radius
n=1000 % Frequency points across the band
fasl=0.05 % Stop band amplitude response lower edge
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
fasu=0.25 % Stop band amplitude response upper edge
dBap=0.100000 % Pass band amplitude response ripple(dB)
dBas=40.000000 % Stop band amplitude response ripple(dB)
Wasl=100 % Lower stop band amplitude response weight
Watl=0.001 % Lower transition band amplitude response weight
Wap=1 % Pass band amplitude response weight
Watu=0.001 % Upper transition band amplitude response weight
Wasu=100 % Upper stop band amplitude response weight
ftpl=0.11 % Pass band group-delay response lower edge
ftpu=0.19 % Pass band group-delay response upper edge
tp=16.000000 % Pass band nominal group-delay response(samples)
tpr=0.020000 % Pass band group-delay response ripple(samples)
Wtp=10 % Pass band group-delay response weight
fppl=0.11 % Pass band phase response lower edge
fppu=0.19 % Pass band phase response upper edge
pd=3.500000 % Pass band nominal phase response(rad./pi)
pdr=0.001500 % Pass band phase response ripple(rad./pi)
Wpp=200 % Pass band phase response weight

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_bandpass_hilbert_test.m. Fig-
ure 10.90 shows the overall and passband responses of the filter after SOCP PCLS optimisation. The phase response shown is
adjusted for the nominal delay. The band-pass filter SOCP PCLS optimised Schur one-multiplier all-pass lattice coefficients are:

A1k = [-0.4593688607, 0.8388619392, -0.2696667474, 0.1101905355, ...
0.6684276622, -0.3628031412, 0.1872036968, 0.4684976847, ...

-0.3496919062, 0.2546120491];

A1epsilon = [1, 1, 1, -1, ...
-1, -1, -1, 1, ...
1, -1];

A2k = [-0.8147753076, 0.8838439780, -0.3376370032, 0.0806482436, ...
0.6846577803, -0.3332188908, 0.1955071392, 0.4701112123, ...

-0.3353417567, 0.2582827716];

A2epsilon = [1, 1, 1, -1, ...
-1, -1, -1, 1, ...
1, -1];

321

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

A
m

pl
itu

de
(d

B
)

Parallel all-pass bandpass Hilbert : dBap=0.1,dBas=40

0 0.1 0.2 0.3 0.4 0.5
-44

-42

-40

-38

-36

0 0.1 0.2 0.3 0.4 0.5
-0.0002
-0.0001

0
0.0001
0.0002

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
15.98
15.99

16
16.01
16.02

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.90: Response of a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter after SOCP PCLS optimisation.
The phase response shown is adjusted for the nominal delay.

322

10.3.14 Design of a parallel IIR Schur approximately normalised scaled all-pass lattice band-pass
Hilbert filter using SOCP

The Octave script schurNSPAlattice_socp_slb_bandpass_hilbert_test.m implements the design of a band-pass IIR Hilbert filter
composed of the difference of two parallel normalised scaled Schur lattice all-pass filters with SOCP and PCLS optimisation. In
fact, this design is only approximately normalised-scaled since the s20 and s00 coefficients are assumed to be independent rather
than related by σ00 =

√
1− σ2

20. The design enforces σ02 = −σ20 and σs22 = σ00. The specification of the filter is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=5e-05 % Tolerance on constraints
difference=1 % difference of all-pass filters
rho=0.999000 % Constraint on allpass coefficients
sxx_symmetric=1 % enforce s02=-s20 and s22=s00
n=1000 % Frequency points across the band
fasl=0.05 % Amplitude stop band lower edge
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
fasu=0.25 % Amplitude stop band upper edge
dBap=0.08 % Amplitude pass band peak-to-peak ripple
dBas=37 % amplitude stop band peak-to-peak ripple
Wasl=400 % Amplitude lower stop band weight
Watl=0.001 % Amplitude transition band lower weight
Wap=1 % Amplitude pass band weight
Watu=0.001 % Amplitude upper transition band weight
Wasu=400 % Amplitude upper stop band weight
ftpl=0.11 % Delay pass band lower edge
ftpu=0.19 % Delay pass band upper edge
tp=16 % Nominal pass band filter group delay
tpr=0.008 % Delay pass band peak-to-peak ripple
Wtp=2 % Delay pass band weight
fppl=0.11 % Phase pass band lower edge
fppu=0.19 % Phase pass band upper edge
pp=3.5 % Nominal pass band filter phase
ppr=0.002 % Phase pass band peak-to-peak ripple
Wpp=100 % Phase pass band weight

The initial parallel all-pass filters were designed by the Octave script tarczynski_parallel_allpass_bandpass_hilbert_test.m. Fig-
ure 10.91 shows the overall and passband responses of the filter after SOCP PCLS optimisation. The phase response shown
is adjusted for the nominal delay. The band-pass Hilbert filter SOCP PCLS optimised Schur approximately normalised scaled
all-pass lattice coefficients are:

A1s20 = [-0.4818644281, 0.8545484758, -0.2591488243, 0.0973333784, ...
0.6535658278, -0.3285325125, 0.1564488762, 0.3899243842, ...

-0.3166149743, 0.2153141621]';

A1s00 = [0.8725991218, 0.5484518463, 0.9699000354, 0.9890931222, ...
0.7754356684, 0.9487174071, 0.9936768503, 0.8809956133, ...
0.9578436621, 0.9800410322]';

A2s20 = [-0.8194569979, 0.8746153394, -0.3386689183, 0.0667649459, ...
0.6744769009, -0.2937403961, 0.1547089206, 0.4009566753, ...

-0.2964718833, 0.2239269215]';

A2s00 = [0.5806665691, 0.4526644073, 0.9398579288, 0.9974496132, ...
0.7565383824, 0.9552893070, 0.9866651964, 0.9021615925, ...
0.9570341927, 0.9769953007]';

The script simulates this filter with a uniform random noise input. The standard deviations of the all-pass filter state variables
are:

A1stdx = [1.0367, 1.0448, 1.0127, 1.0018, ...
1.0051, 0.9956, 0.9838, 0.9738, ...
1.0123, 1.0016];

323

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

A
m

pl
itu

de
(d

B
)

Parallel all-pass bandpass Hilbert : dBap=0.08,dBas=37

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

0 0.1 0.2 0.3 0.4 0.5
-0.0001
-5e-05

0
5e-05

0.0001

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
15.996
15.998

16
16.002
16.004

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.91: Response of a parallel Schur approximately normalised scaled all-pass lattice band-pass Hilbert filter after SOCP
PCLS optimisation. The phase response shown is adjusted for the nominal delay.

A2stdx = [0.9625, 0.9620, 0.9938, 0.9946, ...
0.9951, 0.9847, 0.9821, 0.9849, ...
1.0022, 1.0006];

324

10.3.15 Design of a parallel IIR Schur one-multiplier all-pass lattice multi-band-pass filter using
SOCP

The Octave script schurOneMPAlattice_socp_slb_lowpass_to_multiband_test.m implements the design of a multi-band-pass IIR
filter composed of the difference of two parallel one-multiplier Schur lattice all-pass filters with SOCP and PCLS optimisation.
The specification of the filter is:

tol=0.0001 % Tolerance on combined response
mtol=0.0001 % Tolerance on MMSE update
ptol=0.0001 % Tolerance on PCLS update
ctol=0.0001 % Tolerance on constraints
maxiter=10000 % SOCP iteration limit
npoints=1000 % Frequency points across the band
nplot=1000 % Frequency points plotted across the band
rho=0.996094 % Constraint on allpass coefficients
fas1u=0.05 % Amplitude stop band 1 upper edge
fap1l=0.075 % Amplitude pass band 1 lower edge
fap1u=0.1 % Amplitude pass band 1 upper edge
fas2l=0.125 % Amplitude stop band 2 lower edge
fas2u=0.15 % Amplitude stop band 2 upper edge
fap2l=0.175 % Amplitude pass band 2 lower edge
fap2u=0.225 % Amplitude pass band 2 upper edge
fas3l=0.25 % Amplitude stop band 3 lower edge
dBas1=20 % Amplitude stop band 1 attenuation
dBap1=1 % Amplitude pass band 1 peak-to-peak ripple
dBas2=20 % Amplitude stop band 2 attenuation
dBap2=1 % Amplitude pass band 2 peak-to-peak ripple
dBas3=20 % Amplitude stop band 3 attenuation
Was1=1 % Amplitude stop band 1 weight
Wap1=1 % Amplitude pass band 1 weight
Was2=1 % Amplitude stop band 2 weight
Wap2=1 % Amplitude pass band 2 weight
Was3=1 % Amplitude stop band 3 weight
ftp1l=0.08 % Delay pass band 1 lower edge
ftp1u=0.095 % Delay pass band 1 upper edge
ftp2l=0.185 % Delay pass band 2 lower edge
ftp2u=0.215 % Delay pass band 2 upper edge
tp1=23 % Nominal pass band 1 filter group delay
tp2=13 % Nominal pass band 2 filter group delay
tpr1=2 % Delay pass band 1 peak-to-peak ripple
tpr2=2 % Delay pass band 2 peak-to-peak ripple
Wtp1=0.005 % Delay pass band 1 weight
Wtp2=0.005 % Delay pass band 2 weight

The initial parallel all-pass filters are designed by the frequency transformation of a prototype elliptic low-pass filter. The parallel
all-pass multi-band filter orders are 12 and 8. The SOCP PCLS optimised lattice coefficients are:

A1k = [-0.8284814286, 0.9619285274, -0.5895615255, 0.8587700995, ...
-0.7055500672, 0.7605379424, -0.4239830987, 0.7855591572];

A1epsilon = [1, 1, 1, -1, ...
-1, 1, 1, -1];

A2k = [-0.8236548196, 0.9115734805, -0.8137477287, 0.8741940439, ...
-0.7512126727, 0.9917707622, -0.2544288989, 0.9046419603, ...
-0.7502018217, 0.8162944796, -0.4682769792, 0.7041672063];

A2epsilon = [-1, -1, -1, -1, ...
1, 1, 1, -1, ...
1, 1, 1, 1];

325

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.92: Schur one-multiplier parallel all-pass lattice multi-band filter, response after SOCP PCLS optimisation. The initial
filter is designed by a low-pass to multi-band frequency transformation.

0 0.1 0.2 0.3 0.4 0.5
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
21

22

23

24

25

Frequency

D
el

ay
(s

am
pl

es
)

0 0.1 0.2 0.3 0.4 0.5
11

12

13

14

15

Figure 10.93: Schur one-multiplier parallel all-pass lattice multi-band filter, pass-band response after SOCP PCLS optimisation.
The initial filter is designed by a low-pass to multi-band frequency transformation.

326

Figure 10.92 shows the amplitude and delay response of the PCLS SOCP optimised parallel all-pass filter. Figure 10.93 shows
the pass-band response of the filter.

The Octave script schurOneMPAlattice_socp_slb_multiband_test.m implements the design of a multi-band-pass IIR filter com-
posed of the difference of two parallel one-multiplier Schur lattice all-pass filters with SOCP and PCLS optimisation. The
specification of the filter is:

tol=0.0001 % Tolerance on combined response
mtol=0.0001 % Tolerance on MMSE update
ptol=0.0001 % Tolerance on PCLS update
ctol=1e-06 % Tolerance on constraints
maxiter=2000 % SOCP iteration limit
npoints=1000 % Frequency points across the band
nplot=1000 % Frequency points plotted across the band
rho=0.996094 % Constraint on allpass coefficients
ma=14 % Order of the first all-pass filter
mb=14 % Order of the second all-pass filter
fas1u=0.05 % Amplitude stop band 1 upper edge
fap1l=0.08 % Amplitude pass band 1 lower edge
fap1u=0.095 % Amplitude pass band 1 upper edge
fas2l=0.125 % Amplitude stop band 2 lower edge
fas2u=0.15 % Amplitude stop band 2 upper edge
fap2l=0.175 % Amplitude pass band 2 lower edge
fap2u=0.225 % Amplitude pass band 2 upper edge
fas3l=0.25 % Amplitude stop band 3 lower edge
dBas1=30 % Amplitude stop band 1 attenuation
dBap1=1 % Amplitude pass band 1 peak-to-peak ripple
dBas2=20 % Amplitude stop band 2 attenuation
dBap2=1 % Amplitude pass band 2 peak-to-peak ripple
dBas3=30 % Amplitude stop band 3 attenuation
Was1=1 % Amplitude stop band 1 weight
Wap1=2 % Amplitude pass band 1 weight
Was2=2 % Amplitude stop band 2 weight
Wap2=1 % Amplitude pass band 2 weight
Was3=1 % Amplitude stop band 3 weight
ftp1l=0.08 % Delay pass band 1 lower edge
ftp1u=0.095 % Delay pass band 1 upper edge
ftp2l=0.175 % Delay pass band 2 lower edge
ftp2u=0.225 % Delay pass band 2 upper edge
tp1=20 % Nominal pass band 1 filter group delay
tp2=20 % Nominal pass band 2 filter group delay
tpr1=2 % Delay pass band 1 peak-to-peak ripple
tpr2=2 % Delay pass band 2 peak-to-peak ripple
Wtp1=0.01 % Delay pass band 1 weight
Wtp2=0.01 % Delay pass band 2 weight

The initial parallel all-pass filters are designed by the Octave script tarczynski_parallel_allpass_multiband_test.m. The SOCP
PCLS optimised lattice coefficients are:

A1k = [0.5726199496, -0.1177764108, 0.3238234552, 0.8127661774, ...
-0.2558468863, 0.1021006247, 0.5731557410, -0.1380276883, ...
0.1955612118, 0.3973182703, 0.0021644189, 0.0088422772, ...
0.2329937191, -0.1280965491];

A1epsilon = [-1, -1, -1, 1, ...
1, -1, -1, -1, ...

-1, 1, -1, -1, ...
-1, 1];

A2k = [0.7907028451, 0.2515770808, 0.1447035462, 0.6955091266, ...
-0.3448473797, 0.0241903869, 0.5090199325, -0.2140969265, ...
0.1635371854, 0.3838140919, -0.0117301813, 0.0243555770, ...
0.2775395987, -0.0687032638];

327

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.94: Schur one-multiplier parallel all-pass lattice multi-band filter, response after SOCP PCLS optimisation.

A2epsilon = [1, -1, -1, 1, ...
1, -1, -1, 1, ...

-1, 1, 1, -1, ...
-1, 1];

Figure 10.94 shows the amplitude and delay response of the PCLS SOCP optimised parallel all-pass filter. Figure 10.95 shows
the pass-band response of the filter.

328

0 0.1 0.2 0.3 0.4 0.5
-1.5

-1

-0.5

0

0.5

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
18

19

20

21

22

Frequency

D
el

ay
(s

am
pl

es
)

0 0.1 0.2 0.3 0.4 0.5
18

19

20

21

22

Figure 10.95: Schur one-multiplier parallel all-pass lattice multi-band filter, pass-band response after SOCP PCLS optimisation.

329

Figure 10.96: Simple frequency response masking filter.

Figure 10.97: Lim’s frequency response masking filter structure.

10.4 Design of IIR filters with a sharp transition band by frequency response mask-
ing

10.4.1 Review of Frequency Response Masking digital filters

Frequency response masking (FRM) is a technique for designing digital filters with sharp transition bands. Given a prototype
or “model” low-pass filter, G (z), the filter G

(
zM
)

has a pass-band width and pass-band to stop-band transition width that is
reduced by a factor M compared to the model low-pass filter and also has M images across the whole frequency band. The
“masking” filter, F (z) selects the required filter image frequency response. The resulting filter is G

(
zM
)
F (z), illustrated

in Figure 10.96. This simple frequency response masking filter technique is only suitable for designing narrow-band filters.
Lim [256] describes the design of digital filters with sharp transition bands with wider bandwidths using FIR model and masking
filters. Lu and Hinamoto [246] describe the design of digital filters with an IIR model filter and FIR masking filters using a
structure, shown in Figure 10.97, that is similar to Lim’s. The passband delay of Fa (z) is D so that Fc = z−D − Fa (z) is
complementary to Fa (z).

Johansson and Wanhammar [79] describe design of frequency response masking filters with a model filter consisting of parallel
all-pass filters, FIR masking filters and the structure shown in Figure 10.98. Johansson and Wanhammar specify a delay line in
one arm of the model filter if approximately linear phase response is desired.

In the following I use Lim’s description of frequency response masking for the two cases shown in Figure 10.99 [256, Section
III, Figure 4]. Figure 10.99a shows the response of a prototype filter a with frequency response, Fa (ω), having passband and

Figure 10.98: Johansson and Wanhammar’s frequency response masking filter structure.

330

stopband edge frequencies of θ and ϕ respectively. Figure 10.99b shows the response of the complementary filter Fc (z) =
z−D − Fa (z). Figure 10.99c shows the responses of the filters F ′a (z) = Fa

(
zM
)

and F ′c (z) = Fc

(
zM
)
. Each response is

aliased into M images across the frequency band. The aliased response of the model filter is masked by FMa
and the aliased

response of the complement to the model filter is masked by FMc
. For example, in Figure 10.99d, FMa

has passband and
stopband edge frequencies of ωMap

= 2mπ+θ
M and ωMas

= 2(m+1)π−ϕ
M respectively. Here ωMap

includes the m’th image band
of the model filter and ωMas

excludes the m + 1’th image band of the model filter. The complementary masking filter, FMc
,

has passband and stopband edge frequencies of ωMcp = 2mπ−θ
M and ωMcs = 2mπ+ϕ

M respectively so that the m− 1’th image of
the complementary filter is included and the m’th image is excluded. The resulting frequency response masking filter, shown in
Figure 10.99e, has passband edge ωp = 2mπ+θ

M and stopband edge ωs = 2mπ+ϕ
M . Alternatively, Figures 10.99f and 10.99g show

the frequency response masking filter for which the passband edge is ωp = 2mπ−ϕ
M and the stopband edge is ωs = 2mπ−θ

M . In
this case the filter includes m− 1 images of the model filter and m− 1 images of the complementary filter.

In order that 0 < θ < ϕ < π in Figure 10.99a, for Figure 10.99e

m = ⌊ωpM

2π ⌋

θ = ωpM − 2mπ
ϕ = ωsM − 2mπ

and for Figure 10.99g

m = ⌈ωsM

2π ⌉

θ = 2mπ − ωsM

ϕ = 2mπ − ωpM

where ⌊x⌋ and ⌈x⌉ represent the largest integer less than x and the smallest integer larger than x respectively.

331

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10.99: Frequency response masking with Lim’s filter structure.

332

10.4.2 Design of an FRM digital filter with an IIR model filter consisting of a cascade of second-
order sections using SOCP

In this section I follow Lu and Hinamoto [246, Section V] The FRM filter structure is shown in Figure 10.97. The model filter is
an IIR filter of the form

Fa (z) = a (z)
d (z)

where

a (z) =
n∑

k=0
akz
−k

and d (z) is a product of second order sections (with one first order section if r is odd)

d (z) =
{(

1 + d0z
−1)∏ r−1

2
k=1

(
1 + dk1z

−1 + dk2z
−2) , if r odd∏ r

2
k=1

(
1 + dk1z

−1 + dk2z
−2) , if r even

Define the two model filter coefficient vectors as

a =
[
a0 a1 . . . an

]⊤
and

d =

d0
d1
...

dL

dk =

[
dk1
dk2

]
, for 1 ≤ k ≤ L

L =
{

r−1
2 , if r odd

r
2 , if r even

The masking filters are

FMa (z) =
na−1∑
k=0

pkz
−k

FMc
(z) =

nc−1∑
k=0

qkz
−k

FMa
(z) and FMc

(z) are assumed to have linear phase responses; the lengths na and nc are assumed to be both even or odd; and
the group delays of FMa

(z) and FMc
(z) are both d = max

{
na−1

2 , nc−1
2
}

(if necessary, one filter is padded with extra delays).

The frequency response of the symmetric, linear phase, FIR masking filters is (in the case of FMa)

FMa (ω) =
na−1∑
k=0

pke
−ıωk

= e−ıω na−1
2

pna−1
2

+ 2
∑na−1

2
k=1 pk+ na−1

2
cos kω, if na odd

2
∑na

2
k=1 pk+ na

2 −1 cos
(
k − 1

2
)
ω, if na even

The desired passband group delay of the FRM filter is Ds = d+MD where D is the group delay of the model filter. The desired
frequency response of the FRM filter can be expressed as

e−ıDsωH (x, ω)

where

H (x, ω) = H̃a (Mω)
[
a⊤a ca (ω)− a⊤c cc (ω)

]
+ a⊤c cc (ω)

333

H̃a (ω) = eıDω a (ω)
d (ω) = a⊤v (ω)

d (ω)
v (ω) = c (ω) + ıs (ω)

c (ω) =
[

cosDω . . . cos (D − n)ω
]⊤

s (ω) =
[

sinDω . . . sin (D − n)ω
]⊤

v1 (ω) = cosω − ı sinω

v2 (ω) =
[

cosω
cos 2ω

]
− ı
[

sinω
sin 2ω

]
and

d (ω) =

[1 + d0v1 (ω)]
∏L

k=1

[
1 + d⊤k v2 (ω)

]
, if r odd∏L

k=1

[
1 + d⊤k v2 (ω)

]
, if r even

aa =

[
pna−1

2
pna+1

2
. . . pna−1

]⊤
, if na odd[

pna
2

pna
2 +1 . . . pna−1

]⊤
, if na even

ca (ω) =

[

1 2 cosω . . . 2 cos (na−1)
2 ω

]⊤
, if na odd[

2 cos 1
2ω . . . 2 cos (na−1)

2 ω
]⊤

, if na even

ac =

[
qnc−1

2
qnc+1

2
. . . qnc−1

]⊤
, if nc odd[

qnc
2

qnc
2 +1 . . . qnc−1

]⊤
, if nc even

cc (ω) =

[

1 2 cosω . . . 2 cos (nc−1)
2 ω

]⊤
, if nc odd[

2 cos 1
2ω . . . 2 cos (nc−1)

2 ω
]⊤

, if nc even

The gradient of H (x, ω) is

∂H (x, ω)
∂x

=

y (ω) ∂H̃a(Mω)

∂a

y (ω) ∂H̃a(Mω)
∂d

H̃a (Mω) ca (ω)[
1− H̃a (Mω)

]
cc (ω)

⊤

where

y (ω) = a⊤a ca (ω)− a⊤c cc (ω)
∂H̃a (ω)
∂a

= v (ω)
d (ω)

∂H̃a (ω)
∂d

=
[

∂H̃a(ω)
∂d0

∂H̃a(ω)
∂d1

. . . ∂H̃a(ω)
∂dL

]
with

∂H̃a (ω)
∂d0

= −H̃a (ω) v1 (ω)
1 + d0v1 (ω)

∂H̃a (ω)
∂dk

= −H̃a (ω) v2 (ω)
1 + d⊤k v2 (ω)

, for 1 ≤ k ≤ L

The overall parameter vector is

x =

a
d
aa

ac

The calculation of the FRM zero-phase frequency response, H (x, ω), and its gradient with respect to the coefficients is imple-
mented in the Octave function frm2ndOrderCascade.

The SOCP optimisation of an FRM filter is implemented in the Octave function frm2ndOrderCascade_socp. The Octave script
frm2ndOrderCascade_socp_test.m designs a FRM filter similar to that of the example shown by Lu and Hinamoto [246, Section
V.E]. The specification of the FRM filter is:

334

tol=1e-06 % Tolerance on coefficient update vector
n=1200 % Frequency points across the band
mn=10 % Model filter numerator order (mn+1 coefficients)
mr=10 % Model filter denominator order (mr coefficients)
na=33 % Model masking filter FIR length
nc=33 % Model complementary masking filter FIR length
M=9 % Decimation
Dmodel=7 % Model filter pass band group delay
dmask=16 % Masking filter nominal delay
fpass= 0.3 % Pass band edge
fstop=0.305 % Stop band edge
dBas=55 % Stop band attenuation
Wap=1 % Pass band weight
Wapextra=0 % Extra weight for extra pass band points
Wasextra=0 % Extra weight for extra stop band points
Was=9 % Stop band weight
tau=0.1 % Stability parameter
edge_factor=0.1 % Add extra frequencies near band edges
edge_ramp=0 % Linear change in extra weights over edge region

For comparison, the example of Lu and Hinamoto uses mn = 14, na = 41 and D = 9 and has a nominal passband delay of
101 samples. The SOCP pass minimises the combined error of the pass and stop bands at the constraint frequencies. Those
frequencies are chosen so that half are concentrated in the union of the regions [0.9fp fp] and [fs 1.1fs]. I found during
debugging that the best results were obtained if the model filter denominator polynomial second order sections are rearranged
after each of the first few SOCP passes. The initial filter uses FIR filter and IIR model filter numerator polynomials calculated by
the Octave remez function and a model filter denominator polynomial of d = 1. This initial FRM filter results in a better FRM
filter than the initial FRM filter calculated by the Octave script tarczynski_frm_iir_test.m.

The model filter numerator polynomial is

a = [-0.0667264485, 0.2072379724, -0.2564288787, 0.0445084083, ...
0.2504619393, -0.0228221368, -0.8467977459, -0.4400852109, ...

-0.6461068568, 1.1962269573, -0.1176617192]';

The model filter denominator polynomial is

d = [1.0000000000, -1.1392092158, 1.0801770789, -1.0241484897, ...
0.3983763818, 0.0747241150, -0.2413146528, 0.1863163732, ...

-0.0782003558, 0.0174506101, -0.0016902169]';

The masking filter polynomial is

aa = [0.0037168368, -0.0091745988, -0.0029947953, 0.0149019252, ...
-0.0084125073, -0.0131311784, 0.0227050116, 0.0020457162, ...
-0.0214679889, 0.0345970647, -0.0133656744, -0.0454675155, ...
0.0734989422, -0.0105590899, -0.1387286863, 0.2788564015, ...
0.6784834603, 0.2788564015, -0.1387286863, -0.0105590899, ...
0.0734989422, -0.0454675155, -0.0133656744, 0.0345970647, ...

-0.0214679889, 0.0020457162, 0.0227050116, -0.0131311784, ...
-0.0084125073, 0.0149019252, -0.0029947953, -0.0091745988, ...
0.0037168368]';

The complementary masking filter polynomial is

ac = [0.0017264062, -0.0048730648, -0.0004511635, 0.0074951130, ...
-0.0065898215, -0.0051544916, 0.0136077603, -0.0029613565, ...
-0.0089449370, 0.0278671481, -0.0228490112, -0.0300028725, ...
0.0718619282, -0.0265100829, -0.1223758020, 0.2864957398, ...
0.6526963763, 0.2864957398, -0.1223758020, -0.0265100829, ...
0.0718619282, -0.0300028725, -0.0228490112, 0.0278671481, ...

-0.0089449370, -0.0029613565, 0.0136077603, -0.0051544916, ...
-0.0065898215, 0.0074951130, -0.0004511635, -0.0048730648, ...
0.0017264062]';

335

0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

FRM filter response:M=9,Dmodel=7,fpass=0.3,fstop=0.305,Was=9

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
60

70

80

90

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.100: Second order cascade FRM filter response.

0 0.05 0.1 0.15 0.2 0.25
-0.4

-0.2

0

0.2

0.4

FRM filter passband response:M=9,Dmodel=7,fpass=0.3,fstop=0.305,Was=9

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
76

78

80

82

84

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.101: Second order cascade FRM filter passband response.

336

0 0.1 0.2 0.3 0.4 0.5
-15

-10

-5

0

5

10

15

FRM model filter:M=9,Dmodel=7,fpass=0.3,fstop=0.305,Was=9

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.102: Second order cascade FRM model filter response.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

FRM masking filters:M=9,Dmodel=7,fpass=0.3,fstop=0.305,Was=9

A
m

pl
itu

de
(d

B
)

Frequency

Mask
Comp

Figure 10.103: Second order cascade FRM masking filter responses.

337

0 0.05 0.1 0.15 0.2 0.25

-2

0

2

4

Pa
ss

ba
nd

am
pl

itu
de

(d
B

)

Passband frequency

FRM
FIR

0.35 0.4 0.45 0.5
-60

-55

-50

-45

-40

-35

-30

St
op

ba
nd

am
pl

itu
de

(d
B

)

Stopband frequency

Figure 10.104: Comparison of the second order cascade FRM filter with a linear-phase FIR filter designed with remez.

Figure 10.100 shows the overall response of the resulting FRM filter. Figure 10.101 shows the passband response of the FRM
filter. Figure 10.102 shows the decimated response of the FRM model filter. Figure 10.103 shows the responses of the FRM
masking filters. Figure 10.104 compares the amplitude response of the FRM filter with that of a linear-phase FIR filter having
a group delay of 79 samples designed with the remez function:

br=remez(((M*D)+d)*2,[0 fpass fstop 0.5]*2,[1 1 0 0],[1 Was]);

338

10.4.3 Design of an FRM digital filter with an IIR model filter represented in gain-pole-zero form
using SOCP and PCLS optimisation

This section describes an FRM filter with the Lim FRM filter structure shown in Figure 10.97 in which the model filter is
represented in gain-pole-zero form and the FIR masking filters are symmetric (ie: linear phase). The squared-amplitude and the
group delay of the MMSE optimised FRM filter response are constrained by the PCLS algorithm of Selesnick, Lang and Burrus,
described in Section 8.1.2.

Using the notation of Section 10.4.2, the desired passband group delay of the FRM filter isDs = dmask +MmodelDmodel, where
Dmodel is the delay of the pure delay branch of the FRM filter, Mmodel is the decimation factor of the IIR model filter and dmask

is the group delay of the linear phase FIR masking filters. If R (ω) eıϕR(ω) is the frequency response of the IIR model filter then
the zero phase response of the FRM filter is

H (x, ω) = A (ω)R (Mω) eıϕZ (Mω) +B (ω)

where

ϕZ (ω) = Dω + ϕR (ω)
A (ω) = a⊤a ca (ω)− a⊤c cc (ω)
B (ω) = a⊤c cc (ω)

The squared-magnitude and phase responses of the zero phase response of the FRM filter are

|H (ω)|2 = A2 (ω)R2 (Mω) +B2 (ω) + 2A (ω)B (ω)R (Mω) cosϕZ (Mω)

ϕH (ω) = arctan A (ω)R (Mω) sinϕZ (Mω)
A (ω)R (Mω) cosϕZ (Mω) +B (ω)

The group delay response, T (ω), of the zero phase response of the FRM filter (ie: the group delay error of the FRM filter,−∂ϕH

∂ω)
is given by

|H (ω)|2 T (ω) =−
(
A2 (ω)R2 (Mω) +A (ω)B (ω)R (Mω) cosϕZ (Mω)

) ∂ϕZ (Mω)
∂ω

. . .

−A (ω)B (ω) sinϕZ (Mω) ∂R (Mω)
∂ω

. . .

+R (Mω) sinϕZ (Mω)
(
A (ω) ∂B (ω)

∂ω
−B (ω) ∂A (ω)

∂ω

)
where

∂ϕZ (Mω)
∂ω

= DM + ∂ϕR (Mω)
∂ω

∂A (ω)
∂ω

= a⊤a sa (ω)− a⊤c sc (ω)

∂B (ω)
∂ω

= a⊤c sc (ω)

sa (ω) =

−2
[

0 sinω . . . (na−1)
2 sin (na−1)

2 ω
]⊤

, if na odd

−2
[

sin 1
2ω . . . (na−1)

2 sin (na−1)
2 ω

]⊤
, if na even

sc (ω) =

−2
[

0 sinω . . . (nc−1)
2 sin (nc−1)

2 ω
]⊤

, if nc odd

−2
[

sin 1
2ω . . . (nc−1)

2 sin (nc−1)
2 ω

]⊤
, if nc even

The gradients of |H (ω)|2 with respect to the coefficients are

∂ |H (ω)|2

∂r
= 2

(
A2 (ω)R (Mω) +A (ω)B (ω) cosϕZ (Mω)

) ∂R (Mω)
∂r

. . .

− 2A (ω)B (ω)R (Mω) sinϕZ (Mω) ∂ϕR (Mω)
∂r

∂ |H (ω)|2

∂a
= 2

(
A (ω)R2 (Mω) +B (ω)R (Mω) cosϕZ (Mω)

) ∂A (ω)
∂a

. . .

339

+ 2 (B (ω) +A (ω)R (Mω) cosϕZ (Mω)) ∂B (ω)
∂a

where r represents the coefficients of the IIR model filter, and a represents the coefficients of both the masking filter, aa, and
the complementary masking filter, ac.

The gradients of T (ω) with respect to the coefficients are given by

∂ |H (ω)|2

∂r
T (ω) + |H (ω)|2 ∂T (ω)

∂r
= . . .

−
(
A2 (ω)R2 (Mω) +A (ω)B (ω)R (Mω) cosϕZ (Mω)

) ∂2ϕR (Mω)
∂ω∂r

. . .

−
(
2A2 (ω)R (Mω) +A (ω)B (ω) cosϕZ (Mω)

) ∂ϕZ (Mω)
∂ω

∂R (Mω)
∂r

. . .

+A (ω)B (ω)R (Mω) sinϕZ (Mω) ∂ϕZ (Mω)
∂ω

∂ϕR (Mω)
∂r

. . .

−A (ω)B (ω) cosϕZ (Mω) ∂R (Mω)
∂ω

∂ϕR (Mω)
∂r

. . .

−A (ω)B (ω) sinϕZ (Mω) ∂
2R (Mω)
∂ω∂r

. . .

+ sinϕZ (Mω) ∂R (Mω)
∂r

(
A (ω) ∂B (ω)

∂ω
−B (ω) ∂A (ω)

∂ω

)
. . .

+R (Mω) cosϕZ (Mω) ∂ϕR (Mω)
∂r

(
A (ω) ∂B (ω)

∂ω
−B (ω) ∂A (ω)

∂ω

)
and

∂ |H (ω)|2

∂a
T (ω) + |H (ω)|2 ∂T (ω)

∂a
= . . .

−
(
2A (ω)R2 (Mω) +B (ω)R (Mω) cosϕZ (Mω)

) ∂ϕZ (Mω)
∂ω

∂A (ω)
∂a

. . .

−A (ω)R (Mω) cosϕZ (Mω) ∂ϕZ (Mω)
∂ω

∂B (ω)
∂a

. . .

− sinϕZ (Mω) ∂R (Mω)
∂ω

(
A (ω) ∂B (ω)

∂a
+B (ω) ∂A (ω)

∂a

)
. . .

−R (Mω) sinϕZ (Mω)
(
∂A (ω)
∂ω

∂B (ω)
∂a

− ∂B (ω)
∂ω

∂A (ω)
∂a

)
. . .

+R (Mω) sinϕZ (Mω)
(
A (ω) ∂

2B (ω)
∂ω∂a

−B (ω) ∂
2A (ω)
∂ω∂a

)
The amplitude, phase and group delay responses and gradients of the IIR model filter are calculated by the Octave functions iirA,
iirP and iirT. The derivative with respect to frequency of the IIR model filter amplitude response, ∂R

∂ω , is derived in Appendix H
and calculated by the Octave function iirdelAdelw. The Octave function iir_frm.m returns the low pass FRM filter squared-
magnitude and group delay error responses and their gradients.

The Octave function iir_frm_socp_mmse.m finds the SOCP solution that optimises the coefficients of a filter response calculated
by iir_frm.m with the required linear amplitude and group delay constraints. To avoid numerical problems, iir_frm_socp_mmse.m
sets the SeDuMi parameter pars.eps to 1e− 6 rather than the default 1e− 8. The Octave function iir_frm_slb.m implements the
PCLS algorithm for finding the constraint frequencies. The Octave script iir_frm_socp_slb_test.m designs an FRM filter with the
following specification:

n=800 % Frequency points across the band
tol=0.001 % Tolerance on relative coefficient update size
ctol=5e-06 % Tolerance on constraints
ma=10 % IIR model filter numerator order
md=10 % IIR model filter denominator order
na=41 % FIR masking filter length (order+1)
nc=41 % FIR complementary masking filter length (order+1)
Mmodel=9 % Model filter decimation factor
Dmodel=7 % Model filter nominal pass band group delay
dmask=20 % FIR masking filter delay
Tnominal=83 % FIR masking filter delay
fap=0.3 % Pass band edge
dBap=0.2 % Pass band amplitude peak-to-peak ripple

340

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM IIR/delay initial response:Mmodel=9,Dmodel=7,fap=0.3,fas=0.31125,U=2,V=2,M=8,Q=8,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
60

70

80

90

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.105: FRM gain-pole-zero format IIR model filter with WISE optimisation, initial response.

Wap=1 % Pass band weight
tpr=1 % Pass band delay peak-to-peak ripple
Wtp=0.001 % Pass band delay weight
Wat=1e-06 % Transition band amplitude weight
fas=0.31125 % Stop band edge
dBas=40 % Stop band attenuation ripple
fasA=0.31125 % Additional stop band edge
dBasA=40 % Additional stop band attenuation ripple
Was=20 % Stop band weight

The passband edge frequency is the same as that of the design example given by Lu and Hinamoto [246, Section V.E], namely
0.300, but the stop band edge frequency is relaxed from 0.305 to 0.31125. Both FIR masking filters have length 41. The
initial filter is designed by the Octave script tarczynski_frm_iir_test.m with the WISE method of Tarczynski et al. (as shown in
Section 8.1.5). Figure 10.105 shows the overall response of the initial FRM filter. After SOCP and PCLS optimisation of the
initial response the resulting IIR model filter numerator polynomial is

a = [0.0023072067, 0.0001004998, -0.0027009187, -0.0009118762, ...
0.0070683537, 0.0022809590, -0.0152588768, 0.0325623629, ...

-0.0258497547, 0.0075253412, 0.0039808664]';

and the IIR model filter denominator polynomial is

d = [1.0000000000, 0.5103321859, 0.8307417974, 0.3705503351, ...
0.0900090972, -0.0126066756, -0.0129428074, -0.0028778601, ...

-0.0002557166, -0.0000085521, -0.0000008915]';

The FIR masking filter polynomial is

aa = [0.1269145974, 0.1734400528, -0.4578826228, 0.2829389922, ...
0.1394182675, -0.1805542094, 0.0675961726, 0.2274211424, ...

-0.2391590255, -0.0631222160, 0.3888974987, -0.2334031908, ...
-0.2629044691, 0.4008656834, 0.0826279326, -0.4882750388, ...

341

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM IIR/delay PCLS response:Mmodel=9,Dmodel=7,fap=0.3,fas=0.31125,U=2,V=2,M=8,Q=8,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
60

70

80

90

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.106: FRM gain-pole-zero format IIR model filter with SOCP and PCLS optimisation, overall response.

0.2621935021, 0.4023232824, -0.3411513354, 0.5627021602, ...
0.2816829763, 0.5627021602, -0.3411513354, 0.4023232824, ...
0.2621935021, -0.4882750388, 0.0826279326, 0.4008656834, ...

-0.2629044691, -0.2334031908, 0.3888974987, -0.0631222160, ...
-0.2391590255, 0.2274211424, 0.0675961726, -0.1805542094, ...
0.1394182675, 0.2829389922, -0.4578826228, 0.1734400528, ...
0.1269145974]';

The complementary FIR masking filter polynomial is

ac = [-0.0026969743, -0.0087527898, 0.0166331172, -0.0068670676, ...
-0.0084816844, 0.0049259385, 0.0040698641, -0.0113915352, ...
0.0024609268, 0.0213832121, 0.0015428433, -0.0417158570, ...
0.0391893229, 0.0136891487, -0.0441833606, 0.0173797890, ...
0.0628603921, -0.0759849998, -0.0826548163, 0.2904856694, ...
0.6122604039, 0.2904856694, -0.0826548163, -0.0759849998, ...
0.0628603921, 0.0173797890, -0.0441833606, 0.0136891487, ...
0.0391893229, -0.0417158570, 0.0015428433, 0.0213832121, ...
0.0024609268, -0.0113915352, 0.0040698641, 0.0049259385, ...

-0.0084816844, -0.0068670676, 0.0166331172, -0.0087527898, ...
-0.0026969743]';

Figure 10.106 shows the overall response of the resulting SOCP optimised, PCLS constrained FRM filter. Figure 10.107 shows
the passband response of the resulting FRM filter. Figure 10.108 shows the responses of the resulting FRM masking filters.
Figure 10.109 shows the decimated response of the resulting FRM model filter.

342

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

FRM IIR/delay PCLS passband response:Mmodel=9,Dmodel=7,fap=0.3,fas=0.31125,U=2,V=2,M=8,Q=8,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
82

82.5

83

83.5

84

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.107: FRM gain-pole-zero format IIR model filter with SOCP and PCLS optimisation, passband response.

0 0.1 0.2 0.3 0.4 0.5
-60

-40

-20

0

20

FRM IIR/delay PCLS masking filters:Mmodel=9,Dmodel=7,fap=0.3,fas=0.31125,U=2,V=2,M=8,Q=8,na=41,nc=41

A
m

pl
itu

de
(d

B
)

Frequency

Mask
Comp

Figure 10.108: FRM gain-pole-zero format IIR model filter with SOCP and PCLS optimisation, masking filter responses.

343

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

10

FRM IIR/delay PCLS model filter:Mmodel=9,Dmodel=7,fap=0.3,fas=0.31125,U=2,V=2,M=8,Q=8,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
50

60

70

80

90

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.109: FRM gain-pole-zero format IIR model filter with SOCP and PCLS optimisation, model filter response.

344

10.4.4 Design of an FRM digital filter with an allpass model filter represented in gain-pole-zero form
using SOCP and PCLS optimisation

This section describes an FRM filter with the structure shown in Figure 10.98, and an all-pass filter. For simplicity the model
filters consist of an allpass filter in parallel with a pure delay and the FIR masking filters are of equal odd length and are symmetric
(ie: the FIR masking filters are even order and linear phase). The squared-amplitude and the group delay of the MMSE optimised
FRM filter response are constrained by the PCLS algorithm of Selesnick, Lang and Burrus, described in Section 8.1.2.

Using the notation of Section 10.4.2, the desired passband group delay of the FRM filter is Ds = d+MD, where D is the group
delay of the model filter, M is the decimation factor of the model filter and d is the group delay of the linear phase FIR masking
filters. The zero phase response of the FRM filter is

H (x, ω) = eı[DMω+ϕR(Mω)]A (ω) +B (ω)

where ϕR (ω) is the phase response of the allpass branch of the model filter and:

A (ω) = a⊤a ca (ω) + a⊤c cc (ω)
2

B (ω) = a⊤a ca (ω)− a⊤c cc (ω)
2

The squared-magnitude and phase responses of the zero phase response of the FRM filter are:

|H (ω)|2 = A2 (ω) +B2 (ω) + 2A (ω)B (ω) cosϕZ (Mω)

ϕH (ω) = arctan A (ω) sinϕZ (Mω)
A (ω) cosϕZ (Mω) +B (ω)

where ϕZ (ω) = Dω + ϕR (ω).

The group delay response, T (ω), of the zero phase response of the FRM filter (ie: the group delay error of the FRM filter) is
given by:

|H (ω)|2 T (ω) =−
(
A2 (ω) +A (ω)B (ω) cosϕZ (Mω)

) ∂ϕZ (Mω)
∂ω

. . .

−B (ω) sinϕZ (Mω) ∂A (ω)
∂ω

. . .

+A (ω) sinϕZ (Mω) ∂B (ω)
∂ω

where:

∂ϕZ (Mω)
∂ω

= DM + ∂ϕR (Mω)
∂ω

∂A (ω)
∂ω

= a⊤a sa (ω) + a⊤c sc (ω)
2

∂B (ω)
∂ω

= a⊤a sa (ω)− a⊤c sc (ω)
2

sa (ω) = −2
[

0 sinω . . . (na−1)
2 sin (na−1)

2 ω
]⊤

sc (ω) = −2
[

0 sinω . . . (nc−1)
2 sin (nc−1)

2 ω
]⊤

The gradients of |H (ω)|2 with respect to the coefficients are:

∂ |H (ω)|2

∂r
=− 2A (ω)B (ω) sinϕZ (Mω) ∂ϕR (Mω)

∂r

∂ |H (ω)|2

∂a
=2 (A (ω) +B (ω) cosϕZ (Mω)) ∂A (ω)

∂a
+ 2 (B (ω) +A (ω) cosϕZ (Mω)) ∂B (ω)

∂a

where r represents the coefficients of the allpass model filter, and a represents the coefficients of both the masking filter, aa, and
the complementary masking filter, ac.

The gradients of ϕH (ω) with respect to the coefficients are:

|H (ω)|2 ∂ϕH (ω)
∂r

=A (ω) [A (ω) +B (ω) cosϕZ (Mω)] ∂ϕR (Mω)
∂r

345

|H (ω)|2 ∂ϕH (ω)
∂a

= sinϕZ (Mω)
[
B (ω) ∂A (ω)

∂a
−A (ω) ∂B (ω)

∂a

]

The gradients of T (ω) with respect to the coefficients are given by:

∂ |H (ω)|2

∂r
T (ω) + |H (ω)|2 ∂T (ω)

∂r
=−

(
A2 (ω) +A (ω)B (ω) cosϕZ (Mω)

) ∂2ϕZ (Mω)
∂r∂ω

. . .

+A (ω)B (ω) sinϕZ (Mω) ∂ϕR (Mω)
∂r

∂ϕZ (Mω)
∂ω

. . .

+A (ω) cosϕZ (Mω) ∂ϕR (Mω)
∂r

∂B (ω)
∂ω

. . .

−B (ω) cosϕZ (Mω) ∂ϕR (Mω)
∂r

∂A (ω)
∂ω

∂ |H (ω)|2

∂a
T (ω) + |H (ω)|2 ∂T (ω)

∂a
=− (2A (ω) +B (ω) cosϕZ (Mω)) ∂A (ω)

∂a

∂ϕZ (Mω)
∂ω

. . .

−A (ω) cosϕZ (Mω) ∂B (ω)
∂a

∂ϕZ (Mω)
∂ω

. . .

+ sinϕZ (Mω) ∂A (ω)
∂a

∂B (ω)
∂ω

− sinϕZ (Mω) ∂B (ω)
∂a

∂A (ω)
∂ω

. . .

+A (ω) sinϕZ (Mω) ∂
2B (ω)
∂a∂ω

−B (ω) sinϕZ (Mω) ∂
2A (ω)
∂a∂ω

The values and gradients of ϕR (ω) are calculated by the Octave allpassP and allpassT functions.

The Octave function iir_frm_allpass.m returns the low pass FRM filter squared-magnitude and group delay error responses and
their gradients. It is exercised by the Octave script iir_frm_allpass_test.m. The Octave function iir_frm_allpass_socp_mmse finds
the SOCP solution that optimises the coefficients of a filter response calculated by iir_frm_allpass with the required amplitude
and group delay constraints. The Octave function iir_frm_allpass_slb implements the PCLS algorithm for finding the constraint
frequencies.

The Octave script iir_frm_allpass_socp_slb_test.m designs an FRM filter with the following specification:

tol=0.0002 % Tolerance on coefficient update vector
ctol=2e-05 % Tolerance on constraints
n=500 % Frequency points across the band
mr=10 % Allpass model filter denominator order
R=1 % Allpass model filter decimation factor
na=41 % FIR masking filter length (order+1)
nc=41 % FIR complementary masking filter length (order+1)
Mmodel=9 % Model filter decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=20 % FIR masking filter delay
Tnominal=101 % Nominal FRM filter group delay
fap=0.3 % Pass band edge
dBap=0.05 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
tpr=1 % Pass band delay peak-to-peak ripple
Wtp=0.02 % Pass band delay weight
fas=0.311 % Stop band edge
dBas=40 % Stop band attenuation ripple
Was=10 % Stop band weight
rho=0.968750 % Constraint on allpass pole radius

The passband edge frequency is are the same as for the design example given by Lu and Hinamoto [246, Section V.E], namely
0.300, but the stop band edge frequency is relaxed slightly from 0.305 to 0.31. Both FIR masking filters have length 41. The
initial filter is designed by the Octave script tarczynski_frm_allpass_test.m with the WISE method of Tarczynski et al. as shown
in Section 8.1.5. Figure 10.110 shows the overall response of the initial FRM filter. After SOCP and PCLS optimisation of the
initial filter the resulting model filter allpass filter denominator polynomial is

r = [1.0000000000, -0.0370756433, 0.4913918693, 0.0164261157, ...
-0.1026968244, -0.0054910649, 0.0429327831, 0.0144934693, ...
-0.0192442155, -0.0006637845, 0.0027694354]';

346

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM allpass/delay initial response:Mmodel=9,Dmodel=9,fap=0.3,fas=0.311,Vr=2,Qr=8,Rr=1,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
80

90

100

110

120

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.110: FRM gain-pole-zero format allpass model filter with WISE optimisation, initial response.

The FIR masking filter polynomial is

aa = [-0.0009226458, -0.0031693694, 0.0101266721, -0.0108964138, ...
0.0013603971, 0.0074104163, -0.0034798522, -0.0090769471, ...
0.0096483711, 0.0079157431, -0.0079557068, -0.0221451038, ...
0.0425455947, -0.0097745859, -0.0420257754, 0.0317036517, ...
0.0524409300, -0.0849276757, -0.0572188949, 0.2962867814, ...
0.5836061881, 0.2962867814, -0.0572188949, -0.0849276757, ...
0.0524409300, 0.0317036517, -0.0420257754, -0.0097745859, ...
0.0425455947, -0.0221451038, -0.0079557068, 0.0079157431, ...
0.0096483711, -0.0090769471, -0.0034798522, 0.0074104163, ...
0.0013603971, -0.0108964138, 0.0101266721, -0.0031693694, ...

-0.0009226458]';

The complementary FIR masking filter polynomial is

ac = [0.0011481133, 0.0003668308, -0.0044883786, 0.0087168929, ...
-0.0080745365, 0.0013626580, 0.0079542019, -0.0101715725, ...
0.0017512779, 0.0123036363, -0.0120933482, -0.0079383402, ...
0.0340947219, -0.0369649293, 0.0030862766, 0.0490715254, ...

-0.0651332060, 0.0033316095, 0.1306576061, -0.2661213108, ...
-0.6758347650, -0.2661213108, 0.1306576061, 0.0033316095, ...
-0.0651332060, 0.0490715254, 0.0030862766, -0.0369649293, ...
0.0340947219, -0.0079383402, -0.0120933482, 0.0123036363, ...
0.0017512779, -0.0101715725, 0.0079542019, 0.0013626580, ...

-0.0080745365, 0.0087168929, -0.0044883786, 0.0003668308, ...
0.0011481133]';

Figure 10.111 shows the overall response of the resulting SOCP optimised, PCLS constrained FRM filter. Figure 10.112 shows
the passband response of the resulting FRM filter. Figure 10.113 shows the responses of the resulting FRM masking filters.
Figure 10.114 shows the response of the resulting FRM model filter.

347

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM allpass/delay PCLS response:Mmodel=9,Dmodel=9,fap=0.3,fas=0.311,Vr=2,Qr=8,Rr=1,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
80

90

100

110

120

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.111: FRM gain-pole-zero format allpass model filter with SOCP and PCLS optimisation, overall response.

0 0.05 0.1 0.15 0.2 0.25
-0.1

-0.05

0

0.05

0.1

FRM allpass/delay PCLS passband response:Mmodel=9,Dmodel=9,fap=0.3,fas=0.311,Vr=2,Qr=8,Rr=1,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
100

100.5

101

101.5

102

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.112: FRM gain-pole-zero format allpass model filter, passband response with SOCP and PCLS optimisation.

348

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

FRM allpass/delay PCLS masking filters:Mmodel=9,Dmodel=9,fap=0.3,fas=0.311,Vr=2,Qr=8,Rr=1,na=41,nc=41

A
m

pl
itu

de
(d

B
)

Frequency

Mask
Comp

Figure 10.113: FRM gain-pole-zero format allpass model filter with SOCP and PCLS optimisation, masking filter responses.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

FRM allpass/delay PCLS model filter:Mmodel=9,Dmodel=9,fap=0.3,fas=0.311,Vr=2,Qr=8,Rr=1,na=41,nc=41

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

60

80

100

120

140

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.114: FRM gain-pole-zero format allpass model filter with SOCP and PCLS optimisation, model filter response.

349

10.4.5 Design of an FRM digital filter with an IIR model filter consisting of parallel allpass filters

Figure 10.98 shows an FRM filter with a model filter consisting of parallel allpass filters. The filter transfer function is

H (z) = 1
2
[
R
(
zM
)

+ S
(
zM
)]
FMa

(z) + 1
2
[
R
(
zM
)
− S

(
zM
)]
FMc

(z)

where R (z) and S (z) are allpass filters and, as previously, FMa
(z) and FMc

(z) are the masking and complementary masking
filters

FMa
(z) =

na−1∑
k=0

pkz
−k

FMc
(z) =

nc−1∑
k=0

qkz
−k

An equivalent filter is

H (z) = R
(
zM
)
A (z) + S

(
zM
)
B (z)

where

A (z) = 1
2 [FMa

(z) + FMc
(z)] =

nm−1∑
k=0

akz
−k

B (z) = 1
2 [FMa (z)− FMc (z)] =

nm−1∑
k=0

bkz
−k

nm is the larger of na and nc and the ak or bk are zero-padded as required. If ϕR (ω) and ϕS (ω) are the phase responses of the
allpass filters R (z) and S (z), then

H (ω) = eıϕR(Mω)
nm−1∑
k=0

ake
−ıkω + eıϕS(Mω)

nm−1∑
k=0

bke
−ıkω

= cRa + cSb− ı (sRa + sSb)

where

a = [a0...anm−1]⊤

b = [b0...bnm−1]⊤

v = [0...nm − 1]
cR = cos [vω − ϕR (Mω)]
cS = cos [vω − ϕS (Mω)]
sR = sin [vω − ϕR (Mω)]
sS = sin [vω − ϕS (Mω)]

The squared-amplitude and phase responses of H (z) are

|H (ω)|2 = (cRa + cSb)2 + (sRa + sSb)2

ϕH (ω) = − arctan sRa + sSb

cRa + cSb

The group delay response is given by

|H (ω)|2 T (ω) = (cRa + cSb)
(
∂sR

∂ω
a + ∂sS

∂ω
b

)
− (sRa + sSb)

(
∂cR

∂ω
a + ∂cS

∂ω
b

)
where

∂cR

∂ω
= −

[
v − ∂ϕR (Mω)

∂ω

]
◦ sR

350

∂cS

∂ω
= −

[
v − ∂ϕS (Mω)

∂ω

]
◦ sS

∂sR

∂ω
=

[
v − ∂ϕR (Mω)

∂ω

]
◦ cR

∂sS

∂ω
=

[
v − ∂ϕS (Mω)

∂ω

]
◦ cS

The ◦ symbol represents the Hadamard or element-wise product.

The gradients of the squared amplitude response are

∂ |H (ω)|2

∂r
= 2 (cRa + cSb) ∂cR

∂r
a + 2 (sRa + sSb) ∂sR

∂r
a

= 2 ((cSb) (sRa)− (sSb) (cRa)) ∂ϕR (Mω)
∂r

∂ |H (ω)|2

∂s
= 2 (cRa + cSb) ∂cS

∂s
b + 2 (sRa + sSb) ∂sS

∂s
b

= −2 ((cSb) (sRa)− (sSb) (cRa)) ∂ϕS (Mω)
∂s

∂ |H (ω)|2

∂a
= 2 (cRa + cSb) cR + 2 (sRa + sSb) sR

∂ |H (ω)|2

∂b
= 2 (cRa + cSb) cS + 2 (sRa + sSb) sS

The gradients of the group delay response are given by

∂ |H (ω)|2

∂r
T (ω) + |H (ω)|2 ∂T (ω)

∂r
= sRa

(
∂sR

∂ω
a + ∂sS

∂ω
b

)
∂ϕR (Mω)

∂r
+ (cRa + cSb) ∂

2sR

∂r∂ω
a

+ cRa

(
∂cR

∂ω
a + ∂cS

∂ω
b

)
∂ϕR (Mω)

∂r
− (sRa + sSb) ∂

2cR

∂r∂ω
a

∂ |H (ω)|2

∂s
T (ω) + |H (ω)|2 ∂T (ω)

∂s
= sSb

(
∂sR

∂ω
a + ∂sS

∂ω
b

)
∂ϕS (Mω)

∂s
+ (cRa + cSb) ∂

2sS

∂s∂ω
b

+ cSb

(
∂cR

∂ω
a + ∂cS

∂ω
b

)
∂ϕS (Mω)

∂s
− (sRa + sSb) ∂

2cS

∂s∂ω
b

∂ |H (ω)|2

∂a
T (ω) + |H (ω)|2 ∂T (ω)

∂a
=

(
∂sR

∂ω
a + ∂sS

∂ω
b

)
cR + (cRa + cSb) ∂sR

∂ω

−
(
∂cR

∂ω
a + ∂cS

∂ω
b

)
sR − (sRa + sSb) ∂cR

∂ω

∂ |H (ω)|2

∂b
T (ω) + |H (ω)|2 ∂T (ω)

∂b
=

(
∂sR

∂ω
a + ∂sS

∂ω
b

)
cS + (cRa + cSb) ∂sS

∂ω

−
(
∂cR

∂ω
a + ∂cS

∂ω
b

)
sS − (sRa + sSb) ∂cS

∂ω

where

∂2cR

∂r∂ω
a = (sRa) ∂

2ϕR (Mω)
∂r∂ω

+
(
∂sR

∂ω
a

)
∂ϕR (Mω)

∂r

∂2cS

∂s∂ω
b = (sSb) ∂

2ϕS (Mω)
∂s∂ω

+
(
∂sS

∂ω
b

)
∂ϕS (Mω)

∂s

∂2sR

∂r∂ω
a = − (cRa) ∂

2ϕR (Mω)
∂r∂ω

−
(
∂cR

∂ω
a

)
∂ϕR (Mω)

∂r

∂2sS

∂s∂ω
b = − (cSb) ∂

2ϕS (Mω)
∂s∂ω

−
(
∂cS

∂ω
b

)
∂ϕS (Mω)

∂s

The calculation of the filter response and gradients is implemented in the Octave function iir_frm_parallel_allpass.m which is
exercised by the Octave script iir_frm_parallel_allpass_test.m.

The Octave script iir_frm_parallel_allpass_socp_slb_test.m designs an FRM filter with the following specification:

351

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM parallel allpass initial response:fap=0.3,fas=0.31,na=25,nc=25

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.115: FRM filter with gain-pole-zero format parallel allpass model filter, initial response with WISE optimisation.

tol=0.001 % Tolerance on coefficient update vector
ctol=2e-05 % Tolerance on constraints
n=500 % Frequency points across the band
mr=8 % R model filter denominator order
ms=7 % S model filter denominator order
na=25 % FIR masking filter length (order+1)
nc=25 % FIR complementary masking filter length (order+1)
Mmodel=9 % Model filter decimation factor
Dmodel=0 % Model filter nominal pass band group delay
dmask=0 % FIR masking filter delay
fap=0.3 % Pass band edge
dBap=0.04 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
tpr=Inf % Pass band delay peak-to-peak ripple
Wtp=0 % Pass band delay weight
fas=0.31 % Stop band edge
dBas=40 % Stop band attenuation ripple
Was=10 % Stop band weight
rho=0.968750 % Constraint on allpass pole radius

In this example the FIR masking filters are not required to be linear phase and there is no constraint on the group delay of the filter.
The Octave script iir_frm_parallel_allpass_socp_slb_test.m calls the Octave function iir_frm_parallel_allpass_socp_mmse to
minimise the response error and the coefficient step size with the SeDuMi SOCP solver. The initial filter was calculated by
the Octave script tarczynski_frm_parallel_allpass_test.m with the WISE method of Tarczynski et al. (see Section 8.1.5). The
response of the initial filter is shown in Figure 10.115. The initial filter was SOCP and PCLS optimised with the Octave function
iir_frm_parallel_allpass_slb. The resulting model filter parallel allpass filter denominator polynomials are

r = [1.0000000000, -0.4789292094, 0.7133959943, -0.3331502818, ...
0.0486974865, 0.0489595164, -0.0181775201, -0.0029581823, ...
0.0050655685]';

and

s = [1.0000000000, -0.6634151167, 0.2705169341, 0.0214942878, ...
-0.0643160251, 0.0160254478, 0.0075138995, 0.0015661902]';

352

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM parallel allpass PCLS response:fap=0.3,fas=0.31,na=25,nc=25

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.116: FRM filter with gain-pole-zero format parallel allpass model filter, SOCP PCLS optimised overall response.

The FIR masking filter polynomial is

aa = [-0.0033081614, -0.0076254625, -0.0221045656, -0.0027477944, ...
0.0240489687, -0.0242908733, -0.0466630146, 0.0636342753, ...
0.0959178593, -0.1189950023, -0.1868789009, 0.1984905609, ...
0.5416360430, 0.3801775548, 0.0603957369, -0.0018029484, ...
0.0456642320, -0.0132802351, -0.0395326160, 0.0145026696, ...
0.0204129708, -0.0132322155, -0.0058610685, 0.0178827827, ...
0.0222062470]';

and the complementary FIR masking filter polynomial is

ac = [-0.0184879765, -0.0470724068, 0.0106915006, 0.0462131283, ...
-0.0355029980, -0.0582434471, 0.0377568032, 0.0594476351, ...
0.0091837562, -0.0576066453, -0.1473245910, 0.1046713944, ...
0.5688366440, 0.4614500900, -0.0211916804, -0.0282162312, ...
0.1503099440, -0.0582223400, -0.1411625578, 0.0633333804, ...
0.0768208545, -0.0590353950, -0.0231963753, 0.0488868328, ...
0.0144948323]';

Figure 10.116 shows the overall response of the resulting SOCP and PCLS optimised FRM filter. Figure 10.117 shows the
passband response of the resulting FRM filter. Figure 10.118 shows the impulse response of the resulting FRM masking filters.
Figure 10.119 shows the responses of the resulting FRM masking filters. Figure 10.120 shows the response of the resulting FRM
model filterb.

bThe responses shown are calculated with the allpass filter polynomial derived from the gain-pole-zero form.

353

0 0.05 0.1 0.15 0.2 0.25

-0.04

-0.02

0

0.02

0.04

FRM parallel allpass PCLS passband response:fap=0.3,fas=0.31,na=25,nc=25

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
40

50

60

70

80

90

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.117: FRM filter with gain-pole-zero format parallel allpass model filter, SOCP PCLS optimised passband response.

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

FRM masking filters : na=25,nc=25

aa
(M

as
k)

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

ac
(C

om
p.

M
as

k)

Figure 10.118: FRM filter with gain-pole-zero format parallel allpass model filter, SOCP PCLS optimised FIR masking filters.

354

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

FRM masking filters : na=25,nc=25

A
m

pl
itu

de
(d

B
) Mask

Comp

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.119: FRM filter with gain-pole-zero format parallel allpass model filter, SOCP PCLS optimised FIR masking filter
responses.

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

FRM parallel allpass PCLS model filter:fap=0.3,fas=0.31,na=25,nc=25

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
0

20
40
60
80

100
120
140

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.120: FRM filter with gain-pole-zero format parallel allpass model filter, SOCP PCLS optimised model filter response.

355

10.4.6 Design of an FRM low-pass digital filter with an all-pass Schur lattice model filter in parallel
with a delay using SOCP and PCLS optimisation

This section describes a low-pass FRM filter with the Johansson and Wanhammar FRM filter structure shown in Figure 10.98
in which the model filter is an all-pass Schur one-multiplier lattice filter in parallel with a delay and the FIR masking fil-
ters are symmetric (ie: linear phase) and even order. The squared-magnitude, phase and the group delay of the MMSE opti-
mised FRM filter response are constrained by the PCLS algorithm of Selesnick, Lang and Burrus, described in Section 8.1.2.
The calculations for this filter are similar to those in Section 10.4.4 with the values and gradients of ϕR (ω) calculated by the
Octave schurOneMAPlatticeP.m and schurOneMAPlatticeT.m functions. The Octave function schurOneMAPlattice_frmEsq.m
returns the FRM filter squared-magnitude, phase and group delay error responses and their gradients. The Octave function
schurOneMAPlattice_frm_socp_mmse finds the SOCP solution that optimises the coefficients of a filter error response cal-
culated by schurOneMAPlattice_frmEsq with the required amplitude, phase and group delay constraints. The Octave func-
tion schurOneMAPlattice_frm_slb implements the PCLS algorithm for finding the constraint frequencies. The Octave script
schurOneMAPlattice_frm_socp_slb_test.m designs an FRM filter with the following specification:

n=1000 % Frequency points
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
Mmodel=9 % Model filter decimation
Dmodel=9 % Desired model filter passband delay
dmask=20 % FIR masking filter delay
fap=0.3 % Amplitude pass band edge
dBap=0.05 % Pass band amplitude ripple
Wap=1 % Pass band amplitude weight
fas=0.3105 % Amplitude stop band edge
dBas=43 % Stop band amplitude ripple
Was=10 % Stop band amplitude weight
ftp=0.3 % Delay pass band edge
tp=101 % Nominal FRM filter delay
tpr=tp/101 % Peak-to-peak pass band delay ripple
Wtp=0.02 % Pass band delay weight
fpp=0.3 % Phase pass band edge
pp=0*pi % Nominal passband phase (adjusted for delay)
ppr=pi/100 % Peak-to-peak pass band phase ripple
Wpp=0.01 % Pass band phase weight
rho=0.968750 % Constraint on allpass pole radius

Both the FIR masking filters are symmetric and have length 41. The initial filter is designed by the Octave script tarczyn-
ski_frm_allpass_test.m with the WISE method of Tarczynski et al. as shown in Section 8.1.5. The response of the initial filter is
shown in Figure 10.110. After SOCP and PCLS optimisation of the initial filter the resulting model filter all-pass Schur lattice
filter has coefficients:

k1 = [-0.0170488063, 0.5835334427, 0.0141768856, -0.1421897203, ...
-0.0090637979, 0.0586602510, 0.0068247121, -0.0258140879, ...
-0.0070798506, 0.0128622066]';

epsilon1 = [1, 1, -1, 1, ...
1, -1, -1, 1, ...
1, -1];

The distinct coefficients of the FIR masking filter polynomial are

u1 = [0.5770019542, 0.3015063993, -0.0568543794, -0.0848107814, ...
0.0510353924, 0.0332810505, -0.0421637355, -0.0097686869, ...
0.0391533517, -0.0177578295, -0.0139921117, 0.0079442439, ...
0.0098973410, -0.0086087034, -0.0041465617, 0.0074889216, ...
0.0011683628, -0.0098549867, 0.0080752648, 0.0006680358, ...

-0.0007619109]';

The distinct coefficients of the complementary FIR masking filter polynomial are

356

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

A
m

pl
itu

de
(d

B
)

FRM PCLS : Mmodel=9,Dmodel=9,fap=0.3,fas=0.3105,tp=101

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.005
0

0.005
0.01

Ph
as

e
er

ro
r(

ra
di

an
s/

π
)

0 0.1 0.2 0.3 0.4 0.5
100

100.5
101

101.5
102

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.121: FRM filter with Schur one-multiplier lattice filter allpass model filter, amplitude, delay and phase responses after
SOCP and PCLS optimisation.

v1 = [-0.6677637407, -0.2736258155, 0.1317115957, 0.0046718648, ...
-0.0660797170, 0.0480285040, 0.0049245587, -0.0361702491, ...
0.0284806536, -0.0025303063, -0.0181838193, 0.0132298483, ...
0.0027570119, -0.0113319875, 0.0079502718, 0.0021081062, ...

-0.0074323566, 0.0059063638, -0.0015252669, -0.0033094399, ...
0.0018222005]';

Figure 10.121 shows the response of the resulting SOCP optimised, PCLS constrained FRM filter. Figure 10.122 shows the re-
sponses of the resulting FRM masking filters. Figure 10.123 shows the response of the resulting FRM model filter. Figure 10.124
compares the amplitude response of the FRM low-pass filter with that of a linear-phase FIR filter designed with the Octave remez
function. The FIR and FRM low-pass filters have a similar number of distinct coefficients.

357

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

FRM PCLS : Mmodel=9,Dmodel=9,fap=0.3,fas=0.3105,tp=101

A
m

pl
itu

de
(d

B
)

Frequency

Mask
Comp.

Figure 10.122: FRM filter with Schur one-multiplier lattice allpass model filter, masking filter responses after SOCP and PCLS
optimisation.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

FRM PCLS : Mmodel=9,Dmodel=9,fap=0.3,fas=0.3105,tp=101

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

60

80

100

120

140

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.123: FRM filter with Schur one-multiplier lattice allpass model filter, model filter response after SOCP and PCLS
optimisation.

358

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Frequency

FRM
FIR

Figure 10.124: Comparison of the amplitude responses of an FRM filter with Schur one-multiplier lattice allpass model filter and
a linear-phase FIR filter having a similar number of distinct coefficients.

359

10.4.7 Design of an FRM half-band digital filter with an allpass Schur lattice model filter using
SOCP and PCLS optimisation

Milić et al. describe the design of an FRM half-band filter with the structure shown in Figure 10.98. In this case the model
filters are synthesised as the parallel combination of a pure delay, S (z) = z−D and an all-pass filter with coefficients only in
z2, R

(
z2). The coefficients of the denominator polynomial of R

(
z2) are rk. The masking filters are symmetric FIR filters with

even order Nm, a multiple of 4 and delay d = Nm

2 . The transfer function of the FRM half-band filter is:

H (z) = 1
2
[
R
(
z2M

)
+ z−DM

]
FMa

(z) + 1
2
[
R
(
z2M

)
− z−DM

]
FMc

(z)

= 1
2R
(
z2M

)
[FMa (z) + FMc (z)] + 1

2z
−DM [FMa (z)− FMc (z)]

where M is the decimation factor of the model filter. The nominal delay of the FRM filter is DM + d.

The power-complementary branches of a half-band filter are symmetric in frequency. Section 10.4.1 shows the calculation of the
band edges of the masking filters required for the FRM filter corresponding to these model filters. Saramäki et al. [237, Figure
2] show that the masking filters of the FRM half-band filter are related by:

FMc
(z) = −z−d + FMa

(−z)

The polyphase decomposition of FMa (z) is:

FMa
(z) = U

(
z2)+ z−1V

(
z2)

where U (z) is a symmetric FIR filter with even order Nm

2 and V (z) is a symmetric FIR filter with odd order Nm

2 − 1.

The transfer function of the FRM half-band filter is, in terms of the polyphase decomposition of FMa
:

FMa (z) + FMc (z) = 2U
(
z2)− z−d

FMa (z)− FMc (z) = 2z−1V
(
z2)+ z−d

so that:

H (z) = 1
2z
−DM−d + 1

2
[
R
(
z2M

) (
2U
(
z2)− z−d

)
+ 2z−DMz−1V

(
z2)]

It is convenient to express U
(
z2) and z−1V

(
z2) in terms of the coefficients, uk and vk:

U
(
z2) =

d∑
k=0

ukz
−2k

= u d
2
z−d +

d
2−1∑
k=0

ukz
−2k +

d∑
k= d

2 +1

ukz
−2k

= u d
2
z−d +

d
2−1∑
k=0

uk

(
z−2k + z2k−2d

)
= z−d

u d
2

+
d
2−1∑
k=0

uk

(
z−2k+d + z2k−d

)
and:

z−1V
(
z2) = z−1

d−1∑
k=0

vkz
−2k

= z−1

d
2−1∑
k=0

vkz
−2k + z−1

d−1∑
k= d

2

vkz
−2k

= z−1

d
2−1∑
k=0

vk

(
z−2k + z2k−2d+2)

360

= z−d

d
2−1∑
k=0

vk

(
z−2k+d−1 + z2k−d+1)

Rearranging H (z):

H (z) = z−DM−d

[
zDMR

(
z2M

)(
−1

2 + zdU
(
z2))+

(
1
2 + zdz−1V

(
z2))]

so that the zero-phase frequency response of the half-band FRM filter, H (z), is:

H (ω) = eı[DMω+ϕR(2Mω)]A (ω) +B (ω)

where ϕR (2Mω) is the phase response of the all-pass filter R
(
z2M

)
and:

A (ω) = −1
2 + u d

2
+

d
2−1∑
k=0

2uk cos [ω (2k − d)]

B (ω) = 1
2 +

d
2−1∑
k=0

2vk cos [ω (2k − d+ 1)]

The squared-magnitude and phase responses of the zero phase response of the FRM half-band filter are similar to those shown in
Section 10.4.4:

|H (ω)|2 = A2 (ω) +B2 (ω) + 2A (ω)B (ω) cosϕZ (Mω)

ϕH (ω) = arctan A (ω) sinϕZ (Mω)
A (ω) cosϕZ (Mω) +B (ω)

where ϕZ (ω) = Dω + ϕR (2ω).

The group delay response, T (ω), of the zero phase response of the FRM half-band filter is given by:

|H (ω)|2 T (ω) =−
(
A2 (ω) +A (ω)B (ω) cosϕZ (Mω)

) ∂ϕZ (Mω)
∂ω

. . .

− sinϕZ (Mω)
[
B (ω) ∂A (ω)

∂ω
−A (ω) ∂B (ω)

∂ω

]
where:

∂A (ω)
∂ω

=− 2
d
2−1∑
k=0

(2k − d)uk sin [ω (2k − d)]

∂B (ω)
∂ω

=− 2
d
2−1∑
k=0

(2k − d+ 1) vk sin [ω (2k − d+ 1)]

The gradients of |H (ω)|2 with respect to the coefficients are:

∂ |H (ω)|2

∂rk
=− 2A (ω)B (ω) sinϕZ (Mω) ∂ϕR (2Mω)

∂rk

∂ |H (ω)|2

∂uk
= 2 (A (ω) +B (ω) cosϕZ (Mω)) ∂A (ω)

∂uk

∂ |H (ω)|2

∂vk
= 2 (B (ω) +A (ω) cosϕZ (Mω)) ∂B (ω)

∂vk

and:

∂A (ω)
∂uk

=
{

1 k = d
2

2 cos [ω (2k − d)] otherwise

∂B (ω)
∂vk

= 2 cos [ω (2k − d+ 1)]

361

The gradients of T (ω) with respect to the coefficients are given by:

∂ |H (ω)|2

∂rk
T (ω) + |H (ω)|2 ∂T (ω)

∂rk
=

(
A2 (ω) +A (ω)B (ω) cosϕZ (Mω)

) ∂2ϕR (2Mω)
∂ω∂rk

. . .

+A (ω)B (ω) sinϕZ (Mω) ∂ϕZ (Mω)
∂ω

∂ϕR (2Mω)
∂rk

. . .

− cosϕZ (Mω)
[
B (ω) ∂A (ω)

∂ω
−A (ω) ∂B (ω)

∂ω

]
∂ϕR (2Mω)

∂rk

∂ |H (ω)|2

∂uk
T (ω) + |H (ω)|2 ∂T (ω)

∂uk
=− (2A (ω) +B (ω) cosϕZ (Mω)) ∂ϕZ (Mω)

∂ω

∂A (ω)
∂uk

. . .

− sinϕZ (Mω)
[
B (ω) ∂

2A (ω)
∂ω∂uk

− ∂B (ω)
∂ω

∂A (ω)
∂uk

]
∂ |H (ω)|2

∂vk
T (ω) + |H (ω)|2 ∂T (ω)

∂vk
=−A (ω) cosϕZ (Mω) ∂ϕZ (Mω)

∂ω

∂B (ω)
∂vk

. . .

− sinϕZ (Mω)
[
∂A (ω)
∂ω

∂B (ω)
∂vk

−A (ω) ∂
2B (ω)
∂ω∂vk

]

The Octave script schurOneMAPlattice_frm_halfband_socp_slb_test.m designs an FRM half-band filter with a model filter im-
plemented as a Schur one-multiplier all-pass lattice. The filter specification is:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=800 % Frequency points across the band
mr=5 % Allpass model filter denominator order
na=33 % FIR masking filter length (order+1)
Mmodel=7 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=16 % FIR masking filter delay
Tnominal=79 % Nominal FRM filter group delay
fap=0.24 % Pass band edge
dBap=0.05 % Pass band amplitude peak-to-peak ripple
Wap=1 % Pass band weight
tpr=0.335 % Pass band delay peak-to-peak ripple
Wtp=0.2 % Pass band delay weight
fas=0.26 % Stop band edge
dBas=45 % Stop band attenuation ripple
Was=100 % Stop band weight
rho=0.968750 % Constraint on all-pass lattice coefficients

The initial filter is designed by the Octave script tarczynski_frm_halfband_test.m with the WISE method of Tarczynski et al. as
shown in Section 8.1.5. Figure 10.125 shows the overall response of the initial FRM filter.

SOCP and PCLS optimisation of the initial filter results in a model filter allpass filter with following lattice coefficients:

k2 = [0.5531474970, -0.1244390352, 0.0416133287, -0.0135756789, ...
0.0021334103]';

epsilon2 = [1, 1, -1, 1, ...
-1];

The FIR masking filter polynomials are:

u2 = [-0.0004599640, 0.0023567217, -0.0070284251, 0.0129804885, ...
-0.0309283574, 0.0346723005, -0.0508947335, 0.0580268416, ...
0.4385505465]';

v2 = [0.0065942610, -0.0044815273, 0.0066990076, -0.0031543556, ...
-0.0069802168, 0.0307163651, -0.0814993830, 0.3141056047]';

Figure 10.126 shows the overall response of the resulting SOCP optimised, PCLS constrained FRM filter. Figure 10.127 shows
the passband response of the resulting FRM filter. Figure 10.128 shows the responses of the resulting FRM masking filters.
Figure 10.129 shows the response of the resulting FRM model filter.

362

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM halfband initial response : fap=0.24,ftp=0.24,fas=0.26,mr=5,Mmodel=7,Dmodel=9,dmask=16

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

70

75

80

85

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.125: FRM half-band filter, initial response.

0 0.1 0.2 0.3 0.4 0.5
-60
-50
-40
-30
-20
-10

0
10

FRM halfband PCLS response : fap=0.24,ftp=0.24,fas=0.26,mr=5,Mmodel=7,Dmodel=9,dmask=16

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

70

75

80

85

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.126: FRM half-band filter, overall response after SOCP and PCLS optimisation .

363

0 0.05 0.1 0.15 0.2 0.25
-0.1

-0.05

0

0.05

0.1

FRM halfband PCLS passband response : fap=0.24,ftp=0.24,fas=0.26,mr=5,Mmodel=7,Dmodel=9,dmask=16

A
m

pl
itu

de
(d

B
)

0 0.05 0.1 0.15 0.2 0.25
78.6

78.8

79

79.2

79.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.127: FRM half-band filter, passband response after SOCP and PCLS optimisation.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

FRM halfband PCLS masking filters : fap=0.24,ftp=0.24,fas=0.26,mr=5,Mmodel=7,Dmodel=9,dmask=16

A
m

pl
itu

de
(d

B
)

Frequency

Mask
Comp

Figure 10.128: FRM half-band filter with SOCP and PCLS optimisation, masking filter responses.

364

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

FRM halfband PCLS model filter : fap=0.24,ftp=0.24,fas=0.26,mr=5,Mmodel=7,Dmodel=9,dmask=16

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.129: FRM half-band filter with SOCP and PCLS optimisation, model filter response.

365

10.4.8 Design of an FRM Hilbert digital filter with an allpass Schur lattice model filter using SOCP
and PCLS optimisation

Milić et al. [124] point out that shifting the transfer function of the FRM half-band filter, H (z), of Section 10.4.7, right-wards by
π
2 along the frequency axis results in a filter, HA (z), that generates the analytic signal. Suppose the half-band filter response is:

H (z) = 1
2z
−N + 1

2Q
(
z2)

where N + 1 is a multiple of 4. The filter, HA (z), that generates the analytic signal is:

HA (z) = 2ıH (−ız)
= z−N + ıQ

(
−z2)

In other words, HH (z) = Q
(
−z2) is a Hilbert transform filter. For convenience, assume that the masking filter order, Nm, is a

multiple of 8, that M and D are odd and that DM + 1 is a multiple of 4. Then:

HH (z) = R
(
−z2M

) (
2U
(
−z2)− z−d

)
+ 2z−DM−1V

(
−z2)

where:

U
(
−z2) =

d∑
k=0

uk

(
−z2)−k

= (−1)−
d
2 u d

2
z−d +

d
2−1∑
k=0

(−1)−k
ukz
−2k +

d∑
k= d

2 +1

(−1)−k
ukz
−2k

= u d
2
z−d +

d
2−1∑
k=0

(−1)−k
uk

(
z−2k + z2k−2d

)
= z−d

u d
2

+
d
2−1∑
k=0

(−1)−k
uk

(
z−2k+d + z2k−d

)

and:

z−1V
(
−z2) = z−1

d−1∑
k=0

vk

(
−z2)−k

= z−1

d
2−1∑
k=0

(−1)−k
vkz
−2k + z−1

d−1∑
k= d

2

(−1)−k
vkz
−2k

= z−d

d
2−1∑
k=0

(−1)−k
vk

(
z−2k+d−1 − z2k−d+1)

If r
(
z2) is the denominator polynomial of the prototype all-pass filter prototype, R

(
z2), then:

R
(
−z2) =

(
−z−2)Nmodel r

(
−z−2)

r (−z2)

= (−1)Nmodel
z−2Nmodelr

(
−z−2)

r (−z2)

where Nmodel is the order of r (z). If Nmodel is odd then the zero frequency gain of R
(
−z2) is −1.

For convenience, rename the FRM Hilbert filter coefficients in terms of the coefficients of the FRM half-band filter as r′k =
(−1)−k

rk, u′k = (−1)−k
uk and v′k = (−1)−k

vk. The zero-phase frequency response of the Hilbert filter, HH (z), is:

HH (ω) =eı[DMω+ϕRH
(2Mω)]AH (ω) + ıBH (ω)

where:

AH (ω) = −1 + 2u′d
2

+ 4
d
2−1∑
k=0

u′k cos [ω (2k − d)]

366

BH (ω) = −4
d
2−1∑
k=0

v′k sin [ω (2k − d+ 1)]

and ϕRH
(2Mω) is the phase response of the modified all-pass filter RH

(
z2M

)
= R

(
−z2M

)
.

The squared-magnitude and phase responses of the zero phase response of the FRM Hilbert filter are:

|HH (ω)|2 = A2
H (ω) +B2

H (ω) + 2AH (ω)BH (ω) sinϕZH
(Mω)

and:

ϕHH
(ω) = arctan AH (ω) sinϕZH

(Mω) +BH (ω)
AH (ω) cosϕZH

(Mω)

where ϕZH
(ω) = Dω + ϕRH

(2ω).

The group delay response, TH (ω), of the zero phase response of the FRM Hilbert filter is given by:

|HH (ω)|2 TH (ω) =−
(
A2

H (ω) +AH (ω)BH (ω) sinϕZH
(Mω)

) ∂ϕZH
(Mω)

∂ω
. . .

+ cosϕZH
(Mω)

[
BH (ω) ∂AH (ω)

∂ω
−AH (ω) ∂BH (ω)

∂ω

]
where:

∂AH (ω)
∂ω

=− 4
d
2−1∑
k=0

(2k − d)u′k sin [ω (2k − d)]

∂BH (ω)
∂ω

=− 4
d
2−1∑
k=0

(2k − d+ 1) v′k cos [ω (2k − d+ 1)]

The gradients of |HH (ω)|2 with respect to the coefficients are:

∂ |HH (ω)|2

∂r′k
=2AH (ω)BH (ω) cosϕZH

(Mω) ∂ϕRH
(2Mω)
∂r′k

∂ |HH (ω)|2

∂u′k
=2 (AH (ω) +BH (ω) sinϕZH

(Mω)) ∂AH (ω)
∂u′k

∂ |HH (ω)|2

∂v′k
=2 (BH (ω) +AH (ω) sinϕZH

(Mω)) ∂BH (ω)
∂v′k

where:

∂AH (ω)
∂u′k

=
{

1 k = d
2

4 cos [ω (2k − d)] otherwise

∂BH (ω)
∂v′k

=− 4 sin [ω (2k − d+ 1)]

The gradients of ϕHH
(ω) with respect to the coefficients are given by:

|HH (ω)|2 ∂ϕHH
(ω)

∂r′k
=
(
A2

H (ω) +AH (ω)BH (ω) sinϕZH
(Mω)

) ∂ϕZH
(2Mω)
∂ω

|HH (ω)|2 ∂ϕHH
(ω)

∂u′k
=−BH (ω) cosϕZH

(Mω) ∂AH (ω)
∂u′k

|HH (ω)|2 ∂ϕHH
(ω)

∂v′k
= AH (ω) cosϕZH

(Mω) ∂BH (ω)
∂v′k

The gradients of TH (ω) with respect to the coefficients are given by:

∂ |HH (ω)|2

∂r′k
TH (ω) + |HH (ω)|2 ∂TH (ω)

∂r′k
=−AH (ω)BH (ω) cosϕZH

(Mω) ∂ϕZH
(Mω)

∂ω

∂ϕRH
(2Mω)
∂r′k

. . .

367

−
(
A2

H (ω) +AH (ω)BH (ω) sinϕZH
(Mω)

) ∂2ϕZH
(Mω)

∂ω∂r′k
. . .

− sinϕZH
(Mω)

[
BH (ω) ∂AH (ω)

∂ω
−AH (ω) ∂BH (ω)

∂ω

]
∂ϕRH

(2Mω)
∂r′k

∂ |HH (ω)|2

∂u′k
TH (ω) + |HH (ω)|2 ∂TH (ω)

∂u′k
=− (2AH (ω) +BH (ω) sinϕZH

(Mω)) ∂ϕZH
(Mω)

∂ω

∂AH (ω)
∂u′k

. . .

+ cosϕZH
(Mω)

[
BH (ω) ∂

2AH (ω)
∂ω∂u′k

− ∂BH (ω)
∂ω

∂AH (ω)
∂u′k

]
∂ |HH (ω)|2

∂v′k
TH (ω) + |HH (ω)|2 ∂TH (ω)

∂v′k
=−AH (ω) sinϕZH

(Mω) ∂ϕZH
(Mω)

∂ω

∂BH (ω)
∂v′k

. . .

+ cosϕZH
(Mω)

[
∂AH (ω)
∂ω

∂BH (ω)
∂v′k

−AH (ω) ∂
2BH (ω)
∂ω∂v′k

]

where:

∂2AH (ω)
∂ω∂u′k

= −4 (2k − d) sin [ω (2k − d)]

∂2BH (ω)
∂ω∂v′k

= −4 (2k − d+ 1) cos [ω (2k − d+ 1)]

The Octave script schurOneMAPlattice_frm_hilbert_socp_slb_test.m designs an FRM Hilbert filter with an all-pass model filter
implemented as a Schur one-multiplier lattice. The filter specification is:

n=800 % Frequency points
tol=7.5e-05 % Tolerance on coefficient update vector
ctol=7.5e-05 % Tolerance on constraints
Mmodel=7 % Model filter decimation
Dmodel=9 % Desired model filter passband delay
mr=5 % Model filter order
dmask=16 % FIR masking filter delay
fap=0.01 % Amplitude pass band edge
fas=0.49 % Amplitude stop band edge
dBap=0.1 % Pass band amplitude ripple
Wap=1 % Pass band amplitude weight
ftp=0.01 % Delay pass band edge
fts=0.49 % Delay stop band edge
tp=79 % Nominal FRM filter group delay
tpr=tp/103.947 % Peak-to-peak pass band delay ripple
Wtp=0.02 % Pass band delay weight
fpp=0.01 % Phase pass band edge
fps=0.49 % Phase stop band edge
pp=-0.5*pi % Nominal passband phase (adjusted for delay)
ppr=pi/500 % Peak-to-peak pass band phase ripple
Wpp=0.2 % Pass band phase weight

The initial filter is based on the half-band filter designed by the Octave script tarczynski_frm_halfband_test.m with the WISE
method of Tarczynski et al. as shown in Section 8.1.5. Figure 10.130 shows the response of the initial FRM Hilbert filter. SOCP
and PCLS optimisation of the initial filter results in a model filter allpass filter with following lattice coefficients:

k2 = [-0.5737973427, -0.1357905114, -0.0532786375, -0.0211277419, ...
-0.0087726879]';

epsilon2 = [-1, 1, 1, 1, ...
1];

and FIR masking filter polynomials:

u2 = [-0.0009286412, -0.0025491082, -0.0071011297, -0.0128201595, ...
-0.0309917540, -0.0342912227, -0.0517524688, -0.0569899755, ...
0.4399047223]';

368

0 0.1 0.2 0.3 0.4 0.5
-0.2
-0.1

0
0.1
0.2

FRM Hilbert initial response : Mmodel=7,Dmodel=9,fap=0.01,fas=0.49,tp=79

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-0.504
-0.502

-0.5
-0.498
-0.496

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5
78

78.5
79

79.5
80

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.130: FRM Hilbert filter, initial response.

v2 = [0.0065502342, 0.0043736075, 0.0072012541, 0.0020581423, ...
-0.0078892530, -0.0311821987, -0.0808713504, -0.3144298329]';

Figure 10.131 shows the response of the FRM Hilbert filter after SOCP and PCLS optimisation.

369

0 0.1 0.2 0.3 0.4 0.5
-0.2
-0.1

0
0.1
0.2

FRM Hilbert PCLS response : Mmodel=7,Dmodel=9,fap=0.01,fas=0.49,tp=79

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-0.504
-0.502

-0.5
-0.498
-0.496

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5
78

78.5
79

79.5
80

D
el

ay
(s

am
pl

es
)

Frequency

Figure 10.131: FRM Hilbert filter, response after SOCP and PCLS optimisation.

370

Part III

Design of IIR filters with integer coefficients

371

372

This part describes the results of my experiments in optimising the response of digital filters with integer coefficients expressed
in signed-digit form. A coefficient approximated with a small number of signed-digits can be implemented with shift-and-add
operations. Chapter 11 describes the conversion of coefficients to signed-digit form and two heuristics for allocating the number
of signed-digits used by each coefficient. The remaining chapters in this part consider methods of searching for the signed-digit
approximations to the coefficients that give an acceptable filter response.

373

Chapter 11

Signed-digit representation of filter coefficients

Hwang [114, Section 1.5] defines signed-digit numbers as follows:

Given a radix r, each digit of a signed-digit number can assume the following 2α+ 1 values:

Σr = {−α, . . . ,−1, 0, 1, . . . , α}

where the maximum digit magnitude, α, must be within the following region:

⌈r − 1
2 ⌉ ≤ α ≤ r − 1

Because integer α ≥ 1,r ≥ 2 must be assumed. In order to yield maximum redundancy in the balanced digit set Σr,
one can choose the following value for the maximum magnitude

α = ⌊r2⌋

Further:

The original motivation of using signed-digit number system is to eliminate carry propagation chains in addition
(or subtraction). To break the carry chain, the lower bound on α should be made tighter as

⌈r + 1
2 ⌉ ≤ α ≤ r − 1

Parhi [116, Section 13.6] lists the following properties of the canonical binary signed-digit (CSD) representation of a binary
signed-digit number A = aW−1aW−2 · · · a1a0 where each ai ∈ {−1, 0, 1}:

• no 2 consecutive bits in a CSD number are non-zero

• the CSD representation of a number contains the miniumum possible number of non-zero bits, thus the name canonic

• the CSD representation of a number is unique

• CSD numbers cover the range
(
− 4

3 ,
4
3
)
, out of which the values in the range [−1, 1) are of greatest interest

• among the W -bit CSD numbers in the range [−1, 1), the average number of nonzero bits is W
3 + 1

9 +O
(
2−W

)
. Hence, on

average, the CSD representation contains about two-thirds the number of non-zero bits of the equivalent two’s complement
representation.

Parhi [116, Section 13.6.1] shows an algorithm that calculates the canonical binary signed-digit representation from the two’s
complement representation, reproduced here as Algorithm 11.1.

The Octave function bin2SPT converts a two’s complement number to the canonical signed-digit representation. The Octave
function bin2SD approximates an nbits two’s complement number by the ndigits signed-digit representation.

374

Algorithm 11.1 Conversion of 2’s complement numbers to the canonical signed-digit representation (Parhi [116, Section
13.6.1]).
Denote the two’s complement representation of the number A as A = âW−1âW−2 · · · â1â0.
Denote the CSD representation of A as A = aW−1aW−2 · · · a1a0.
â−1 = 0
γ−1 = 0
âW = âW−1
for k = 0, . . . ,W − 1 do

θi = âi ⊕ âi−1
γi = γ̄i−1θi

ai = (1− 2âi+1) γi

end for

11.1 Lim’s method for allocating signed-digits to filter coefficients

Lim et al. [258] describe a method of allocating a limited number of signed power-of-two digit terms to the fixed-point coefficients
of a digital filter. The method is based on the belief that “allocating the SPT terms in such a way that all the coefficient values
have the same quantization step-size to coefficient sensitivity ratio will lead to a good design”.

Lim et al. first prove properties of the signed-digit representation [258, Section II]. In particular:

Property 1: Define SQ as the set of contiguous integers that can be represented by up to Q signed digits. The largest integer in
SQ is JQ =

∑Q−1
l=0 22l+1.

Property 2: For n =
∑L−1

l=0 sl2l with sl ∈ {−1, 0, 1} it is always possible to find a representation for n such that no two
consecutive signed-digits are non-zero: slsl+1 = 0 for all l.

Property 5: On average, 0.72Q signed-digits are required to represent the integers in SQ.

Lim et al. show that an estimate of the number of signed digits, Q, required to represent JQ is:

Q ≈ 1
2 log2 JQ + 0.31

Replacing JQ by an integer n ∈ SQ, an estimate of the average number of terms, QA, required to represent n is:

QA ≈ 0.72Q
≈ 0.36 log2 n+ 0.22

Now suppose that R signed digits are available to represent two positive integers n1 and n2. If n1 ≈ n2 then each integer is
allocated R

2 bits. If n1 > n2 then Lim et al. argue that the number of additional signed-digits, QE , required to represent n1 is:

QE ≈ 0.36 log2⌊
n1

n2
⌋

where ⌊x⌋ represents the integer part of x. In general, QE is not an integer.

Lim et al. go on to consider the allocation of signed digits to the coefficients of a symmetric FIR filter. The change in the
frequency response, ∆H (ω) of a filter due to a change ∆xk in coefficient xk is:

∆H (ω, k) ≈ ∂H (ω)
∂xk

∆xk

Lim et al. use the average of the coefficient sensitivity to define a cost, ck, for the k’th coefficient:

ck = 0.36 log2 |xk|+ 0.36 log2

ˆ π

0

∣∣∣∣∂H (ω)
∂xk

∣∣∣∣ dω
Given a total of R signed-digits, Lim et al. assign a single signed-digit at a time to the coefficient with the largest cost. After a
coefficient is given a signed-digit, its cost is decreased by one. The process is repeated until all R digits have been allocated.

375

11.2 Ito’s method for allocating signed-digits to filter coefficients

Ito et al. [208] describe a heuristic for allocating signed-digits to the coefficients of an FIR filter. Suppose x = {x1, . . . , xK}
are the floating-point coefficients of the filter and that each xk is approximated by an L signed-digit number, x̂k, and there are a
total of R signed digits to be allocated:

x̂k =
nk∑
l=1

bk,l2−qk,l

where

bk,l ∈ {−1, 1}
qk,l ≤ L

R ≥
K∑

k=1
nk

The heuristic of Ito et al. allocates the R available signed digits to the coefficients x. c (x) is a cost function for the filter design
and ek is the unit vector with a 1 in the k’th position and 0 elsewhere. In this case, ⌈xk⌉ is defined to be the least CSD upper
bound to xk and ⌊xk⌋ is defined to be the greatest CSD lower bound to xk. I have modified the heuristic described by Ito et al.
to that shown in Algorithm 11.2 by beginning with an allocation of 2N signed digits to each non-zero coefficient (where N is
the desired average number of signed-digits per coefficient) and then iteratively removing digits from coefficients with the lowest
cost. At each iteration the new cost for the coefficient is recalculated.

Algorithm 11.2 Modified signed-digit allocation heuristic of Ito et al. [208].
Initialise nk:

for k = 1, . . . ,K do
if |xk| < ϵ then

nk = 0
else

nk = 2N
end if

end for
Allocate nk:

for r = 2R, . . . , R do
for k = 1, . . . ,K do

if nk ≥ 1 then
cU

k = c (x + (⌈xk⌉ − xk) ek)
cL

k = c (x− (xk − ⌊xk⌋) ek)
ck = min

{
cL

k , c
U
k

}
end if

end for
ckmin

= min {ck}
nkmin

− = 1
end for

376

11.3 Signed-digit allocation of the coefficients of a Schur one-multiplier lattice filter

This section compares the performance of the SQP optimised Schur one-multiplier bandpass filter of Section 10.3.9 with co-
efficients that are floating-point rounded, approximated by two signed-digits and approximated by an average of two and
three signed-digits allocated by the Lim and Ito heuristics. The filter is implemented in the Octave script schurOneMlat-
tice_bandpass_allocsd_test.m. That script designs a Schur IIR tapped-lattice band-pass filter for which the denominator of
the transfer function has coefficients only in z−2 the amplitude passband is [0.1, 0.2], the lower amplitude stopband is [0, 0.05],
the upper amplitude stopband is [0.25, 0.5) and the passband group delay is td = 16 samples over [0.09, 0.21]. There are 31 non-
zero lattice coefficients to be truncated. I assume that the internal state scaling for round-off noise reduction is approximated by
bit-shifts. The heuristic of Lim et al. is implemented in the Octave function schurOneMlattice_allocsd_Lim and the heuristic of
Ito et al. is implemented in the Octave function schurOneMlattice_allocsd_Ito.m. The function schurOneMlattice_allocsd_Lim
allocates signed digits according to the gradients of the un-weighted sum of the squared-magnitude and group-delay errors.

Figure 11.1 compares the cost for each allocation method, Figure 11.2 compares the maximum stopband response in the frequency
range [0.26, 0.5), Figure 11.3 compares the total number of signed-digits required to implement the coefficient multipliers for
2 signed-digits allocated to each non-zero coefficient and Figure 11.4 compares the estimated filter noise-gain using word-sizes
of 6 to 16 bits. Figure 11.5 compares the responses for 10-bit coefficients and Figures 11.6 and 11.7 compare the passband
responses for 10-bit 2-signed-digit coefficients.

Figures 11.8, 11.9, 11.10, 11.11, 11.12, 11.13, and 11.14 show the corresponding results for an allocation of 3 signed-
digits to each non-zero 10-bit coefficient. For the heuristic of Ito et al., when 3 bits are allocated to each non-zero coefficient
approximately 2 signed-digits per coefficient are in fact used.

This filter has been designed with denominator polynomial coefficients only in powers of z−2 so that the filter can be re-
timed with reduced latency for the state update and filter output calculations. (As shown in Figure 5.29). The noise gain of
the retimed filter is calculated by converting the lattice filter representation to state variable form with the Octave function
schurOneMR2lattice2Abcd. The noise gain of the filter with floating-point coefficients is 3.44804. A fixed point implementation
of the filter would either scale the states with bit-shifts (ie: by a power of two) or by adding bits to the state registers as required.
In the results shown here the noise gain calculated for the retimed filter with truncated coefficients does not include the round-off
noise due to state scaling.

377

6 8 10 12 14 16
10−2

10−1

100

101

102

Bandpass one-multiplier lattice cost, ndigits=2

C
os

t

bits

round
signed-digit

Lim
Ito

Figure 11.1: Comparison of the cost function for a Schur one-multiplier lattice bandpass filter with 6-bit to 16-bit integer coef-
ficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits using the
heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
-40

-35

-30

-25

-20

-15

Bandpass one-multiplier lattice maximum response in [0.26,0.5) (dB), ndigits=2

M
ax

im
um

re
sp

on
se

(d
B

)

bits

round
signed-digit

Lim
Ito

Figure 11.2: Comparison of the maximum stopband response in the region [0.26,0.5) for a Schur one-multiplier lattice bandpass
filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by two signed-digits and approximation by an
average of two signed digits using the heuristics of Lim et al. and Ito et al. .

378

6 8 10 12 14 16
20

40

60

80

100

120

140

160

Bandpass one-multiplier lattice total signed-digits used by coefficients, ndigits=2

To
ta

ls
ig

ne
d-

di
gi

ts
us

ed
by

co
ef

fic
ie

nt
s

bits

round
signed-digit

Lim
Ito

Figure 11.3: Comparison of the total number of signed-digits required to implement the coefficients of a Schur one-multiplier
lattice bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by two signed-digits and approx-
imation by an average of two signed digits using the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
2.8

3

3.2

3.4

3.6

3.8

4

Bandpass one-multiplier lattice noise gain,ndigits=2

N
oi

se
ga

in

bits

round
signed-digit

Lim
Ito

Figure 11.4: Comparison of the estimated noise gain of a Schur one-multiplier lattice bandpass filter with 6-bit to 16-bit integer
coefficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits using
the heuristics of Lim et al. and Ito et al. .

379

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass one-multiplier lattice,nbits=10,ndigits=2

exact
round

signed-digit

Lim
Ito

Figure 11.5: Comparison of the amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit integer coef-
ficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits using the
heuristics of Lim et al. and Ito et al. .

0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass one-multiplier lattice,nbits=10,ndigits=2

exact
round

signed-digit

Lim
Ito

Figure 11.6: Comparison of the passband amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit integer
coefficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits using
the heuristics of Lim et al. and Ito et al. .

380

0.05 0.1 0.15 0.2 0.25
15

15.5

16

16.5

17

Frequency

D
el

ay
(s

am
pl

es
)

Bandpass one-multiplier lattice,nbits=10,ndigits=2

exact
round

signed-digit

Lim
Ito

Figure 11.7: Comparison of the passband delay responses for a Schur one-multiplier lattice bandpass filter with 10-bit integer
coefficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits using
the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
10−2

10−1

100

101

102

Bandpass one-multiplier lattice cost, ndigits=3

C
os

t

bits

round
signed-digit

Lim
Ito

Figure 11.8: Comparison of the cost function for a Schur one-multiplier lattice bandpass filter with 6-bit to 16-bit integer coeffi-
cients found by rounding, approximation by three signed-digits and approximation by an average of three signed digits using the
heuristics of Lim et al. and Ito et al. .

381

6 8 10 12 14 16
-40

-35

-30

-25

-20

-15

Bandpass one-multiplier lattice maximum response in [0.26,0.5) (dB), ndigits=3

M
ax

im
um

re
sp

on
se

(d
B

)

bits

round
signed-digit

Lim
Ito

Figure 11.9: Comparison of the maximum stopband response in the region [0.26,0.5) for a Schur one-multiplier lattice bandpass
filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by three signed-digits and approximation by an
average of three signed digits using the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
20

40

60

80

100

120

140

160

Bandpass one-multiplier lattice total signed-digits used by coefficients, ndigits=3

To
ta

ls
ig

ne
d-

di
gi

ts
us

ed
by

co
ef

fic
ie

nt
s

bits

round
signed-digit

Lim
Ito

Figure 11.10: Comparison of the total number of signed-digits required to implement the coefficients of a Schur one-multiplier
lattice bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by three signed-digits and
approximation by an average of three signed digits using the heuristics of Lim et al. and Ito et al. .

382

6 8 10 12 14 16
2.6

2.8

3

3.2

3.4

3.6

3.8

Bandpass one-multiplier lattice noise gain,ndigits=3

N
oi

se
ga

in

bits

round
signed-digit

Lim
Ito

Figure 11.11: Comparison of the estimated noise gain of a Schur one-multiplier lattice bandpass filter with 6-bit to 16-bit integer
coefficients found by rounding, approximation by three signed-digits and approximation by an average of two signed digits using
the heuristics of Lim et al. and Ito et al. .

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass one-multiplier lattice,nbits=10,ndigits=3

exact
round

signed-digit

Lim
Ito

Figure 11.12: Comparison of the amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit integer coeffi-
cients found by rounding, approximation by three signed-digits and approximation by an average of three signed digits using the
heuristics of Lim et al. and Ito et al. .

383

0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass one-multiplier lattice,nbits=10,ndigits=3

exact
round

signed-digit

Lim
Ito

Figure 11.13: Comparison of the passband amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by rounding, approximation by three signed-digits and approximation by an average of three signed
digits using the heuristics of Lim et al. and Ito et al. .

0.05 0.1 0.15 0.2 0.25
15

15.5

16

16.5

17

Frequency

D
el

ay
(s

am
pl

es
)

Bandpass one-multiplier lattice,nbits=10,ndigits=3

exact
round

signed-digit

Lim
Ito

Figure 11.14: Comparison of the passband amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by rounding, approximation by three signed-digits and approximation by an average of three signed
digits using the heuristics of Lim et al. and Ito et al. .

384

11.4 Signed-digit allocation of the coefficients of a symmetric FIR band-pass filter

This section compares the performance of a direct-form even-order symmetric FIR bandpass with coefficients that are floating-
point, rounded, approximated by two signed-digits and approximated by an average of two and three signed-digits allocated by
the Lim and Ito heuristics. The comparison is implemented in the Octave script directFIRsymmetric_bandpass_allocsd_test.m.
That script calls the Octave function directFIRsymmetric_slb to design a symmetric FIR band-pass filter polynomial of order
30 with 16 distinct coefficients. The filter amplitude passband is [0.1, 0.2], the lower amplitude stopband is [0, 0.05] and the
upper amplitude stopband is [0.25, 0.5). The heuristic of Lim et al. is implemented in the Octave function directFIRsymmet-
ric_allocsd_Lim. That function allocates signed digits according to the gradients of the un-weighted sum of the magnitude errors.
The heuristic of Ito et al. is implemented in the Octave function directFIRsymmetric_allocsd_Ito.m.

Figure 11.15 compares the cost for each allocation method, Figure 11.16 compares the maximum stopband response in the
frequency range [0.26, 0.5), Figure 11.17 compares the total number of signed-digits required to implement the coefficient
multipliers for 2 signed-digits allocated to each non-zero coefficient and Figures 11.18 and 11.19 compare the responses for 10-
bit 2-signed-digit coefficients. Figures 11.20, 11.21, 11.22, 11.23 and 11.24 show the corresponding results for an allocation
of 3 signed-digits to each non-zero 10-bit coefficient.

385

6 8 10 12 14 16
10−3

10−2

10−1

100

Bandpass symmetric FIR cost, ndigits=2

C
os

t

bits

round
signed-digit

Lim
Ito

Figure 11.15: Comparison of the cost function for a direct-form even-order symmetric FIR bandpass filter with 6-bit to 16-bit
integer coefficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits
using the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
-50

-40

-30

-20

-10

Bandpass symmetric FIR maximum response in [0.26,0.5) (dB), ndigits=2

M
ax

im
um

re
sp

on
se

(d
B

)

bits

round
signed-digit

Lim
Ito

Figure 11.16: Comparison of the maximum stopband response in the region [0.26,0.5) for a direct-form even-order symmetric
FIR bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by two signed-digits and approxi-
mation by an average of two signed digits using the heuristics of Lim et al. and Ito et al. .

386

6 8 10 12 14 16
10

20

30

40

50

60

70

Bandpass symmetric FIR total signed-digits used by coefficients, ndigits=2

To
ta

ls
ig

ne
d-

di
gi

ts
us

ed
by

co
ef

fic
ie

nt
s

bits

round
signed-digit

Lim
Ito

Figure 11.17: Comparison of the total number of signed-digits required to implement the coefficients of a direct-form even-order
symmetric FIR bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by two signed-digits
and approximation by an average of two signed digits using the heuristics of Lim et al. and Ito et al. .

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass symmetric FIR,nbits=10,ndigits=2

exact
round

signed-digit

Lim
Ito

Figure 11.18: Comparison of the amplitude responses for a direct-form even-order symmetric FIR bandpass filter with 10-bit
integer coefficients found by rounding, approximation by two signed-digits and approximation by an average of two signed digits
using the heuristics of Lim et al. and Ito et al. .

387

0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass symmetric FIR,nbits=10,ndigits=2

exact
round

signed-digit

Lim
Ito

Figure 11.19: Comparison of the pass-band amplitude responses for a direct-form even-order symmetric FIR bandpass filter
with 10-bit integer coefficients found by rounding, approximation by two signed-digits and approximation by an average of two
signed digits using the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
10−3

10−2

10−1

100

Bandpass symmetric FIR cost, ndigits=3

C
os

t

bits

round
signed-digit

Lim
Ito

Figure 11.20: Comparison of the cost function for a direct-form even-order symmetric FIR bandpass filter with 6-bit to 16-bit
integer coefficients found by rounding, approximation by three signed-digits and approximation by an average of three signed
digits using the heuristics of Lim et al. and Ito et al. .

388

6 8 10 12 14 16
-50

-40

-30

-20

-10

Bandpass symmetric FIR maximum response in [0.26,0.5) (dB), ndigits=3

M
ax

im
um

re
sp

on
se

(d
B

)

bits

round
signed-digit

Lim
Ito

Figure 11.21: Comparison of the maximum stopband response in the region [0.26,0.5) for a direct-form even-order symmetric
FIR bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by three signed-digits and approx-
imation by an average of three signed digits using the heuristics of Lim et al. and Ito et al. .

6 8 10 12 14 16
10

20

30

40

50

60

70

Bandpass symmetric FIR total signed-digits used by coefficients, ndigits=3

To
ta

ls
ig

ne
d-

di
gi

ts
us

ed
by

co
ef

fic
ie

nt
s

bits

round
signed-digit

Lim
Ito

Figure 11.22: Comparison of the total number of signed-digits required to implement the coefficients of a direct-form even-order
symmetric FIR bandpass filter with 6-bit to 16-bit integer coefficients found by rounding, approximation by three signed-digits
and approximation by an average of three signed digits using the heuristics of Lim et al. and Ito et al. .

389

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass symmetric FIR,nbits=10,ndigits=3

exact
round

signed-digit

Lim
Ito

Figure 11.23: Comparison of the amplitude responses for a direct-form even-order symmetric FIR bandpass filter with 10-bit
integer coefficients found by rounding, approximation by three signed-digits and approximation by an average of three signed
digits using the heuristics of Lim et al. and Ito et al. .

0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass symmetric FIR,nbits=10,ndigits=3

exact
round

signed-digit

Lim
Ito

Figure 11.24: Comparison of the pass-band amplitude responses for a direct-form even-order symmetric FIR bandpass filter with
10-bit integer coefficients found by rounding, approximation by three signed-digits and approximation by an average of three
signed digits using the heuristics of Lim et al. and Ito et al. .

390

Chapter 12

Exhaustive search for integer and signed-digit
filter coefficients

The Octave script exhaustive_schurOneMlattice_bandpass_test.m implements an exhaustive search for the best signed-digit ap-
proximation to the floating-point coefficients of the Schur one-multiplier lattice band-pass filter designed in Section 10.3.9. The
cost function for the search calculates the weighted root-squared-error of the amplitude and group-delay responses of the fil-
ter when compared to an ideal “brick-wall” response. The band-pass filter has 31 non-zero coefficients and each coefficient is
selected from an upper and lower bound on the exact value so the exhaustive search will perform 232 evaluations of the cost
function. Preliminary experiments showed that this script would require about a month of processing time on my PC (which has
an Intel i7-7700K CPU with 4 cores running at 4.2GHz).

391

Chapter 13

Searching for integer and signed-digit filter
coefficients with the bit-flipping algorithm

Krukowski and Kale [7], describe a “bit-flipping” algorithm for fixed-point filter design, shown in flow-graph form in Figure 13.1
(from [7, Figure 2]).

The bit-flipping algorithm searches for an improvement in a cost-function by testing each combination of bits within a window
for each coefficient. When no further improvement is found the window is shifted toward the least-significant-bits and the search
is repeated. The bit-flipping algorithm is implemented in the Octave function bitflip.

In the following examples I apply the bit-flipping algoritm to direct-form, Schur normalised-scaled lattice and Schur one-
multiplier lattice IIR filter implementations.

The initial IIR filter is that designed by the Octave script iir_sqp_slb_bandpass_test.m with:

fapl=0.1 % Amplitude passband lower edge (fs=1)
faph=0.2 % Amplitude passband upper edge
dBap=1 % Amplitude passband ripple (dB)
ftpl=0.09 % Group delay passband lower edge
ftph=0.21 % Group delay passband upper edge
tp=16 % Passband group delay (samples)
tpr=0.08 % Passband group delay ripple
fasl=0.05 % Amplitude lower stopband upper edge
fasl=0.25 % Amplitude upper stopband lower edge
dBas=35 % Amplitude stopband attenuation

For completeness, I also apply the bit-flipping algorithm to the coefficients of a minimum-phase Schur FIR lattice band-pass
filter and a direct-form linear-phase symmetric FIR band-pass filter having the desired frequency bands. The parallel allpass
one-multiplier Schur lattice filter has amplitude response constraints of dBap = 2 and dBas = 53. The Schur FIR lattice has
amplitude response constraints of dBap = 3 and dBas = 25. The direct-form symmetric FIR filter has amplitude response
constraints of dBap = 2 and dBas = 46.

For each example a cost function compares an ideal, “brick-wall” response with the responses for the floating-point filter co-
efficients and the filter coefficients approximated by 8-bit rounded, 8-bit rounding optimised with the bit-flipping algorithm,
8-bit 2-signed-digits and 8-bit 2-signed-digits optimised with the bit-flipping algorithm. The cost function weights the stop-band
amplitude error by Wasl = Wasu = 30. Bit-flipping starts at bit 6 of 8 bits and uses a mask size of 3 bits.

392

Figure 13.1: The bit-flipping algorithm of Krukowski and Kale [7, Figure 2].

393

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass directIIR form, nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.2: Amplitude responses of a direct-form IIR band-pass filter with floating-point coefficients, 8-bit rounded coefficients,
8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients and 8-bit 2-signed-digit
coefficients optimised with the bit-flipping algorithm.

13.1 Bit-flipping search for the signed-digit coefficients of a direct-form bandpass
IIR filter

The Octave script bitflip_directIIR_bandpass_test.m applies the bit-flipping algorithm to a direct-form IIR bandpass filter with
the following filter transfer function polynomials:

n_ex = [0.0119805617, 0.0053349378, 0.0226038750, 0.0226031114, ...
0.0476636685, 0.0341296484, 0.0294623564, 0.0000281382, ...

-0.0024749055, -0.0311018435, -0.0679743231, -0.1023390223, ...
-0.0694347354, 0.0369913403, 0.1362736102, 0.1556855404, ...
0.0622315091, -0.0405691583, -0.0988511454, -0.0711009679, ...

-0.0331225232];

d_ex = [1.0000000000, 0.0000000000, 1.7062464744, 0.0000000000, ...
1.9331974063, 0.0000000000, 1.9383131644, 0.0000000000, ...
1.7150589700, 0.0000000000, 1.2590545233, 0.0000000000, ...
0.8058630835, 0.0000000000, 0.4345272663, 0.0000000000, ...
0.1969880077, 0.0000000000, 0.0648455291, 0.0000000000, ...
0.0145884545];

There is no attempt to ensure that the bit-flipped filter transfer function is stable.

Figures 13.2 and 13.3 show the amplitude and group delay responses.

Table 13.1 compares the cost result for each test.

The bitflip optimised 8-bit 2 signed-digit direct-form IIR transfer function coefficients are:

394

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.3: Group-delay responses of a direct-form IIR band-pass filter with floating-point coefficients, 8-bit rounded coeffi-
cients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients and 8-bit 2-signed-
digit coefficients optimised with the bit-flipping algorithm.

Band-pass direct form IIR Cost

Exact 0.8898
8-bit rounded 4.3285
8-bit rounded with bitflipping 2.1902
8-bit 2-signed-digit 14.2590
8-bit 2-signed-digit with bitflipping 3.4917

Table 13.1: Summary of the cost results for the direct form IIR bandpass filter with floating-point coefficients, 8-bit rounded
coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients and 8-bit 2-
signed-digit coefficients optimised with the bit-flipping algorithm.

395

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass NS lattice,nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.4: Amplitude responses of a band-pass filter synthesised as a normalised-scaled lattice filter with floating-point co-
efficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

n_bfsd = [2, 1, 3, 3, ...
6, 4, 4, 0, ...
0, -4, -9, -12, ...
-9, 5, 17, 20, ...
8, -5, -12, -9, ...
-4]/128;

d_bfsd = [160, 2, 240, 9, ...
248, 16, 248, 4, ...
224, 0, 160, 6, ...
96, 5, 56, 0, ...
24, 3, 8, 0, ...
2]/128;

A total of 25 adders is required to implement these signed-digit coefficients.

13.2 Bit-flipping search for the signed-digit coefficients of a normalised-scaled lat-
tice bandpass IIR filter

The Octave script bitflip_schurNSlattice_bandpass_test.m applies the bit-flipping algorithm to the example bandpass filter im-
plemented as a Schur normalised-scaled lattice filter.

Figures 13.4 and 13.5 show the amplitude and group delay responses of the filter/

Table 13.2 compares the cost result for each test.

The bitflip optimised 8-bit 2 signed-digit lattice filter coefficients are:

396

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.5: Group delay responses of a band-pass filter synthesised as a normalised-scaled lattice filter with floating-point
coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

Band-pass Schur normalised-scaled Cost

Exact 0.8898
8-bit rounded 1.4304
8-bit rounded with bitflipping 1.1480
8-bit 2-signed-digit 3.4226
8-bit 2-signed-digit with bitflipping 1.4537

Table 13.2: Summary of the cost results for the bandpass filter synthesised as a normalised-scaled lattice filter with floating-point
coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

397

s10_bfsd = [20, -112, -112, -68, ...
24, 72, 56, 12, ...

-17, -12, -2, -3, ...
-10, -9, 0, 5, ...
4, 1, 1, 2]'/128;

s11_bfsd = [127, 80, 66, 112, ...
126, 112, 112, 128, ...
127, 127, 144, 128, ...
128, 128, 128, 128, ...
128, 128, 128, 56]'/128;

s20_bfsd = [0, 72, 0, 56, ...
0, 56, 0, 48, ...
0, 18, 0, 33, ...
0, 16, 0, 31, ...
0, 63, 0, 2]'/128;

s00_bfsd = [128, 80, 128, 112, ...
128, 120, 128, 120, ...
128, 124, 128, 124, ...
128, 126, 128, 124, ...
128, 128, 128, 128]'/128;

s02_bfsd = [0, -96, 0, -63, ...
0, -48, 0, -48, ...
0, -40, 0, -33, ...
0, -20, 0, -12, ...
0, -5, 0, -2]'/128;

s22_bfsd = [128, 80, 128, 112, ...
128, 124, 128, 112, ...
128, 112, 128, 124, ...
128, 124, 128, 127, ...
128, 128, 128, 128]'/128;

A total of 58 adders is required to implement these signed-digit coefficients.

13.3 Bit-flipping search for the signed-digit coefficients of a one-multiplier lattice
bandpass IIR filter

The Octave script bitflip_schurOneMlattice_bandpass_test.m applies the bit-flipping algorithm to the example bandpass filter
implemented as a Schur one-multiplier lattice filter. Note that, in this example, the one-multiplier state scaling coefficients are
not truncated.

Figures 13.6 and 13.7 show the filter amplitude and group delay responses.

Figures 13.8 and 13.9 show the filter amplitude and group delay responses for the signed-digit coefficients with 2-signed-digits,
2-signed-digits allocated with Lim’s algorithm and 2-signed-digits allocated with Ito’s algorithm.

Table 13.3 compares the cost result for each test.

The bitflip optimised 8-bit, rounded, one-multiplier lattice bandpass filter coefficients are:

k_bf = [0, 96, 0, 62, ...
0, 46, 0, 52, ...
0, 40, 0, 33, ...
0, 20, 0, 13, ...
0, 5, 0, 2]/128;

398

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass OneM lattice, nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.6: Amplitude responses of a band-pass filter synthesised as a one-multiplier lattice filter with floating-point coefficients,
8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients
and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.7: Group-delay responses of a band-pass filter synthesised as a one-multiplier lattice filter with floating-point co-
efficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

399

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass OneM lattice, nbits=8,bitstart=6,msize=3,ndigits=2, Lim and Ito SD allocation

exact
signed-digit (Lim)

bitflip(s-d Lim)

signed-digit (Ito)

bitflip(s-d Ito)

Figure 13.8: Amplitude responses of a band-pass filter synthesised as a one-multiplier lattice filter with floating-point coefficients,
8-bit 2-signed-digit coefficients allocated with Lim’s algorithm, 8-bit 2-signed-digit coefficients allocated with Lim’s algorithm
and optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and 8-bit 2-signed-
digit coefficients allocated with Ito’s algorithm and optimised with the bit-flipping algorithm.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
signed-digit (Lim)

bitflip(s-d Lim)

signed-digit (Ito)

bitflip(s-d Ito)

Figure 13.9: Group-delay responses of a band-pass filter synthesised as a one-multiplier lattice filter with floating-point coef-
ficients, 8-bit 2-signed-digit coefficients allocated with Lim’s algorithm, 8-bit 2-signed-digit coefficients allocated with Lim’s
algorithm and optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and 8-bit
2-signed-digit coefficients allocated with Ito’s algorithm and optimised with the bit-flipping algorithm.

400

Band-pass Schur one-multiplier Cost

Exact 0.8898
8-bit rounded 1.5326
8-bit rounded with bit-flipping 1.4454
8-bit 2-signed-digit 4.2317
8-bit 2-signed-digit with bit-flipping 2.2054
8-bit 2-signed-digit(Lim alloc.) 17.9008
8-bit 2-signed-digit(Lim alloc.) with bit-flipping 8.5979
8-bit 2-signed-digit(Ito alloc.) 5.4671
8-bit 2-signed-digit(Ito alloc.) with bit-flipping 3.8194

Table 13.3: Summary of the cost results for the bandpass filter synthesised as a one-multiplier lattice filter with floating-point
coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm. The signed digits are allocated with
2 digits each, Lim’s allocation method with an average of 2-signed-digits each and Ito’s allocation method with an average of
2-signed-digits each.

c_bf = [10, 1, -39, -79, ...
-33, 13, 29, 25, ...
7, -12, -7, -1, ...

-2, -7, -5, 0, ...
3, 2, 0, 1, ...
2]/128;

A total of 30 adders is required to implement these rounded coefficients.

The bitflip optimised 8-bit, 2-signed-digit, one-multiplier lattice bandpass filter coefficients are:

k_bfsd = [0, 96, 0, 60, ...
0, 48, 0, 48, ...
0, 40, 0, 32, ...
0, 20, 0, 12, ...
0, 5, 0, 2]/128;

c_bfsd = [10, 1, -40, -80, ...
-33, 15, 30, 24, ...
6, -12, -7, -1, ...
-2, -7, -5, 0, ...
0, 1, 0, 1, ...
1]/128;

A total of 20 adders is required to implement these signed-digit coefficients.

13.4 Bit-flipping search for the signed-digit coefficients of a one-multiplier parallel-
allpass lattice bandpass IIR filter

The Octave script bitflip_schurOneMPAlattice_bandpass_test.m applies the bit-flipping algorithm to the example bandpass filter
implemented as a Schur parallel-allpass one-multiplier lattice filter. Note that, in this example, the one-multiplier state scaling
coefficients are not truncated. The IIR filter in Section 13.3 has a denominator polynomial decimated with R = 2. The initial
IIR filter in this example is that designed by the Octave script schurOneMPAlattice_socp_slb_bandpass_test.m.

Figures 13.10 and 13.11 show the filter amplitude and group delay responses with floating-point coefficients, 8-bit rounded
coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients and 8-bit 2-
signed-digit coefficients optimised with the bit-flipping algorithm.

401

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass OneM PA lattice, nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.10: Amplitude responses of a band-pass filter synthesised as a parallel-allpass one-multiplier lattice filter with floating-
point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-
digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

Bandpass OneM PA lattice, nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.11: Group delay responses of a band-pass filter synthesised as a parallel-allpass one-multiplier lattice filter with
floating-point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit
2-signed-digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

402

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

A
m

pl
itu

de
(d

B
)

Bandpass OneM PA lattice, nbits=8,bitstart=6,msize=3,ndigits=2, Lim and Ito SD allocation

exact
signed-digit (Lim)

bitflip(s-d Lim)

signed-digit (Ito)

bitflip(s-d Ito)

Figure 13.12: Amplitude responses of a band-pass filter synthesised as a parallel-allpass one-multiplier lattice filter with floating-
point coefficients, 8-bit 2-signed-digit coefficients allocated with Lim’s algorithm, 8-bit 2-signed-digit coefficients allocated with
Lim’s algorithm and optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and
8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and optimised with the bit-flipping algorithm.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
signed-digit (Lim)

bitflip(s-d Lim)

signed-digit (Ito)

bitflip(s-d Ito)

Figure 13.13: Group-delay responses of a band-pass filter synthesised as a parallel-allpass one-multiplier lattice filter with
floating-point coefficients, 8-bit 2-signed-digit coefficients allocated with Lim’s algorithm, 8-bit 2-signed-digit coefficients al-
located with Lim’s algorithm and optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients allocated with Ito’s
algorithm and 8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and optimised with the bit-flipping algorithm.

403

Band-pass Schur parallel-allpass one-multiplier Cost

Exact 1.0852
8-bit rounded 1.9823
8-bit rounded with bit-flipping 1.6756
8-bit 2-signed-digit 8.2926
8-bit 2-signed-digit with bit-flipping 6.3880
8-bit 2-signed-digit(Lim alloc.) Inf
8-bit 2-signed-digit(Lim alloc.) with bit-flipping 16.2185
8-bit 2-signed-digit(Ito alloc.) 4.4997
8-bit 2-signed-digit(Ito alloc.) with bit-flipping 4.4997

Table 13.4: Summary of the cost results for the bandpass filter synthesised as a parallel-allpass one-multiplier lattice filter with
floating-point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit
2-signed-digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm. The signed digits are
allocated with 2 digits each, Lim’s allocation method with an average of 2-signed-digits each and Ito’s allocation method with an
average of 2-signed-digits each.

Figures 13.12 and 13.13. shoe the filter amplitude and group delay responses for the signed-digit coefficients with 2-signed-digits,
2-signed-digits allocated with Lim’s algorithm and 2-signed-digits allocated with Ito’s algorithm.

Table 13.4 compares the cost result for each test.

The bitflip optimised 8-bit, rounded, parallel-allpass one-multiplier lattice bandpass filter coefficients are:

A1k_bf = [-50, 87, 63, -67, ...
78, -29, -22, 56, ...

-36, 20]/128;

A2k_bf = [-96, 96, 62, -73, ...
80, -18, -16, 55, ...

-40, 19]/128;

A total of 29 adders is required to implement these rounded coefficients.

The bitflip optimised 8-bit, 2-signed-digit, parallel-allpass one-multiplier lattice bandpass filter coefficients are:

A1k_bfsd = [-48, 80, 63, -68, ...
72, -28, -24, 56, ...

-36, 24]/128;

A2k_bfsd = [-96, 96, 63, -72, ...
80, -18, -16, 56, ...

-40, 20]/128;

A total of 19 adders is required to implement these signed-digit coefficients.

13.5 Bitflipping search for the signed-digit coefficients of a minimum-phase band-
pass FIR filter

Section 8.2.13 shows the design of a minimum-phase FIR bandpass filter with an amplitude response that is similar to that of the
IIR examples above. A minimum-phase FIR filter has all zeros within the unit circle so that the filter polynomial has a Schur
decomposition. The filter is not linear phase and does not have a flat group delay response. The FIR Schur lattice has two real
multipliers for each reflection coefficient [261].

The Octave script, bitflip_schurFIRlattice_bandpass_test.m implements the band-pass filter as a minimum-phase Schur FIR
lattice filter. In contrast to the previous examples in this chapter, the cost function does not include the group-delay error. As for
the Schur one-multiplier lattice IIR filter example, the FIR state scaling coefficients are not truncated. The initial bandpass Schur
lattice FIR filter polynomial is that calculated by the Octave script iir_sqp_slb_fir_17_bandpass_test.m:

404

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass Schur FIR lattice,nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.14: Amplitude responses of a minimum-phase band-pass filter synthesised as a Schur FIR lattice filter with floating-
point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-
digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

b0 = [0.1005298996, 0.1293242803, 0.0242501500, -0.1717872849, ...
-0.2582567805, -0.1154275079, 0.1245916592, 0.2242804626, ...
0.1203731991, -0.0278730002, -0.0672739488, -0.0199185076, ...
0.0038876245, -0.0235774874, -0.0438306579, -0.0253907727, ...
0.0267391576]';

The Schur FIR lattice multiplier coefficients of the initial filter are

k_ex = [0.4673548523, 0.0215846872, -0.4485631407, -0.5735447576, ...
-0.3680742834, 0.1477578747, 0.4893876472, 0.4478270228, ...
0.0701156912, -0.3783422054, -0.5960490321, -0.7267672416, ...

-0.7928968758, 0.6674446338, -0.6400144940, 0.2659821377];

The initial FIR filter has order 17, 16 lattice coefficents and 32 multiplies per sample which is similar to the one-multiplier Schur
lattice bandpass filter of the previous example.

Figures 13.14 and 13.15 show the initial filter amplitude and group delay responses and the filter responses after coefficient
truncation.

Table 13.5 compares the cost results for each truncation method.

The bitflip optimised 8-bit 2-signed-digit Schur FIR lattice coefficients are:

k_bfsd = [56, 9, -56, -72, ...
-48, 34, 63, 60, ...
28, -48, -80, -96, ...

-96, 80, -80, 24]/128;

A total of 32 adders is required to implement these signed-digit coefficients.

405

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Frequency

D
el

ay
(s

am
pl

es
)

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.15: Group-delay responses of a minimum-phase band-pass filter synthesised as a Schur FIR lattice filter with floating-
point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-
digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

Band-pass Schur FIR Cost

Exact 3.0422
8-bit rounded 3.0646
8-bit rounded with bitflipping 2.8440
8-bit 2-signed-digit 2.9774
8-bit 2-signed-digit with bitflipping 2.8362

Table 13.5: Summary of the cost results for the FIR minimum-phase bandpass filter synthesised as a Schur FIR lattice filter with
floating-point coefficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit
2-signed-digit coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

406

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass direct-form symmetric FIR, nbits=8,bitstart=6,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 13.16: Amplitude and group-delay responses of a direct-form symmetric FIR band-pass filter with floating-point co-
efficients, 8-bit rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit
coefficients and 8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm.

13.6 Bit-flipping search for the signed-digit coefficients of a direct-form symmetric
bandpass FIR filter

Appendix N.4 shows the design of a direct-form symmetric FIR bandpass filter with an amplitude response that is similar to
that of the IIR examples above. The filter is linear phase and consequently has a flat group delay response. The Octave script
bitflip_directFIRsymmetric_bandpass_test.m uses the bit-flipping algorithm to optimise the coefficients when truncated to 8-bit
integers. The initial filter polynomial is that designed by the Octave script directFIRsymmetric_slb_bandpass_test.m. The distinct
initial coefficients are:

hM_ex = [-0.0004538174, -0.0114029873, -0.0194431345, -0.0069796479, ...
0.0215771882, 0.0348545408, 0.0158541332, -0.0033225166, ...
0.0154055974, 0.0414424100, -0.0021970758, -0.1162784301, ...

-0.1760013118, -0.0669604509, 0.1451751014, 0.2540400868];

The filter order is 30 giving a filter delay of 15 samples. The symmetric direct-form implementation requires 16 multipliers.
Figure 13.16 shows the initial filter response and the filter responses after coefficient truncation. The bit-flipping algorithm does
not improve the response obtained with 8-bit rounded coefficients.

The filter responses for the signed-digit coefficients with 2-signed-digits, 2-signed-digits allocated with Lim’s algorithm and
2-signed-digits allocated with Ito’s algorithm are shown in Figure 13.17.

Table 13.6 compares the cost results for each truncation method.

The bitflip optimised 8-bit 2-signed-digits (allocated with Lim’s algorithm) direct-form symmetric filter coefficients are:

hM_bfsdl = [0, -3, -5, 0, ...
6, 8, 3, -1, ...
4, 11, 0, -30, ...

-44, -17, 37, 64]/256;

407

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Bandpass direct-form symmetric FIR, nbits=8,bitstart=6,msize=3,ndigits=2, Lim and Ito SD allocation

exact
signed-digit (Lim)

bitflip(s-d Lim)

signed-digit (Ito)

bitflip(s-d Ito)

Figure 13.17: Amplitude and group-delay responses of a direct-form symmetric FIR band-pass filter with floating-point coef-
ficients, 8-bit 2-signed-digit coefficients allocated with Lim’s algorithm, 8-bit 2-signed-digit coefficients allocated with Lim’s
algorithm and optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients allocated with Ito’s algorithm and 8-bit
2-signed-digit coefficients allocated with Ito’s algorithm and optimised with the bit-flipping algorithm.

Band-pass direct-form symmetric FIR Cost

Exact 0.0011
8-bit rounded 0.0015
8-bit rounded with bitflipping 0.0015
8-bit 2-signed-digit 0.0082
8-bit 2-signed-digit with bitflipping 0.0074
8-bit 2-signed-digit(Lim alloc.) 0.0042
8-bit 2-signed-digit(Lim alloc.) with bit-flipping 0.0036
8-bit 2-signed-digit(Ito alloc.) 0.0062
8-bit 2-signed-digit(Ito alloc.) with bit-flipping 0.0047

Table 13.6: Summary of the cost results for the direct-form symmetric FIR bandpass filter with floating-point coefficients, 8-bit
rounded coefficients, 8-bit rounded coefficients optimised with the bit-flipping algorithm, 8-bit 2-signed-digit coefficients and
8-bit 2-signed-digit coefficients optimised with the bit-flipping algorithm. The signed digits are allocated with 2 digits each,
Lim’s allocation method with an average of 2-signed-digits each and Ito’s allocation method with an average of 2-signed-digits
each.

408

The coefficients are scaled to make full use of the 8-bit range. A total of 12 adders is required to implement these signed-digit
coefficients.

The bitflip optimised 8-bit rounded direct-form symmetric FIR coefficients are:

hM_bf = [0, -3, -5, -2, ...
6, 9, 4, -1, ...
4, 11, -1, -30, ...

-45, -17, 37, 65]/256;

A total of 14 adders is required to implement these coefficient multiplications in the direct-form symmetric FIR filter structure and
27 adders are required to implement the coefficient multiplications in the transposed (pipelined) direct-form FIR filter structure.

409

Chapter 14

Branch-and-bound search for signed-digit
coefficients

Given the K coefficients, xk, of a filter, an exhaustive search of the upper and lower bounds on the integer or signed-digit
approximations to these coefficients would requireO

(
2K
)

comparisons of the corresponding filter approximation error. Branch-
and-bound [5], [201, p.627] is a heuristic for reducing the number of branches searched in a binary decision tree. At each branch
of the binary tree the solution is compared to the estimated lower bounds on the cost of the full path proceeding from that branch.
If the cost of that full path is greater than that of the best full path found so far then further search on that path is abandoned.
Figure 14.1 shows a flow diagram of an implementation of the algorithm using a stack. The floating-point filter coefficients x
are approximated by the signed-digit coefficients x̄. Each coefficient, xk and x̄k is bounded by the corresponding signed-digit
numbers uk and lk so that lk ≤ xk ≤ uk and lk ≤ x̄k ≤ uk. The search for the set of coefficients with minimum cost is
“depth-first”, starting at the root of the search tree and fixing successive coefficients. Ito et al. [208] recommend choosing, at
each branch, the xk with the greatest difference uk− lk. The two sub-problems at that branch fix xk to lk and uk. One of the two
sub-problems is pushed onto a stack and the other is solved and the cost calculated. I assume that this cost is the least possible
for the remaining coefficients on the current branch. If the cost of the current sub-problem is greater than the current minimum
cost then the current branch is abandoned and a new sub-problem is popped off the problem stack. Otherwise, if the search has
reached the maximum depth of the tree then the current solution is a new signed-digit minimum cost solution. If the current cost
is less than the minimum cost and the search has not reached the maximum depth then the search continues with a new branch.

410

Figure 14.1: The branch-and-bound tree search algorithm.

411

14.1 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a direct-
form symmetric bandpass FIR filter

The Octave script branch_bound_directFIRsymmetric_bandpass_8_nbits_test.m uses the branch-and-bound algorithm to opti-
mise the 8-bit 3-signed-digit coefficients of a direct-form symmetric FIR bandpass filter.

The initial filter polynomial is that designed by the Octave script directFIRsymmetric_slb_bandpass_test.m.

hM1 = [-0.0058181010, 0.0017787857, -0.0047084625, -0.0143846688, ...
-0.0077550125, 0.0219788564, 0.0432578789, 0.0247317110, ...
-0.0077853817, -0.0010276677, 0.0304650309, 0.0009925325, ...
-0.1110651112, -0.1806101683, -0.0725659905, 0.1536437055, ...
0.2719559562]';

The filter specification is:

nbits=8 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
escale=2 % Coefficient scaling for full range
tol=0.0001 % Tolerance on coefficient. update
maxiter=400 % iteration limit
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
Wasl=5 % Amplitude lower stop band weight
Wasu=10 % Amplitude upper stop band weight

Figures 14.2 and 14.3 show the initial filter pass-band and stop-band amplitude responses and the filter responses after coefficient
truncation to 8-bit 3-signed-digits and branch-and-bound search.

Table 14.1 compares the cost results.

The branch-and-bound optimised 8-bit 2-signed-digits direct-form symmetric filter coefficients are:

hM_min = [-1, 0, -2, -4, ...
-2, 5, 11, 6, ...
-1, 0, 8, 1, ...

-28, -47, -19, 39, ...
70]'/256;

The coefficients are scaled to make full use of the 8-bit range. A total of 13 adders is required to implement these signed-digit
coefficient multiplications.

Band-pass direct-form symmetric FIR Cost Signed-digits Additions

Exact 0.00133
8-bit 3-signed-digit 0.00141 27 13
8-bit 3-signed-digit(branch-and-bound) 0.00127 28 13

Table 14.1: Summary of the cost results for the direct-form symmetric FIR bandpass filter with floating-point coefficients, 8-bit
3-signed-digit coefficients and 8-bit 3-signed-digit coefficients optimised with the branch-and-bound algorithm.

412

0.1 0.12 0.14 0.16 0.18 0.2
-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form symmetric bandpass filter response (nbits=8,ndigits=3) : fapl=0.1,fapu=0.2,fasl=0.05,fasu=0.25

exact
s-d

s-d(BandB)

Figure 14.2: Pass-band amplitude responses of a direct-form symmetric FIR band-pass filter with floating-point coefficients,
8-bit 3-signed-digit coefficients and 8-bit 3-signed-digit coefficients optimised with the branch-and-bound algorithm.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

exact
s-d

s-d(BandB)

Figure 14.3: Stop-band amplitude responses of a direct-form symmetric FIR band-pass filter with floating-point coefficients,
8-bit 3-signed-digit coefficients and 8-bit 3-signed-digit coefficients optimised with the branch-and-bound algorithm.

413

14.2 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a lattice
band-pass IIR filter

The Octave script branch_bound_schurOneMlattice_bandpass_8_nbits_test.m uses the branch-and-bound heuristic to optimise
the response of the SQP optimised band-pass Schur one-multiplier lattice filter of Section 10.3.9 with coefficients truncated to 8
bits and 3 signed-digits. The filter specification is:

nbits=8 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coefficient. update
maxiter=400 % SQP iteration limit
npoints=250 % Frequency points across the band
% length(c0)=21 % Num. tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
dmax=0.250000 % Constraint on norm of coefficient SQP step size
rho=0.992188 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
Wtp=10 % Delay pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
Wasl=10000 % Amplitude lower stop band weight
Wasu=10000000 % Amplitude upper stop band weight

The 31 non-zero 8-bit 3-signed-digit one-multiplier lattice coefficients found by the branch-and-bound search are:

k_min = [0, 88, 0, 63, ...
0, 44, 0, 52, ...
0, 39, 0, 32, ...
0, 20, 0, 14, ...
0, 5, 0, 2]'/128;

c_min = [18, -3, -76, -124, ...
-42, 31, 100, 76, ...

4, -21, -20, -3, ...
-2, -9, -7, 1, ...
6, 5, 1, 0, ...
1]'/256;

The cmin tap coefficients have been scaled to make full use of the range of integers available. I assume that the internal filter
state scaling is approximated by bit-shifts. The ϵ one-multiplier lattice cofficients are not recalculated since that would require
rescaling the cmin tap coefficients. Figure 14.4 compares the pass-band responses of the filter with floating-point coefficients,
the initial 8-bit 3-signed-digit coefficients and 8-bit 3-signed-digit coefficients found by branch-and-bound search. Figure 14.5
shows the filter stop-band response and Figure 14.6 shows the filter pass-band group delay response. Table 14.2 compares the
cost and number of 8 bit shift-and-add operations required to implement the 31 coefficient multiplications for the initial signed-
digit coefficients and the coefficients found by the branch-and-bound search. A further 41 additions are required by the lattice
filter structurea. Although 3 signed-digits are allocated to each coefficient, many of these signed-digits are not used.

aA one-multiplier lattice filter with order 21 and denominator polynomial coefficients in z2 would normally require 1 multiplication and 3 additions for each
of 10 lattice sections and 21 filter output tap multiplications and additions. In this case 1 of the lattice filter coefficients and 7 of the tap coefficients are zero. See
Figure 5.4.

414

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=8) : fasl=0.05,fapl=0.1,fapu=0.2,fasu=0.25,Wasl=10000,Wasu=1e+07

exact
s-d

s-d(BandB)

Figure 14.4: Comparison of the pass-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 8-bit 3-
signed-digit coefficients found by branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=8) : fasl=0.05,fapl=0.1,fapu=0.2,fasu=0.25,Wasl=10000,Wasu=1e+07

exact
s-d

s-d(BandB)

Figure 14.5: Comparison of the stop-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 8-bit 3-
signed-digit coefficients found by branch-and-bound search

415

0.1 0.12 0.14 0.16 0.18 0.2
15.6

15.8

16

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=8) : ftpl=0.09,ftpu=0.21,tp=16,Wtp=10

exact
s-d

s-d(BandB)

Figure 14.6: Comparison of the pass-band group delay responses for a Schur one-multiplier lattice bandpass filter with 8-bit
3-signed-digit coefficients found by branch-and-bound search

Cost Signed-digits Additions

Exact 0.0598
8-bit 3-signed-digit 0.4404 64 34
8-bit 3-signed-digit(branch-and-bound) 0.1035 62 32

Table 14.2: Comparison of the cost and number of additions required to implement the coefficient multiplications for a Schur
one-multiplier lattice bandpass filter with 8-bit 3-signed-digit coefficients found by branch-and-bound search.

416

14.3 Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a lattice
band-pass IIR filter

The Octave script branch_bound_schurOneMlattice_bandpass_10_nbits_test.m uses the branch-and-bound heuristic to optimise
the response of the band-pass Schur one-multiplier lattice filter of Section 10.3.9. The filter specification is:

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coefficient update
ctol=1e-05 % Tolerance on constraints
maxiter=1000 % SQP iteration limit
npoints=250 % Frequency points across the band
% length(c0)=21 % Num. tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
dmax=0.250000 % Constraint on norm of coefficient SQP step size
rho=0.998047 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
tpr=0.4 % Delay pass band peak-to-peak ripple
Wtp=5 % Delay pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
dBas=33 % Amplitude stop band peak-to-peak ripple
Wasl=500000 % Amplitude lower stop band weight
Wasu=1000000 % Amplitude upper stop band weight

The filter coefficients are truncated to 10 bits with an average of 3 signed-digits allocated to each coefficient. The number of
signed-digits allocated to each coefficient is determined by the heuristic of Ito et al. as shown in Section 11.2. The average
number of non-zero signed-digits per coefficient is close to 2. The tap coefficients are scaled to make full use of the range of
integers available. I assume that the internal filter state scaling is approximated by bit-shifts.

At each branch the script fixes the coefficient with the largest difference between upper and lower 3 signed-digit approximations
to the floating-point value. For each sub-problem the coefficients “higher-up-the-tree” are fixed and the remaining free coeffi-
cients are SQP PCLS optimised with the filter specification given above. For this example the branch-and-bound search makes
thousands of branches and requires several hours CPU time on my PC.

The filter coefficients found by the branch-and-bound search are:

k_min = [0, 344, 0, 256, ...
0, 184, 0, 212, ...
0, 156, 0, 128, ...
0, 80, 0, 52, ...
0, 19, 0, 7]'/512;

c_min = [69, -16, -304, -480, ...
-156, 128, 400, 304, ...
16, -84, -80, -16, ...
-8, -33, -24, 4, ...
24, 16, 3, 1, ...
4]'/1024;

Figure 14.7 compares the pass-band responses of the filter with floating-point coefficients, 10-bit signed-digit coefficients allo-
cated with the algorithm of Ito et al. and 10-bit signed-digits allocated with the algorithm of Ito et al. and branch-and-bound
search. Figure 14.8 shows the filter stop-band response and Figure 14.9 shows the filter pass-band group delay response. Ta-
ble 14.3 compares the cost and the number of 10 bit shift-and-add operations required to implement the 31 coefficient multipli-
cations found by the signed-digit allocation heuristic of Ito et al. with the branch-and-bound search. A further 51 additions are
required by the lattice filter structure. The truncation of the last coefficient is, by necessity, not PCLS optimised so the final set
of coefficients may not meet the PCLS specifications.

417

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d(Ito)

s-d(BandB)

Figure 14.7: Comparison of the pass-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=10) : fasl=0.05,fasu=0.25,dBas=33

exact
s-d(Ito)

s-d(BandB)

Figure 14.8: Comparison of the stop-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

418

0.1 0.12 0.14 0.16 0.18 0.2
15.9

15.95

16

16.05

16.1

16.15

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : ftpl=0.09,ftpu=0.21,tp=16,tpr=0.4

exact
s-d(Ito)

s-d(BandB)

Figure 14.9: Comparison of the pass-band group delay responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.0164
10-bit 3-signed-digit(Ito) 0.0578 65 34
10-bit 3-signed-digit(branch-and-bound) 0.0207 65 34

Table 14.3: Comparison of the cost and number of 10-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice bandpass filter with 10-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Ito et al. and performing branch-and-bound search.

419

14.4 Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a one-
multiplier pipelined lattice band-pass filter

The Octave script branch_bound_schurOneMlatticePipelined_bandpass_10_nbits_test.m uses the branch-and-bound heuristic to
optimise the response of the band-pass Schur one-multiplier lattice filter of Section 10.3.9 implemented in the pipelined form
shown in Section 5.6.3. The k2n−1k2n and c2n−1k2n coefficient combinations are treated as additional coefficients. The filter
specification is:

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
npoints=250 % Frequency points across the band
% length(c0)=21 % Num. tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
Wtp=1 % Delay pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
Wasl=100000 % Amplitude lower stop band weight
Wasu=1000000 % Amplitude upper stop band weight

The filter coefficients are truncated to 10 bits with 3 signed-digits. The tap coefficients are scaled to make full use of the range of
integers available. I assume that the internal filter state scaling is approximated by bit-shifts.

The inputs to the branch-and-bound search are the upper and lower bounds of the truncated exact coefficients. At each branch
the script selects the coefficient with the largest difference between upper and lower signed-digit approximations and selects the
branch with the lowest response error value. The filter coefficients found by the branch-and-bound search are:

k_min = [0, 336, 0, 255, ...
0, 176, 0, 216, ...
0, 152, 0, 129, ...
0, 78, 0, 54, ...
0, 19, 0, 8]'/512;

c_min = [73, -14, -304, -492, ...
-168, 126, 400, 304, ...
17, -84, -82, -12, ...

-11, -37, -27, 4, ...
26, 16, 2, 1, ...
5]'/1024;

kk_min = [0, 0, 0, 0, ...
0, 0, 0, 0, ...
0, 0]'/512;

ck_min = [-8, -246, 42, 128, ...
-25, -3, -5, 1, ...
0, 1]'/1024;

Figure 14.10 compares the pass-band responses of the filter with floating-point coefficients, 10-bit signed-digit coefficients and
10-bit signed-digits found with branch-and-bound search. Figure 14.11 shows the filter stop-band response and Figure 14.12
shows the filter pass-band group delay response. Table 14.4 compares the cost and the number of 10 bit shift-and-add operations
required to implement the coefficient multiplications found with the branch-and-bound search.

420

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier pipelined lattice bandpass filter stop-band : nbits=10,fasl=0.05,fapl=0.1,fapu=0.2,fasu=0.25

exact
s-d

s-d(BandB)

Figure 14.10: Comparison of the pass-band amplitude responses for a Schur one-multiplier pipelined lattice bandpass filter with
10-bit 3 signed-digit coefficients found by branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

-25

-20

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier pipelined lattice bandpass filter stop-band : nbits=10,fasl=0.05,fapl=0.1,fapu=0.2,fasu=0.25

exact
s-d

s-d(BandB)

Figure 14.11: Comparison of the stop-band amplitude responses for a Schur one-multiplier pipelined lattice bandpass filter with
10-bit 3 signed-digit coefficients found by branch-and-bound search.

421

0.1 0.12 0.14 0.16 0.18 0.2
15.6

15.8

16

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier pipelined lattice bandpass filter pass-band : nbits=10,ftpl=0.09,ftpu=0.21,tp=16

exact
s-d

s-d(BandB)

Figure 14.12: Comparison of the pass-band group delay responses for a Schur one-multiplier pipelined lattice bandpass filter
with 10-bit 3 signed-digit coefficients found by branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.0129
10-bit 3-signed-digit 0.0249 97 57
10-bit 3-signed-digit(branch-and-bound) 0.0181 93 53

Table 14.4: Comparison of the cost and number of 10 bit shift-and-add operations required to implement the coefficient multi-
plications for a pipelined Schur one-multiplier pipelined lattice bandpass filter with 10-bit 3 signed-digit coefficients found by
branch-and-bound search.

422

14.5 Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a one-
multiplier pipelined lattice low-pass filter

The Octave script branch_bound_schurOneMlatticePipelined_lowpass_16_nbits_test.m performs branch-and-bound search to
optimise the response of a Schur one-multiplier pipelined lattice low-pass filter implemented in the pipelined form shown in Sec-
tion 5.6.3 with 16 bit 4 signed-digit coefficients. The k2n−1k2n and c2n−1k2n coefficient combinations are treated as additional
coefficients. The inputs to the branch-and-bound search are the upper and lower bounds of the truncated exact coefficients. At
each branch the script selects the coefficient with the largest difference between upper and lower signed-digit approximations
and selects the branch with the lowest response error value. The filter specification is:

N=9 % Filter order
nbits=16 % Coefficient bits
ndigits=4 % Nominal average coefficient signed-digits
npoints=1000 % Frequency points across the band
% length(c0)=10 % Num. tap coefficients
% sum(k0~=0)=9 % Num. non-zero all-pass coef.s
fap=0.15 % Amplitude pass band edge
Wap=1 % Amplitude pass band weight
Wat=0.01 % Amplitude transition band weight
fas=0.2 % Amplitude stop band edge
Was=1000000 % Amplitude stop band weight

The signed-digit lattice coefficients found by the branch-and-bound search are:

k_min = [-20288, 32016, -26112, 28992, ...
-27632, 26688, -23424, 14912, ...
-4165]'/32768;

c_min = [-8137, -3296, 8440, 20996, ...
84480, 15552, 2132, 1720, ...

280, 41]'/32768;

kk_min = [-19840, -23040, -22496, -10624]'/32768;

ck_min = [-3216, 18576, 12672, 782]'/32768;

Figure 14.13 shows the amplitude pass-band response of the filter with 16-bit 4-signed-digit coefficients found by branch-and-
bound search. Figure 14.14 shows the corresponding filter stop-band amplitude response. Table 14.5 compares the cost and
the number of 12 bit shift-and-add operations required to implement the coefficient multiplications found by branch-and-bound
search.

Cost Signed-digits Shift-and-adds

Exact 0.00027853
16-bit 4-signed-digit 0.00072675 107 80
16-bit 4-signed-digit(branch-and-bound) 0.00030924 105 78

Table 14.5: Comparison of the cost and number of 16-bit shift-and-add operations required to implement the coefficient multi-
plications for a Schur one-multiplier pipelined lattice low-pass filter with 16 bit 4 signed-digit coefficients found by branch-and-
bound search.

423

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier pipelined lattice bandpass filter stop-band : nbits=16,fap=0.15,fas=0.2

exact
s-d

s-d(BandB)

Figure 14.13: Pass band amplitude response for a Schur one-multiplier pipelined lattice low-pass filter with 16 bit 4 signed-digit
coefficients found by branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier pipelined lattice bandpass filter stop-band : nbits=16,fap=0.15,fas=0.2

exact
s-d

s-d(BandB)

Figure 14.14: Stop band amplitude response for a Schur one-multiplier pipelined lattice low-pass filter with 16 bit 4 signed-digit
coefficients found by branch-and-bound search.

424

14.6 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a paral-
lel all-pass one-multiplier lattice low-pass IIR filter

The Octave script branch_bound_schurOneMPAlattice_lowpass_12_nbits_test.m performs branch-and-bound search to optimise
the response of the parallel Schur one-multiplier all-pass lattice low-pass filter of Section 10.3.5 with 12-bit integer coefficients.
The filter specification is:

nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=5e-07 % Tolerance on constraints
n=400 % Frequency points across the band
difference=0 % Use difference of all-pass filters
m1=11 % Allpass model filter 1 denominator order
m2=12 % Allpass model filter 2 denominator order
rho=0.992188 % Constraint on allpass coefficients
fap=0.125 % Amplitude pass band edge
dBap=0.2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Amplitude transition band weight
fas=0.25 % Amplitude stop band edge
dBas=56 % amplitude stop band peak-to-peak ripple
Was=10000 % Amplitude stop band weight
ftp=0.175 % Delay pass band edge
td=11.5 % Nominal pass band filter group delay
tdr=0.08 % Delay pass band peak-to-peak ripple
Wtp=0.1 % Delay pass band weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Ito et al. as shown
in Section 11.2. At each branch the script fixes the coefficient with the largest difference between upper and lower 3 signed-
digit approximations to the floating-point value. For each sub-problem the coefficients “higher-up-the-tree” are fixed and the
remaining free coefficients are SOCP PCLS optimised with the filter specification given above. In this case there are no filter
tap coefficients and the one-multiplier lattice ϵ coefficients can be recalculated. The signed-digit lattice coefficients found by the
heuristic of Ito et al. are:

A1k0_sd = [1576, -176, -548, -128, ...
-128, 500, -296, -8, ...
336, -327, 112]'/2048;

A2k0_sd = [800, -560, 384, 336, ...
-96, 84, -412, 368, ...
12, -366, 308, -112]'/2048;

The signed-digit lattice coefficients found by the branch-and-bound search are:

A1k_min = [1584, -176, -540, -128, ...
-128, 484, -296, 2, ...
336, -321, 112]'/2048;

A2k_min = [784, -580, 384, 336, ...
-96, 84, -402, 368, ...
5, -360, 304, -114]'/2048;

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 62 signed-digits and 39 shift-
and-add operations.

Figure 14.15 shows the amplitude pass-band response of the filter with 12-bit 3-signed-digit coefficients allocated with the
algorithm of Ito et al. and branch-and-bound search. Figure 14.16 shows the corresponding filter pass-band group-delay response.
Figure 14.17 shows the corresponding filter stop-band amplitude response. Table 14.6 compares the cost and the number of 12
bit shift-and-add operations required to implement the coefficient multiplications found by the signed-digit allocation heuristic
of Ito et al. with the branch-and-bound search.

425

0 0.05 0.1 0.15

-0.1

-0.05

0

0.05

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=0.1

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.15: Pass band amplitude response for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing
branch-and-bound search.

0 0.05 0.1 0.15

11.45

11.5

11.55

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=0.1

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.16: Pass band group delay response for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing
branch-and-bound search.

426

0.25 0.3 0.35 0.4 0.45 0.5
-70

-60

-50

-40

-30

-20

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=0.1

exact
s-d(Ito)

s-d(SOCP b-and-b)

Figure 14.17: Stop band amplitude response for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing
branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.000195
12-bit 3-signed-digit(Ito) 0.000479 63 40
12-bit 3-signed-digit(SOCP b-and-b) 0.000151 62 39

Table 14.6: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer coefficients found by allocating an
average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing branch-and-bound search.

427

14.7 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a paral-
lel all-pass normalised-scaled lattice low-pass IIR filter

The Octave script branch_bound_schurNSPAlattice_lowpass_12_nbits_test.m performs branch-and-bound search to optimise
the response of the parallel approximately normalised-scaled all-pass Schur lattice low-pass filter of Section 10.3.7 with 12-bit
integer coefficients. The filter specification is:

sxx_symmetric=1 % Enforce s02=-s20 and s22=s00
nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.001 % Tolerance on coefficient update vector
ctol=1e-06 % Tolerance on constraints
n=400 % Frequency points across the band
difference=0 % Use difference of all-pass filters
rho=0.999000 % Constraint on allpass coefficients
fap=0.125 % Amplitude pass band edge
dBap=0.6 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Amplitude transition band weight
fas=0.25 % Amplitude stop band edge
dBas=45 % amplitude stop band peak-to-peak ripple
Was=1000 % Amplitude stop band weight
ftp=0.175 % Delay pass band edge
tp=11.5 % Nominal pass band filter group delay
tpr=0.1 % Delay pass band peak-to-peak ripple
Wtp=1 % Delay pass band weight

The filter coefficients are truncated to 12 bits and 3 signed-digits. The script enforces the symmetric relations s02 = −s20 and
s22 = s00. The script does not enforce normalised-scaling with the relation s02 =

√
1− s2

00. At each branch the script fixes
the coefficient with the largest difference between upper and lower 3 signed-digit approximations to the floating-point value. For
each sub-problem the coefficients “higher-up-the-tree” are fixed and the remaining free coefficients are SOCP PCLS optimised
with the filter specification given above. The signed-digit lattice coefficients are:

A1s20_sd = [1600, -146, -560, -208, ...
-216, 464, -256, 49, ...
368, -336, 92]'/2048;

A1s00_sd = [1272, 2042, 1968, 2038, ...
2038, 2000, 2033, 2046, ...
2016, 2020, 2046]'/2048;

A2s20_sd = [752, -608, 456, 440, ...
-36, 95, -400, 376, ...
18, -376, 296, -118]'/2048;

A2s00_sd = [1904, 1952, 2000, 2000, ...
2046, 2046, 2012, 2014, ...
2046, 2014, 2028, 2045]'/2048;

The signed-digit lattice coefficients found by the branch-and-bound search are:

A1s20_min = [1600, -127, -560, -208, ...
-226, 464, -262, 49, ...
368, -336, 96]'/2048;

A1s00_min = [1272, 2042, 1968, 2042, ...
2043, 1986, 2036, 2045, ...
2018, 2020, 2045]'/2048;

428

0 0.05 0.1 0.15 0.2 0.25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Frequency

A
m

pl
itu

de
(d

B
)

Parallel all-pass lowpass: dBap=0.6,dBas=45

exact
s-d

s-d(b-and-b)

Figure 14.18: Pass-band amplitude responses for a parallel all-pass approximately normalised-scaled Schur lattice low-pass filter
with 12 bit 3 signed-digit integer coefficients found by direct truncation and by performing branch-and-bound search.

A2s20_min = [752, -608, 444, 440, ...
-41, 98, -416, 382, ...
18, -386, 296, -116]'/2048;

A2s00_min = [1904, 1968, 1980, 2000, ...
2046, 2046, 2028, 2000, ...
2033, 2028, 2028, 2043]'/2048;

Figures 14.18 and 14.19 show the pass-band amplitude and group delay responses of the filter with floating-point coefficients
and with 12-bit, 3-signed-digit coefficients found by simple truncation and by branch-and-bound search. Figure 14.20 shows the
corresponding stop-band amplitude response.

Table 14.7 compares the cost and the number of 12 bit shift-and-add operations required to implement the signed-digit coefficient
multiplications.

Cost Signed-digits Shift-and-adds

Exact 0.002668
12-bit 3-signed-digit 0.003319 256 164
12-bit 3-signed-digit(SOCP b-and-b) 0.002261 266 174

Table 14.7: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel all-pass approximately normalised-scaled Schur lattice low-pass filter with 12 bit, 3 signed-digit integer
coefficients found by direct truncation and by performing branch-and-bound search.

429

0 0.05 0.1 0.15 0.2 0.25
11.4

11.45

11.5

11.55

Frequency

D
el

ay
(s

am
pl

es
)

Parallel all-pass lowpass: dBap=0.6,dBas=45

exact
s-d

s-d(b-and-b)

Figure 14.19: Pass-band group delay responses for a parallel all-pass approximately normalised-scaled Schur lattice low-pass
filter with 12 bit 3 signed-digit integer coefficients found by direct truncation and by performing branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

Frequency

A
m

pl
itu

de
(d

B
)

Parallel all-pass lowpass: dBap=0.6,dBas=45

exact
s-d

s-d(b-and-b)

Figure 14.20: Stop-band amplitude responses for a parallel all-pass approximately normalised-scaled Schur lattice low-pass filter
with 12 bit 3 signed-digit integer coefficients found by direct truncation and by performing branch-and-bound search.

430

14.8 Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a parallel
all-pass lattice IIR elliptic low-pass filter

The Octave script branch_bound_schurOneMPAlattice_elliptic_lowpass_8_nbits_test.m performs branch-and-bound search to
optimise the response of a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass filter with 8-bit integer
coefficients. The filter specification is:

N=5 % Filter order
nbits=8 % Coefficient word length
ndigits=2 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=0 % Use difference of all-pass filters
rho=0.992188 % Constraint on allpass coefficients
fap=0.04 % Amplitude pass band edge
dBap=0.2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Amplitude transition band weight
fas=0.053 % Amplitude stop band edge
dBas=20 % amplitude stop band peak-to-peak ripple
Was=10 % Amplitude stop band weight

The filter coefficients are truncated to 8 bits and 2 signed-digits. At each branch the script fixes the coefficient with the largest
difference between upper and lower 2 signed-digit approximations to the floating-point value. For each sub-problem the coeffi-
cients “higher-up-the-tree” are fixed and the remaining free coefficients are SOCP PCLS optimised with the filter specification
given above.

The 8 bit, 2 signed-digit lattice coefficients are:

A1k0_sd = [-124, 112]'/128;

A2k0_sd = [-124, 127, -96]'/128;

The signed-digit lattice coefficients found by the branch-and-bound search are:

A1k_min = [-124, 96]'/128;

A2k_min = [-124, 126, -96]'/128;

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 10 signed-digits and 5 shift-
and-add operations.

Figure 14.21 shows the amplitude response of the filter with 8-bit, 2-signed-digit coefficients and branch-and-bound search.
Figure 14.22 shows the filter pass-band amplitude response. Table 14.8 compares the cost and the number of 8 bit shift-and-add
operations required to implement the coefficient multiplications found with the branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.000661
8-bit 2-signed-digit 0.008154 10 5
8-bit 2-signed-digit(b-and-b) 0.000046 10 5

Table 14.8: Comparison of the cost and number of 8-bit shift-and-add operations required to implement the coefficient multipli-
cations for a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass filter with 8 bit, 2 signed-digit integer
coefficients found by performing branch-and-bound search.

431

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=8) : fap=0.04,fas=0.053,dBap=0.2,dBas=20

exact
s-d

s-d(b-and-b)

Figure 14.21: Amplitude response for a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass filter with 8
bit, 2-signed-digits integer coefficients found performing branch-and-bound search.

0 0.01 0.02 0.03 0.04 0.05
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=8) : fap=0.04,fas=0.053,dBap=0.2,dBas=20

exact
s-d

s-d(b-and-b)

Figure 14.22: Pass band amplitude response for a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass
filter with 8 bit, 2 signed-digit integer coefficients found by performing branch-and-bound search.

432

14.9 Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a paral-
lel all-pass lattice IIR elliptic low-pass filter

The Octave script branch_bound_schurOneMPAlattice_elliptic_lowpass_16_nbits_test.m performs branch-and-bound search to
optimise the response of the parallel Schur one-multiplier all-pass lattice elliptic low-pass filter with 16-bit integer coefficients.
The filter specification is:

nbits=16 % Coefficient word length
ndigits=4 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=5e-09 % Tolerance on constraints
n=2000 % Frequency points across the band
difference=0 % Use difference of all-pass filters
rho=0.992188 % Constraint on allpass coefficients
fape=0.05 % Extra amplitude weight pass band edge
fap=0.15 % Amplitude pass band edge
dBap=0.04 % Amplitude pass band peak-to-peak ripple
Wape=0 % Extra amplitude pass band weight
Wap=1 % Amplitude pass band weight
Wat=0.0001 % Amplitude transition band weight
fas=0.171 % Amplitude stop band edge
fase=0.271 % Extra amplitude weight stop band edge
dBas=77 % amplitude stop band peak-to-peak ripple
Was=10000000 % Amplitude stop band weight
Wase=0 % Extra amplitude stop band weight

The initial parallel all-pass filters are those for the filter designed by the Octave function ellip(11,0.02,84,2*0.15). The filter
coefficients are truncated to 16 bits allocated with an average of 4 signed-digits by the heuristic of Ito et al. as shown in
Section 11.2. The following numbers of signed-digits are allocated to the lattice coefficients:

A1k0_allocsd_digits = [4, 3, 5, 5, ...
4, 4]';

A2k0_allocsd_digits = [3, 3, 5, 5, ...
3]';

The signed-digit lattice coefficients found by the heuristic of Ito et al. are:

A1k0_sd = [-19712, 32384, -25792, 28320, ...
-23520, 11808]'/32768;

A2k0_sd = [-22528, 30736, -26768, 23872, ...
-11776]'/32768;

The signed-digit lattice coefficients found by the branch-and-bound search are:

A1k_min = [-19584, 32384, -25648, 28180, ...
-23296, 11328]'/32768;

A2k_min = [-22528, 30722, -26544, 23684, ...
-11264]'/32768;

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 44 signed-digits and 33 shift-
and-add operations.

Figure 14.23 shows the amplitude pass-band response of the filter with 16-bit 4-signed-digit coefficients allocated with the
algorithm of Ito et al. and branch-and-bound search. Figure 14.24 shows the amplitude stop-band response. Table 14.9 compares
the cost and the number of 16 bit shift-and-add operations required to implement the coefficient multiplications found by the
signed-digit allocation heuristic of Ito et al. with the branch-and-bound search.

433

0 0.05 0.1 0.15
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=16,ndigits=4) : fap=0.15,fas=0.171,dBap=0.04,dBas=77

Initial
s-d(Ito)

s-d(b-and-b)

Figure 14.23: Pass band amplitude response of a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass
filter with 16 bit integer coefficients found by allocating an average of 4-signed-digits to each coefficient using the heuristic of
Ito et al. and performing branch-and-bound search.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=16,ndigits=4) : fap=0.15,fas=0.171,dBap=0.04,dBas=77

Initial
s-d(Ito)

s-d(SOCP b-and-b)

Figure 14.24: Stop band amplitude response of a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass
filter with 16 bit integer coefficients found by allocating an average of 4-signed-digits to each coefficient using the heuristic of
Ito et al. and performing branch-and-bound search.

434

Cost Signed-digits Shift-and-adds

Initial 7.49e-06
16-bit 4-signed-digit(Ito) 1.67e-04 44 33
16-bit 4-signed-digit(SOCP b-and-b) 9.46e-06 44 33

Table 14.9: Comparison of the cost and number of 16-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel Schur one-multiplier all-pass lattice elliptic approximation low-pass filter with 16 bit integer coefficients
found by allocating an average of 4-signed-digits to each coefficient using the heuristic of Ito et al. and performing branch-and-
bound search.

435

14.10 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a par-
allel all-pass lattice band-pass IIR filter

The Octave script branch_bound_schurOneMPAlattice_bandpass_12_nbits_test.m performs branch-and-bound search to opti-
mise the response of the parallel Schur one-multiplier all-pass lattice band-pass filter of Section 10.3.8 with 12-bit integer coef-
ficients. The filter specification is:

use_best_branch_and_bound_found=1
enforce_pcls_constraints_on_final_filter=1
branch_bound_schurOneMPAlattice_bandpass_12_nbits_test_allocsd_Lim=0
branch_bound_schurOneMPAlattice_bandpass_12_nbits_test_allocsd_Ito=1
nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-06 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=1 % Use difference of all-pass filters
m1=10 % Allpass model filter 1 denominator order
m2=10 % Allpass model filter 2 denominator order
rho=0.992188 % Constraint on allpass coefficients
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=2.000000 % Pass band amplitude response ripple(dB)
Wap=0.25 % Pass band amplitude response weight
Watl=0.1 % Lower transition band amplitude response weight
Watu=0.1 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=40.000000 % Stop band amplitude response ripple(dB)
Wasl=10000 % Lower stop band amplitude response weight
Wasu=10000 % Upper stop band amplitude response weight
ftpl=0.09 % Pass band group-delay response lower edge
ftpu=0.21 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response(samples)
tdr=0.200000 % Pass band group-delay response ripple(samples)
Wtp=1 % Pass band group-delay response weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Ito et al. as shown
in Section 11.2. At each branch the script fixes the coefficient with the largest difference between upper and lower 3 signed-
digit approximations to the floating-point value. For each sub-problem the coefficients “higher-up-the-tree” are fixed and the
remaining free coefficients are SOCP PCLS optimised with the filter specification given above.

The signed-digit lattice coefficients found by the heuristic of Lim et al. are:

A1k0_sd = [-808, 1392, 992, -1072, ...
1240, -464, -352, 888, ...
-576, 336]'/2048;

A2k0_sd = [-1540, 1536, 988, -1160, ...
1280, -288, -256, 872, ...
-636, 312]'/2048;

The signed-digit lattice coefficients found by the branch-and-bound search are:

A1k_min = [-773, 1424, 992, -968, ...
1278, -452, -232, 800, ...
-520, 304]'/2048;

A2k_min = [-1504, 1518, 952, -1080, ...
1280, -320, -128, 792, ...
-548, 304]'/2048;

436

0.1 0.12 0.14 0.16 0.18 0.2
-3

-2

-1

0

1

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass filter pass-band(nbits=12,ndigits=3) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.25: Pass band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing
branch-and-bound search.

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 58 signed-digits and 38 shift-
and-add operations.

Figure 14.25 shows the amplitude pass-band response of the filter with 12-bit 3-signed-digit coefficients allocated with the
algorithm of Ito et al. and branch-and-bound search. Figure 14.26 shows the corresponding filter pass-band group-delay response.
Figure 14.27 shows the corresponding filter stop-band amplitude response. Table 14.10 compares the cost and the number of 12
bit shift-and-add operations required to implement the coefficient multiplications found by the signed-digit allocation heuristic
of Ito et al. with the branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.011074
12-bit 3-signed-digit(Ito) 0.015364 57 37
12-bit 3-signed-digit(SOCP b-and-b) 0.010706 58 38

Table 14.10: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer coefficients found by allocating
an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing branch-and-bound search.

437

0.1 0.12 0.14 0.16 0.18 0.2
15.8

15.9

16

16.1

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice bandpass filter pass-band(nbits=12,ndigits=3) : ftpl=0.09,ftpu=0.21,tdr=0.2

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.26: Pass band group delay response for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-70

-60

-50

-40

-30

-20

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass filter stop-band(nbits=12,ndigits=3) : fasl=0.05,fasu=0.25,dBas=40

exact
s-d(Ito)

s-d(SOCP b-and-b)

Figure 14.27: Stop band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing
branch-and-bound search.

438

14.11 Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a par-
allel all-pass lattice band-pass Hilbert IIR filter

The Octave script branch_bound_schurOneMPAlattice_bandpass_hilbert_10_nbits_test.m performs branch-and-bound search to
optimise the response of the parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter of Section 10.3.13 with 10-bit
integer coefficients. The filter specification is:

use_best_branch_and_bound_found=1
enforce_pcls_constraints_on_final_filter=1
nbits=10 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=1 % Use difference of all-pass filters
m1=10 % Allpass model filter 1 denominator order
m2=10 % Allpass model filter 2 denominator order
rho=0.999000 % Constraint on allpass coefficients
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=0.200000 % Pass band amplitude response ripple(dB)
Wap=20 % Pass band amplitude response weight
Watl=0.001 % Lower transition band amplitude response weight
Watu=0.001 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=35.000000 % Stop band amplitude response ripple(dB)
Wasl=50000 % Lower stop band amplitude response weight
Wasu=5000 % Upper stop band amplitude response weight
ftpl=0.11 % Pass band group-delay response lower edge
ftpu=0.19 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response(samples)
tdr=0.200000 % Pass band group-delay response ripple(samples)
Wtp=2 % Pass band group-delay response weight
fppl=0.11 % Pass band phase response lower edge
fppu=0.19 % Pass band phase response upper edge
pd=3.500000 % Pass band nominal phase response(rad./pi)
pdr=0.040000 % Pass band phase response ripple(rad./pi)
Wpp=10 % Pass band phase response weight

The filter coefficients are truncated to 10 bits with 3 signed-digits. At each branch the script fixes the coefficient with the
largest difference between upper and lower 3 signed-digit approximations to the floating-point value. For each sub-problem
the coefficients “higher-up-the-tree” are fixed and the remaining free coefficients are SOCP PCLS optimised with the filter
specification given above.

The 12-bit, 3-signed-digit, lattice coefficients found by the branch-and-bound search are:

A1k_min = [-228, 440, -216, 176, ...
312, -208, 156, 196, ...

-164, 118]'/512;

A2k_min = [-416, 452, -232, 152, ...
316, -191, 162, 196, ...

-160, 126]'/512;

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 58 signed-digits and 38 shift-
and-add operations.

Figure 14.28 shows the amplitude pass-band response of the filter with 10-bit, 3-signed-digit coefficients. Figure 14.29 shows
the corresponding filter pass-band phase response (in multiples of π and adjusted for the nominal delay). Figure 14.30 shows
the corresponding filter pass-band group-delay response. Figure 14.31 shows the corresponding filter stop-band amplitude re-
sponse. Table 14.11 compares the cost and the number of 12 bit shift-and-add operations required to implement the coefficient
multiplications found with the branch-and-bound search.

439

0.1 0.12 0.14 0.16 0.18 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=10,ndigits=3) : fapl=0.1,fapu=0.2

exact
s-d

s-d(b-and-b)

Figure 14.28: Pass band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 10
bit 3-signed-digit coefficients found by branch-and-bound search.

0.1 0.12 0.14 0.16 0.18 0.2

1.495

1.5

1.505

Frequency

Ph
as

e(
ra

d.
/π

)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=10,ndigits=3) : ftpl=0.11,ftpu=0.19

exact
s-d

s-d(b-and-b)

Figure 14.29: Pass band phase response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 10 bit
3-signed-digit coefficients found by performing branch-and-bound search. The phase response shown is adjusted for the nominal
delay.

440

0.1 0.12 0.14 0.16 0.18 0.2
15.8

15.9

16

16.1

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=10,ndigits=3) : ftpl=0.11,ftpu=0.19

exact
s-d

s-d(b-and-b)

Figure 14.30: Pass band group delay response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 10
bit 3-signed-digit coefficients found by branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass Hilbert filter stop-band(nbits=10,ndigits=3) : fasl=0.05,fasu=0.25

exact
s-d

s-d(SOCP b-and-b)

Figure 14.31: Stop band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 10
bit 3-signed-digit coefficients found by branch-and-bound search.

441

Cost Signed-digits Shift-and-adds

Exact 0.001810
10-bit 3-signed-digit 0.041330 58 38
10-bit 3-signed-digit(SOCP b-and-b) 0.002013 58 38

Table 14.11: Summary of cost results for the parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 10 bit
3-signed-digit coefficients found by branch-and-bound search.

442

14.12 Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a par-
allel all-pass lattice band-pass Hilbert IIR filter

The Octave script branch_bound_schurOneMPAlattice_bandpass_hilbert_12_nbits_test.m performs branch-and-bound search to
optimise the response of the parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter of Section 10.3.13 with 12-bit
integer coefficients. The filter specification is:

use_best_branch_and_bound_found=1
enforce_pcls_constraints_on_final_filter=1
branch_bound_schurOneMPAlattice_bandpass_hilbert_12_nbits_test_allocsd_Lim=0
branch_bound_schurOneMPAlattice_bandpass_hilbert_12_nbits_test_allocsd_Ito=1
nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=1 % Use difference of all-pass filters
m1=10 % Allpass model filter 1 denominator order
m2=10 % Allpass model filter 2 denominator order
rho=0.999000 % Constraint on allpass coefficients
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=0.050000 % Pass band amplitude response ripple(dB)
Wap=1 % Pass band amplitude response weight
Watl=0.001 % Lower transition band amplitude response weight
Watu=0.001 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=36.000000 % Stop band amplitude response ripple(dB)
Wasl=2000 % Lower stop band amplitude response weight
Wasu=1000 % Upper stop band amplitude response weight
ftpl=0.11 % Pass band group-delay response lower edge
ftpu=0.19 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response(samples)
tdr=0.200000 % Pass band group-delay response ripple(samples)
Wtp=20 % Pass band group-delay response weight
fppl=0.11 % Pass band phase response lower edge
fppu=0.19 % Pass band phase response upper edge
pd=3.500000 % Pass band nominal phase response(rad./pi)
pdr=0.020000 % Pass band phase response ripple(rad./pi)
Wpp=1000 % Pass band phase response weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Ito et al. as shown
in Section 11.2. At each branch the script fixes the coefficient with the largest difference between upper and lower signed-
digit approximations to the floating-point value. For each sub-problem the coefficients “higher-up-the-tree” are fixed and the
remaining free coefficients are SOCP PCLS optimised with the filter specification given above.

The 12-bit, average of 3-signed-digit, lattice coefficients allocated with the algorithm of Ito et al. are:

A1k0_sd = [-912, 1728, -840, 704, ...
1216, -840, 624, 784, ...
-656, 480]'/2048;

A2k0_sd = [-1632, 1816, -928, 640, ...
1248, -792, 640, 800, ...
-640, 496]'/2048;

The 12-bit, average of 3-signed-digit, lattice coefficients allocated with the algorithm of Ito et al. found by the branch-and-bound
search are:

A1k_min = [-912, 1728, -856, 704, ...
1216, -834, 560, 800, ...
-672, 480]'/2048;

443

0.1 0.12 0.14 0.16 0.18 0.2
-0.03

-0.02

-0.01

0

0.01

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=12,ndigits=3) : fapl=0.1,fapu=0.2

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.32: Pass band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 12
bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

A2k_min = [-1632, 1810, -952, 640, ...
1248, -769, 576, 800, ...
-640, 496]'/2048;

The signed-digit lattice coefficients found by the branch-and-bound search are implemented with 59 signed-digits and 39 shift-
and-add operations.

Figure 14.32 shows the amplitude pass-band response of the filter with 12-bits 3-signed-digit coefficients allocated with the
algorithm of Ito et al. and branch-and-bound search. Figure 14.33 shows the corresponding filter pass-band phase response (in
multiples of π and adjusted for the nominal delay). Figure 14.34 shows the corresponding filter pass-band group-delay response.
Figure 14.35 shows the corresponding filter stop-band amplitude response. Table 14.12 compares the cost and the number of 12
bit shift-and-add operations required to implement the coefficient multiplications found by the signed-digit allocation heuristic
of Ito et al. with the branch-and-bound search.

Cost Signed-digits Shift-and-adds

Exact 0.015101
12-bit 3-signed-digit(Ito) 0.389972 60 40
12-bit 3-signed-digit(SOCP b-and-b) 0.007677 59 39

Table 14.12: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 12 bit integer coefficients found by
allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing branch-and-bound
search.

444

0.1 0.12 0.14 0.16 0.18 0.2

1.499

1.5

1.501

Frequency

Ph
as

e(
ra

d.
/π

)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=12,ndigits=3) : ftpl=0.11,ftpu=0.19

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.33: Pass band phase response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 12 bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search. The phase response shown is adjusted for the nominal delay.

0.1 0.12 0.14 0.16 0.18 0.2

15.95

16

16.05

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice bandpass Hilbert filter pass-band(nbits=12,ndigits=3) : ftpl=0.11,ftpu=0.19

exact
s-d(Ito)

s-d(b-and-b)

Figure 14.34: Pass band group-delay response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 12
bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

445

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass Hilbert filter stop-band(nbits=12,ndigits=3) : fasl=0.05,fasu=0.25

exact
s-d(Ito)

s-d(SOCP b-and-b)

Figure 14.35: Stop band amplitude response for a parallel Schur one-multiplier all-pass lattice band-pass Hilbert filter with 12
bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing branch-and-bound search.

446

14.13 Branch-and-bound search for the coefficients of an FRM low-pass filter im-
plemented with 12-bits and an average of 3-signed-digits

The Octave script branch_bound_schurOneMAPlattice_frm_12_nbits_test.m uses the branch-and-bound heuristic to optimise the
response of the FRM low-pass filter of Section 10.4.6 with 12-bit coefficients each having an average of 3 signed-digits allocated
by the method of Lim et al.. The number of signed-digits allocated to the coefficients of the all-pass lattice filter are:

k_allocsd_digits = [2, 4, 1, 4, ...
1, 4, 3, 3, ...
3, 4]';

The number of signed-digits allocated to the distinct coefficients of the FIR masking filter are:

u_allocsd_digits = [5, 5, 4, 2, ...
4, 3, 4, 3, ...
4, 2, 4, 3, ...
3, 3, 2, 2, ...
1, 3, 3, 2, ...
1]';

The number of signed-digits allocated to the distinct coefficients of the FIR complementary masking filter are:

v_allocsd_digits = [5, 4, 4, 2, ...
4, 3, 3, 4, ...
4, 1, 4, 4, ...
2, 3, 3, 2, ...
3, 3, 2, 2, ...
2]';

The filter specification is:

n=1000 % Frequency points across the band
tol=0.0005 % Tolerance on coefficient update vector
ctol=5e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
mr=10 % Allpass model filter denominator order
Mmodel=9 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=20 % FIR masking filter delay
fap=0.3 % Magnitude-squared pass band edge
dBap=1 % Pass band magnitude peak-to-peak ripple
Wap=1 % Pass band magnitude-squared weight
fas=0.3105 % Magnitude-squared stop band edge
dBas=38 % Stop band magnitude minimum attenuation
Was=10 % Stop band magnitude-squared weight
ftp=0.3 % Delay pass band edge
tp=101 % Pass band nominal delay
tpr=tp/126.25 % Pass band delay peak-to-peak ripple
Wtp=1 % Pass band magnitude-squared weight
fpp=0.3 % Phase pass band edge
ppr=0.04*pi % Pass band phase peak-to-peak ripple (rad./pi)
Wpp=0.01 % Phase pass band weight
rho=0.992188 % Constraint on allpass pole radius

The filter coefficients found by the branch-and-bound searchb are:

k_min = [-34, 1200, 32, -291, ...
-16, 121, 14, -52, ...
-13, 22]'/2048;

bThe search was stopped after about 36 hours.

447

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

FRM filter (nbits=12,ndigits=3) : fap=0.3,fas=0.3105,dBap=1,dBas=38,tp=101,tpr=0.8,ppr=0.04*π

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-50

-45

-40

-35

-30

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 14.36: Comparison of the amplitude responses of an FRM low-pass filter with floating-point coefficients, with 12 bit
coefficients having an average of 3-signed-digits allocated by the method of Lim et al. and with the coefficients found by branch-
and-bound search.

epsilon_min = [1, 1, -1, 1, ...
1, -1, -1, 1, ...
1, -1];

u_min = [1179, 617, -117, -160, ...
104, 68, -95, -21, ...
79, -36, -28, 17, ...
14, -18, -8, 20, ...
4, -20, 16, 0, ...

-2]'/2048;

v_min = [-1364, -559, 270, 9, ...
-136, 100, 11, -74, ...

58, -4, -36, 28, ...
5, -23, 17, 5, ...

-15, 11, -4, -6, ...
6]'/2048;

Figures 14.36, 14.37, and 14.38 compare the amplitude, phase and group delay responses of the FRM low-pass filter with
floating-point coefficients and 12-bit coefficients with an average of 3-signed-digits allocated by the method of Lim et al. and
with the coefficients found by branch-and-bound search. Table 14.13 compares the cost and the number of 12 bit shift-and-add
operations required to implement the coefficient multiplications found by branch-and-bound search.

448

0 0.1 0.2 0.3 0.4 0.5
-0.004

-0.002

0

0.002

0.004

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

FRM filter (nbits=12,ndigits=3) : fap=0.3,fas=0.3105,dBap=1,dBas=38,tp=101,tpr=0.8,ppr=0.04*π

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 14.37: Comparison of the pass-band phase responses of an FRM low-pass filter with floating-point coefficients, with 12
bit coefficients having an average of 3-signed-digits allocated by the method of Lim et al. and with the coefficients found by
branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5

100.5

101

101.5

Frequency

D
el

ay
(s

am
pl

es
)

FRM filter (nbits=12,ndigits=3) : fap=0.3,fas=0.3105,dBap=1,dBas=38,tp=101,tpr=0.8,ppr=0.04*π

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 14.38: Comparison of the pass-band delay responses of an FRM low-pass filter with floating-point coefficients, with 12
bit coefficients having an average of 3-signed-digits allocated by the method of Lim et al. and with the coefficients found by
branch-and-bound search.

449

Cost Signed-digits Shift-and-adds

Exact 0.001692
12-bit 3-signed-digit(Lim) 0.003160 122 70
12-bit 3-signed-digit(branch-and-bound) 0.001086 126 75

Table 14.13: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient mul-
tiplications for an FRM low-pass filter with 12-bit coefficients having an average of 3-signed-digits allocated by the method of
Lim et al. and with the coefficients found by branch-and-bound search.

450

14.14 Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FRM
Hilbert filter

The Octave script branch_bound_schurOneMAPlattice_frm_hilbert_12_nbits_test.m uses the branch-and-bound heuristic to op-
timise the response of the FRM Hilbert filter of Section 10.4.8 with 12-bit 2-signed-digit coefficients. The filter specification
is:

n=800 % Frequency points across the band
tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=800 % Frequency points across the band
mr=5 % Allpass model filter denominator order
Mmodel=7 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=16 % FIR masking filter delay
fap=0.01 % Magnitude-squared pass band edge
fas=0.49 % Magnitude-squared stop band edge
dBap=0.2 % Pass band magnitude-squared peak-to-peak ripple
Wap=1 % Pass band magnitude-squared weight
ftp=0.01 % Delay pass band edge
fts=0.49 % Delay stop band edge
tp=79 % Pass band nominal delay
tpr=tp/90 % Pass band delay peak-to-peak ripple
Wtp=1 % Pass band magnitude-squared weight
fpp=0.01 % Phase pass band edge
fps=0.49 % Phase stop band edge
pp=-0.5*pi % Pass band phase peak-to-peak ripple (rad.)
ppr=pi/360 % Pass band phase peak-to-peak ripple (rad.)
Wpp=0.005 % Phase pass band weight

The truncation of the last coefficient is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS
specifications. The filter coefficients found by the branch-and-bound search are:

k_min = [-1152, -264, -96, -36, ...
-12]'/2048;

u_min = [0, -3, -16, -24, ...
-63, -72, -112, -120, ...
896]'/2048;

v_min = [14, 9, 18, 8, ...
-12, -63, -160, -640]'/2048;

Figures 14.39, 14.40 and 14.41 compare the amplitude, phase and delay responses of the FRM Hilbert filter with floating-point
coefficients, with 12-bit 2-signed-digit coefficients and with the 12-bit 2-signed-digit coefficients found by branch-and-bound
search. Figure 14.42 compares the amplitude and phase responses of a linear phase FIR Hilbert filter with 12-bit 2-signed-digit
coefficients and the FRM Hilbert filter with 12 bit 2-signed digit integer coefficients found by branch-and-bound search. The
phase responses shown are adjusted for the nominal delay. The group delay of the FIR Hilbert filter is the nominal delay of the
FRM Hilbert filter:

b=remez(2*tp,2*[fap fas],[1 1],1,"hilbert");

The FIR Hilbert filter coefficients have not been optimised. Table 14.14 compares the cost and the number of 12 bit shift-and-add
operations required to implement the coefficient multiplications found by the branch-and-bound search.

451

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.2,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d

s-d(SOCP-bb)

Figure 14.39: Comparison of the amplitude response of an FRM Hilbert filter with floating-point coefficients and with 12 bit
2-signed digit integer coefficients found by branch-and-bound search

0 0.1 0.2 0.3 0.4 0.5

-0.504

-0.502

-0.5

-0.498

-0.496

Frequency

Ph
as

e(
ra

d.
/π

)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.2,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d

s-d(SOCP-bb)

Figure 14.40: Comparison of the phase response of an FRM Hilbert filter with floating-point coefficients and with 12 bit 2-signed
digit integer coefficients found by branch-and-bound search. The phase response shown is adjusted for the nominal delay.

452

0 0.1 0.2 0.3 0.4 0.5
78

78.5

79

79.5

80

Frequency

D
el

ay
(s

am
pl

es
)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.2,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d

s-d(SOCP-bb)

Figure 14.41: Comparison of the delay response of an FRM Hilbert filter with floating-point coefficients and with 12 bit 2-signed
digit integer coefficients found by branch-and-bound search.

0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.2

0

0.2

0.4

A
m

pl
itu

de
(d

B
) s-d(remez)

s-d(SOCP-bb)

0 0.1 0.2 0.3 0.4 0.5
-0.502

-0.501

-0.5

-0.499

-0.498

Ph
as

e(
ra

d.
/π

)

Frequency

Figure 14.42: Comparison of the amplitude and phase responses of an FIR Hilbert filter with 12-bit 2-signed-digit coefficients
and an FRM Hilbert filter with 12 bit 2-signed digit integer coefficients found by branch-and-bound search. The phase response
shown is adjusted for the nominal delay.

453

Cost Signed-digits Shift-and-adds

Exact 0.000656
12-bit 2-signed-digit 0.001686 40 18
12-bit 2-signed-digit(branch-and-bound) 0.001387 40 19
12-bit 2-signed-digit(remez) 0.005131 73 33

Table 14.14: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for an FRM Hilbert filter with 12-bit 2-signed-digit coefficients found by branch-and-bound search.

454

14.15 Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR
Hilbert filter

The Octave script branch_bound_directFIRhilbert_12_nbits_test.m uses the branch-and-bound heuristic to optimise the response
of a direct-form FIR Hilbert filter with 12-bit 2-signed-digit coefficients having a similar specification to the FIR Hilbert filter
of Appendix N.3.1. An average of 2 signed-digits are allocated to each non-zero coefficient with the heuristic of Ito et al.. The
Octave script directFIRhilbert_allocsd_test.m compares the heuristics of Lim et al. and Ito et al. for coefficient wordlengths from
6 to 16 bits. The direct-form FIR Hilbert filter specification is:

M=40 % Number of distinct coefficients
nbits=12 % Coefficient bits
ndigits=2 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coefficient. update
maxiter=400 % iteration limit
fapl=0.01 % Amplitude pass band lower edge
fapu=0.49 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
Was=0 % Amplitude stop band weight

The filter has 40 distinct non-zero coefficients and the filter group-delay is 79 samples. The distinct non-zero filter coefficients
found by the branch-and-bound search are:

hM_min = [-1, -1, -1, -1, ...
-2, -2, -2, -3, ...
-4, -4, -4, -4, ...
-8, -8, -8, -8, ...

-12, -12, -16, -16, ...
-18, -20, -24, -28, ...
-30, -32, -36, -40, ...
-48, -52, -60, -68, ...
-80, -96, -112, -140, ...

-184, -258, -432, -1304]'/2048;

Figure 14.43, compares the amplitude responses of the FIR Hilbert filter with floating-point coefficients, 12-bit 2-signed-digit
coefficients, 12-bit 2-signed-digit coefficients with signed-digits allocated by the heuristic of Ito et al. and with the 12-bit
2-signed-digit coefficients found by branch-and-bound search. Table 14.15 compares the cost and the number of 12 bit shift-
and-add operations required to implement the coefficient multiplications found by the branch-and-bound search. The FIR filter
structure requires an extra 80 additions.

Cost Signed-digits Shift-and-adds

Exact 1.07e-06
12-bit 2-signed-digit 4.25e-04 71 31
12-bit 2-signed-digit(Ito) 1.88e-05 68 28
12-bit 2-signed-digit(branch-and-bound) 1.71e-05 68 28

Table 14.15: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a direct-form FIR Hilbert filter with 12-bit 2-signed-digit coefficients found by branch-and-bound search.

455

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form FIR Hilbert filter (nbits=12,ndigits=2) : fapl=0.01,fapu=0.49,Wap=1,Was=0

exact
s-d

s-d(Ito)

s-d(BandB)

Figure 14.43: Comparison of the amplitude response of a direct-form FIR Hilbert filter with floating-point coefficients and with
12-bit 2-signed digit integer coefficients found by branch-and-bound search.

456

14.16 Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR
Hilbert band-pass filter

The Octave script branch_bound_directFIRhilbert_bandpass_12_nbits_test.m uses the branch-and-bound heuristic to optimise
the response of a direct-form FIR Hilbert band-pass filter with 12-bit 2-signed-digit coefficients having a similar bandwidth
specification to the FIR Hilbert band-pass filter of Appendix N.3.1. An average of 2 signed-digits are allocated to each non-zero
coefficient with the heuristic of Ito et al. .The direct-form FIR Hilbert filter specification is:

M=8 % Number of distinct coefficients
nbits=12 % Coefficient bits
ndigits=2 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coefficient. update
maxiter=400 % iteration limit
fapl=0.16325 % Amplitude pass band lower edge
fapu=0.33675 % Amplitude pass band upper edge
Wap=2 % Amplitude pass band weight
Was=1 % Amplitude stop band weight

The filter has 8 distinct non-zero coefficients and the filter group-delay is 15 samples. The distinct non-zero filter coefficients
found by the allocation of signed-digits with the heuristic of Ito et al. are:

hM_sd = [-20, 8, 64, -32, ...
-128, 112, 327, -868]'/2048;

and by branch-and-bound search are:

hM_min = [-24, 8, 64, -32, ...
-128, 120, 327, -872]'/2048;

Figure 14.44, compares the amplitude responses of the FIR Hilbert band-pass filter with floating-point coefficients, 12-bit 2-
signed-digit coefficients, 12-bit 2-signed-digit coefficients with signed-digits allocated by the heuristic of Ito et al. and with the
12-bit 2-signed-digit coefficients found by branch-and-bound search. Table 14.16 compares the cost and the number of 12 bit
shift-and-add operations required to implement the coefficient multiplications found by the branch-and-bound search. The FIR
filter structure requires an extra 16 additions.

Cost Signed-digits Shift-and-adds

Exact 4.99e-05
12-bit 2-signed-digit 5.39e-04 16 8
12-bit 2-signed-digit(Ito) 7.91e-05 16 8
12-bit 2-signed-digit(branch-and-bound) 4.96e-05 16 8

Table 14.16: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a direct-form FIR Hilbert band-pass filter with 12-bit 2-signed-digit coefficients found by branch-and-bound search.

457

0.16 0.18 0.2 0.22 0.24
-0.2

-0.1

0

0.1

0.2

Direct-form FIR Hilbert bandpass filter (nbits=12,ndigits=2) : fasl=0.1,fapl=0.16325,Wap=2,Was=1

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-50

-45

-40

-35

-30

-25

-20

A
m

pl
itu

de
(d

B
)

Frequency

exact
s-d

s-d(Ito)

s-d(BandB)

Figure 14.44: Comparison of the amplitude response of a direct-form FIR Hilbert bandpass filter with floating-point coefficients
and with 12-bit 2-signed digit integer coefficients found by branch-and-bound search.

458

Chapter 15

Successive coefficient relaxation search for
signed-digit filter coefficients

This section describes the results of experiments in which I fix one coefficient and minimise the objective function over the
remaining free coefficients. This is called a relaxation of the optimisation. The relaxation is repeated until all the coefficients are
fixed.

15.1 SOCP-relaxation search for the signed-digit coefficients of a direct-form sym-
metric bandpass FIR filter

The Octave script socp_relaxation_directFIRsymmetric_bandpass_12_nbits_test.m performs successive SOCP relaxations to op-
timise the response of a direct-form symmetric band-pass FIR filter. The filter specification is:

nbits=12 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=1e-05 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
maxiter=5000 % SOCP iteration limit
npoints=1000 % Frequency points across the band
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude stop band(1) lower edge
fasu=0.25 % Amplitude stop band(1) upper edge
dBas=43 % Amplitude stop band(1) peak-to-peak ripple
fasll=0.04 % Amplitude stop band(2) lower edge
fasuu=0.26 % Amplitude stop band(2) upper edge
dBass=37 % Amplitude stop band(2) peak-to-peak ripple
Wasl=40 % Amplitude lower stop band weight
Wasu=40 % Amplitude upper stop band weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Ito et al. as shown
in Section 11.2.

At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the current set of active
coefficients and selects the coefficient with the largest difference in those approximations. The corresponding bounds are set
in the bounds for that coefficient passed to the Octave function directFIRsymmetric_socp_mmse. The results of this MMSE
optimisation are then passed to directFIRsymmetric_slb for PCLS optimisation. The resulting PCLS coefficient value selects the
closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last coefficient is, by
necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The distinct direct-form symmetric FIR bandpass filter coefficients found by the SOCP-relaxation search are:

459

0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form symmetric bandpass filter pass-band (nbits=12,ndigits=3) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d

s-d(Ito)

s-d(Ito and SOCP-relax)

Figure 15.1: Comparison of the pass-band amplitude responses for a direct-form symmetric FIR bandpass filter with 12-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing SOCP-relaxation search.

hM_min = [-1, -16, -33, -15, ...
39, 68, 32, -8, ...
28, 82, -2, -236, ...

-366, -142, 302, 530]'/2048;

Figures 15.1 and 15.2 compares the responses of the filter with floating-point coefficients, 12-bit signed-digit coefficients allo-
cated with the algorithm of Ito et al. and 12-bit signed-digit coefficients allocated with the algorithm of Ito et al. and SOCP-
relaxation search. Table 15.1 compares the cost and the number of 12 bit shift-and-add operations required to implement the 16
distinct coefficient multiplications found by the signed-digit allocation heuristic of Ito et al. with the SOCP-relaxation search.

Cost Signed-digits Shift-and-adds

Exact 0.0009
12-bit 3-signed-digit 0.000971 39 23
12-bit 3-signed-digit(Ito) 0.001018 36 20
12-bit 3-signed-digit(SOCP-relax) 0.001038 36 20

Table 15.1: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a direct-form symmetric FIR bandpass filter with 12-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Ito et al. and performing SOCP-relaxation search.

460

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form symmetric bandpass filter stop-band (nbits=12,ndigits=3) : fasl=0.05,fasu=0.25,dBas=43

exact
s-d

s-d(Ito)

s-d(Ito and SOCP-relax)

Figure 15.2: Comparison of the stop-band amplitude responses for a direct-form symmetric FIR bandpass filter with 12-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing SOCP-relaxation search.

461

15.2 SQP-relaxation search for the signed-digit coefficients of a lattice bandpass
IIR filter

The Octave script sqp_relaxation_schurOneMlattice_bandpass_10_nbits_test.m performs successive SQP relaxations to opti-
mise the response of the SQP optimised band-pass Schur one-multiplier lattice filter of Section 10.3.9. The filter specification
is:

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
maxiter=2000 % SQP iteration limit
npoints=250 % Frequency points across the band
% length(c0)=21 % Num. tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
dmax=0.250000 % Constraint on norm of coefficient SQP step size
rho=0.998047 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
tpr=0.2 % Delay pass band peak-to-peak ripple
Wtp=5 % Delay pass band weight
fasl=0.05 % Amplitude stop band(1) lower edge
fasu=0.25 % Amplitude stop band(1) upper edge
dBas=33 % Amplitude stop band(1) peak-to-peak ripple
fasll=0.04 % Amplitude stop band(2) lower edge
fasuu=0.26 % Amplitude stop band(2) upper edge
dBass=37 % Amplitude stop band(2) peak-to-peak ripple
Wasl=500000 % Amplitude lower stop band weight
Wasu=1000000 % Amplitude upper stop band weight

The filter coefficients are truncated to 10 bits allocated with an average of 3 signed-digits by the heuristic of Ito et al. as shown
in Section 11.2.

At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the current set of active
coefficients and selects the coefficient with the largest difference in those approximations. The corresponding bounds are set in the
bounds for that coefficient passed to the Octave function schurOneMlattice_sqp_mmse. The results of this MMSE optimisation
are then passed to schurOneMlattice_slb for PCLS optimisation. The resulting PCLS coefficient value selects the closer of the
upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last coefficient is, by necessity,
not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The filter coefficients found by the SQP-relaxation search are:

k_min = [0, 332, 0, 256, ...
0, 176, 0, 214, ...
0, 152, 0, 128, ...
0, 76, 0, 52, ...
0, 18, 0, 7]'/512;

c_min = [36, -8, -156, -240, ...
-78, 64, 200, 148, ...

8, -42, -40, -8, ...
-4, -18, -13, 1, ...
12, 8, 2, 0, ...
2]'/512;

Figure 15.3 compares the pass-band responses of the filter with floating-point coefficients, 10-bit signed-digit coefficients al-
located with the algorithm of Ito et al. and 10-bit signed-digit coefficients allocated with the algorithm of Ito et al. and
SQP-relaxation search. Figure 15.4 shows the filter stop-band response and Figure 15.5 shows the filter pass-band group de-
lay response. Table 15.2 compares the cost and the number of 10 bit shift-and-add operations required to implement the 31
coefficient multiplications found by the signed-digit allocation heuristic of Ito et al. with the SQP-relaxation search. A further
51 additions are required by the lattice filter structure.

462

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d

s-d(Ito)

s-d(SQP-relax)

Figure 15.3: Comparison of the pass-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing SQP-relaxation search.

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=10) : fasl=0.05,fasu=0.25,dBas=33

exact
s-d

s-d(Ito)

s-d(SQP-relax)

Figure 15.4: Comparison of the stop-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing SQP-relaxation search.

463

0.1 0.12 0.14 0.16 0.18 0.2
15.8

15.9

16

16.1

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : ftpl=0.09,ftpu=0.21,tp=16,tpr=0.2

exact
s-d

s-d(Ito)

s-d(SQP-relax)

Figure 15.5: Comparison of the pass-band group delay responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and
performing SQP-relaxation search.

Cost Signed-digits Shift-and-adds

Exact 0.0164
10-bit 3-signed-digit 0.0502 73 42
10-bit 3-signed-digit(Ito) 0.0652 65 34
10-bit 3-signed-digit(SQP-relax) 0.0258 63 33

Table 15.2: Comparison of the cost and number of 10-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice bandpass filter with 10-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Ito et al. and performing SQP-relaxation search.

464

15.3 SQP-relaxation search for the signed-digit coefficients of a lattice lowpass IIR
filter

The Octave script sqp_relaxation_schurOneMlattice_lowpass_10_nbits_test.m performs successive SQP relaxations to optimise
the response of the low-pass Schur one-multiplier lattice filter of Section 10.3.2 with 10-bit integer coefficients. The filter
specification is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=0.0001 % Tolerance on constraints
nbits=10 % coefficient length in bits
ndigits=3 % signed-digits per coefficient
n=400 % Frequency points across the band
% length(c0)=11 % Tap coefficients
% sum(k0~=0)=6 % Num. non-zero lattice coefficients
dmax=0.050000 % Constraint on norm of coefficient SQP step size
rho=0.992188 % Constraint on lattice coefficient magnitudes
fap=0.15 % Amplitude pass band edge
dBap=0.4 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftp=0.25 % Delay pass band edge
tp=10 % Nominal pass band filter group delay
tpr=0.2 % Delay pass band peak-to-peak ripple
Wtp=0.5 % Delay pass band weight
fas=0.3 % Amplitude stop band edge
dBas=37 % amplitude stop band peak-to-peak ripple
Was=20000 % Amplitude stop band weight

The filter coefficients are truncated to 10 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as shown
in Section 11.1. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the current
set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding bounds
are set in the bounds for that coefficient passed to the Octave function schurOneMlattice_sqp_mmse. The results of this MMSE
optimisation are then passed to schurOneMlattice_slb for PCLS optimisation. The resulting PCLS coefficient value selects the
closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last coefficient is, by
necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The filter coefficients found by the SQP-relaxation search are:

k_min = [-358, 355, -303, 215, ...
-112, 32, 0, 0, ...

0, 0]'/512;

c_min = [140, 350, 43, -44, ...
-22, 4, 12, 4, ...
-4, -4, 0]'/512;

Figure 15.6 shows the amplitude and group-delay responses of the filter with 10-bit 3-signed-digit coefficients allocated with
the algorithm of Lim et al. and SQP-relaxation search. Figures 15.7 and 15.8 show the corresponding filter pass-band response.
Figure 15.9 shows the filter pole-zero plot. Table 15.3 compares the cost and the number of 10 bit shift-and-add operations
required to implement the coefficient multiplications found by the signed-digit allocation heuristic of Lim et al. with the SQP-
relaxation search.

465

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Schur One-M lattice lowpass : fap=0.15,dBap=0.4,ftp=0.25,tp=10,tpr=0.2,fas=0.3,dBas=37

exact
s-d(Lim)

s-d(SQP-relax)

Figure 15.6: Amplitude responses for a Schur one-multiplier lattice low-pass filter with 10-bit integer coefficients found by
allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SQP-relaxation
search.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

-0.4

-0.2

0

0.2

0.4

Frequency

A
m

pl
itu

de
(d

B
)

Schur One-M lattice lowpass : fap=0.15,dBap=0.4,ftp=0.25,tp=10,tpr=0.2,fas=0.3,dBas=37

exact
s-d(Lim)

s-d(SQP-relax)

Figure 15.7: Pass-band amplitude responses for a Schur one-multiplier lattice low-pass filter with 10-bit integer coefficients found
by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SQP-relaxation
search.

466

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
9.8

9.9

10

10.1

Frequency

D
el

ay
(s

am
pl

es
)

exact
s-d(Lim)

s-d(SQP-relax)

Figure 15.8: Pass-band group delay responses for a Schur one-multiplier lattice low-pass filter with 10-bit integer coefficients
found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SQP-
relaxation search.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Schur One-M lattice lowpass : fap=0.15,dBap=0.4,ftp=0.25,tp=10,tpr=0.2,fas=0.3,dBas=37

Figure 15.9: Pole-zero plot for a Schur one-multiplier lattice low-pass filter with 10-bit integer coefficients found by allocating
an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SQP-relaxation search.

467

Cost Signed-digits Shift-and-adds

Exact 0.001253
10-bit 3-signed-digit(Lim) 0.019346 42 26
10-bit 3-signed-digit(SQP-relax) 0.000629 44 28

Table 15.3: Comparison of the cost and number of 10-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice low-pass filter with 10-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SQP-relaxation search.

468

15.4 SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass
lattice low-pass IIR filter

The Octave script socp_relaxation_schurOneMPAlattice_lowpass_12_nbits_test.m performs successive SOCP relaxations to op-
timise the response of the parallel Schur one-multiplier all-pass lattice low-pass filter of Section 10.3.5 with 12-bit integer
coefficients. The filter specification is:

nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=5e-07 % Tolerance on constraints
n=1000 % Frequency points across the band
m1=11 % Allpass model filter 1 denominator order
m2=12 % Allpass model filter 2 denominator order
rho=0.992188 % Constraint on allpass coefficients
fap=0.125 % Amplitude pass band edge
dBap=0.2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=0 % Amplitude transition band weight
fas=0.25 % Amplitude stop band edge
dBas=50 % amplitude stop band peak-to-peak ripple
Was=100 % Amplitude stop band weight
ftp=0.175 % Delay pass band edge
td=11.5 % Nominal pass band filter group delay
tdr=0.08 % Delay pass band peak-to-peak ripple
Wtp=2 % Delay pass band weight

The filter weights differ from those used in Section 14.6.

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as
shown in Section 11.1. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding
bounds are set in the bounds for that coefficient passed to the Octave function schurOneMPAlattice_socp_mmse. The results of
this MMSE optimisation are then passed to schurOneMPAlattice_slb for PCLS optimisation. The resulting PCLS coefficient
value selects the closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last
coefficient is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The signed-digit lattice coefficients found by the heuristic of Lim et al. are:

A1k_sd = [1576, -176, -548, -131, ...
-121, 501, -296, -9, ...
336, -328, 112]'/2048;

A2k_sd = [792, -560, 382, 336, ...
-95, 80, -416, 368, ...
8, -368, 304, -112]'/2048;

The signed-digit lattice coefficients found by the SOCP-relaxation search are:

A1k_min = [1576, -176, -548, -134, ...
-116, 508, -292, -5, ...
336, -322, 112]'/2048;

A2k_min = [792, -556, 380, 335, ...
-96, 80, -416, 368, ...
8, -368, 304, -112]'/2048;

The signed-digit lattice coefficients found by the SOCP-relaxation search are implemented with 65 signed-digits and 42 shift-
and-add operations.

Figures 15.10 and 15.11 shows the pass-band amplitude and group-delay responses of the filter with 12-bit 3-signed-digit co-
efficients allocated with the algorithm of Lim et al. and SOCP-relaxation search. Figure 15.12 shows the corresponding filter
stop-band amplitude response. Table 15.4 compares the cost and the number of 12 bit shift-and-add operations required to imple-
ment the coefficient multiplications found by the signed-digit allocation heuristic of Lim et al. with the SOCP-relaxation search.

469

0 0.05 0.1 0.15
-0.2

-0.15

-0.1

-0.05

0

0.05

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=2

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.10: Pass-band amplitude responses for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing
SOCP-relaxation search.

0 0.05 0.1 0.15
11.4

11.45

11.5

11.55

11.6

11.65

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=2

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.11: Pass-band group delay responses for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SOCP-relaxation search.

470

0.25 0.3 0.35 0.4 0.45 0.5
-70

-60

-50

-40

-30

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice lowpass filter (nbits=12) : fap=0.125,fas=0.25,dBap=0.2,Wap=1,td=11.5,Wtp=2

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.12: Stop band amplitude responses for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing
SOCP-relaxation search.

Cost Signed-digits Shift-and-adds

Exact 0.001844
12-bit 3-signed-digit(Lim) 0.004611 66 43
12-bit 3-signed-digit(SOCP-relax) 0.001371 65 42

Table 15.4: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel Schur one-multiplier all-pass lattice low-pass filter with 12 bit integer coefficients found by allocating an
average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation search.

471

15.5 SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass
lattice band-pass IIR filter

The Octave script socp_relaxation_schurOneMPAlattice_bandpass_12_nbits_test.m performs successive SOCP relaxations to
optimise the response of the parallel Schur one-multiplier all-pass lattice band-pass filter of Section 10.3.8 with 12-bit integer
coefficients. The filter specification is:

socp_relaxation_schurOneMPAlattice_bandpass_12_nbits_test_allocsd_Lim=1
socp_relaxation_schurOneMPAlattice_bandpass_12_nbits_test_allocsd_Ito=0
nbits=12 % Coefficient word length
ndigits=3 % Average number of signed digits per coef.
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=1 % Use difference of all-pass filters
m1=10 % Allpass model filter 1 denominator order
m2=10 % Allpass model filter 2 denominator order
rho=0.992188 % Constraint on allpass coefficients
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
dBap=2.000000 % Pass band amplitude response ripple(dB)
Wap=1 % Pass band amplitude response weight
Watl=0.01 % Lower transition band amplitude response weight
Watu=0.01 % Upper transition band amplitude response weight
fasl=0.05 % Stop band amplitude response lower edge
fasu=0.25 % Stop band amplitude response upper edge
dBas=40.000000 % Stop band amplitude response ripple(dB)
Wasl=1 % Lower stop band amplitude response weight
Wasu=2 % Upper stop band amplitude response weight
ftpl=0.1 % Pass band group-delay response lower edge
ftpu=0.2 % Pass band group-delay response upper edge
td=16.000000 % Pass band nominal group-delay response(samples)
tdr=0.320000 % Pass band group-delay response ripple(samples)
Wtp=0.2 % Pass band group-delay response weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as
shown in Section 11.1. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding
bounds are set in the bounds for that coefficient passed to the Octave function schurOneMPAlattice_socp_mmse. The results of
this MMSE optimisation are then passed to schurOneMPAlattice_slb for PCLS optimisation. The resulting PCLS coefficient
value selects the closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last
coefficient is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The signed-digit lattice coefficients found by the heuristic of Lim et al. are:

A1k_sd = [-808, 1408, 996, -1071, ...
1240, -464, -320, 888, ...
-578, 320]'/2048;

A2k_sd = [-1539, 1536, 988, -1164, ...
1275, -288, -256, 896, ...
-636, 320]'/2048;

The signed-digit lattice coefficients found by the SOCP-relaxation search are:

A1k_min = [-816, 1344, 984, -1059, ...
1279, -432, -320, 912, ...
-592, 320]'/2048;

A2k_min = [-1530, 1496, 984, -1145, ...
1308, -288, -256, 896, ...
-624, 320]'/2048;

472

0.1 0.12 0.14 0.16 0.18 0.2
-2.5

-2

-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass filter (nbits=12) : fapl=0.1,fapu=0.2,dBas=40,td=16

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.13: Pass-band mplitude responses for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing
SOCP-relaxation search.

The signed-digit lattice coefficients found by the SOCP-relaxation search are implemented with 59 signed-digits and 39 shift-
and-add operations.

Figures 15.13 and 15.14 show the pass-band amplitude and group-delay responses of the filter with 12-bit 3-signed-digit co-
efficients allocated with the algorithm of Lim et al. and SOCP-relaxation search. Figure 15.15 shows the corresponding filter
stop-band amplitude response.

Table 15.5 compares the cost and the number of 12 bit shift-and-add operations required to implement the coefficient multiplica-
tions found by the signed-digit allocation heuristic of Lim et al. with the SOCP-relaxation search.

Cost Signed-digits Shift-and-adds

Exact 0.029526
12-bit 3-signed-digit(Lim) 0.049422 58 38
12-bit 3-signed-digit(SOCP-relax) 0.014031 59 39

Table 15.5: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer coefficients found by allocating
an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation search.

473

0.1 0.12 0.14 0.16 0.18 0.2
15.8

15.9

16

16.1

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Parallel one-multplier allpass lattice bandpass filter (nbits=12) : fapl=0.1,fapu=0.2,dBas=40,td=16

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.14: Pass-band group-delay responses for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SOCP-relaxation search.

0 0.1 0.2 0.3 0.4 0.5
-70

-60

-50

-40

-30

-20

Frequency

A
m

pl
itu

de
(d

B
)

Parallel one-multplier allpass lattice bandpass filter (nbits=12) : fapl=0.1,fapu=0.2,dBas=40,td=16

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.15: Stop band amplitude responses for a parallel Schur one-multiplier all-pass lattice band-pass filter with 12 bit integer
coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing
SOCP-relaxation search.

474

15.6 SOCP-relaxation search for the signed-digit coefficients of a lattice Hilbert
IIR filter

The Octave script socp_relaxation_schurOneMlattice_hilbert_10_nbits_test.m performs successive SOCP relaxations to opti-
mise the response of the band-pass Schur one-multiplier lattice filter of Section 10.3.12 with 10-bit integer coefficients. The filter
specification is:

tol=1e-08 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
n=400 % Frequency points across the band
rho=1.000000 % Constraint on lattice coefficient magnitudes
ft=0.05 % Transition band width [0,ft]
dBap=0.17 % Amplitude pass band peak-to-peak ripple
Wat=1e-08 % Amplitude transition band weight
Wap=1 % Amplitude pass band weight
tp=5.5 % Nominal pass band filter group delay (samples)
pr=0.011 * pi % Phase pass band peak-to-peak ripple (rad.)
Wpp=1 % Phase pass band weight

The filter coefficients are truncated to 10 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as shown
in Section 11.1. In this example, the group delay response is not constrained. I did not succeed in finding a Hilbert filter with
integer coefficients using the SQP solver or using the signed-digit allocation heuristic of Ito et al..

As in Section 15.2, at each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding
bounds are set in the bounds for that coefficient passed to the Octave function schurOneMlattice_socp_mmse. The results of this
MMSE optimisation are then passed to schurOneMlattice_slb for PCLS optimisation. The resulting PCLS coefficient value
selects the closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last
coefficient is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The signed-digit filter coefficients found by the heuristic of Lim et al. are:

k0_sd = [0, -468, 0, 284, ...
0, -49, 0, 0, ...
0, -1, 0, 1]'/512;

c0_sd = [22, 26, 124, 148, ...
96, 146, 351, -303, ...

-84, -40, -22, -12, ...
-8]'/512;

The signed-digit filter coefficients found by the SOCP-relaxation search are:

k_min = [0, -468, 0, 284, ...
0, -50, 0, 0, ...
0, -1, 0, 1]'/512;

c_min = [22, 26, 124, 148, ...
96, 146, 351, -303, ...

-84, -41, -23, -12, ...
-9]'/512;

Figures 15.16 and 15.17 compare the amplitude and phase responses of the filter with floating-point coefficients, 10-bit signed-
digit coefficients allocated with the algorithm of Lim et al. and 10-bit signed-digit coefficients allocated with the algorithm of
Lim et al. and SOCP-relaxation search. The phase responses shown are adjusted for the nominal filter delay.

Table 15.6 compares the cost, the number of signed-digits and the number of 10-bit shift-and-add operations required to imple-
ment the coefficient multiplications found by the signed-digit allocation heuristic of Lim et al. with SOCP-relaxation search.

475

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Hilbert filter:ft=0.05,dBap=0.17,tp=5.5,pr=0.011,Wap=1,Wpp=1

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.16: Comparison of the amplitude responses for a Schur one-multiplier lattice Hilbert filter with 10-bit integer coef-
ficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing
SOCP-relaxation search. The phase responses shown are adjusted for the nominal delay.

0 0.1 0.2 0.3 0.4 0.5
-0.53

-0.52

-0.51

-0.5

-0.49

-0.48

-0.47

Frequency

Ph
as

e(
ra

d.
/π

)

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.17: Comparison of the phase responses for a Schur one-multiplier lattice Hilbert filter with 10-bit integer coefficients
found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-
relaxation search. The phase responses shown are adjusted for the nominal delay.

476

Cost Signed-digits Shift-and-adds

Exact 0.000161
10-bit 3-signed-digit(Lim) 0.000218 47 29
10-bit 3-signed-digit(SOCP-relax) 0.000259 48 30

Table 15.6: Comparison of the cost and number of 10-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice Hilbert filter with 10-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation search.

477

15.7 SOCP-relaxation search for the signed-digit coefficients of a one-multiplier
lattice low-pass differentiator IIR filter

The Octave script socp_relaxation_schurOneMlattice_lowpass_differentiator_12_nbits_test.m performs successive SOCP relax-
ations to optimise the response of an implementation of the low-pass differentiator filter shown in Section 8.2.9 as the series
combination of 1− z−1 and a Schur one-multiplier lattice filter with 12-bit integer signed-digit coefficients. The filter specifica-
tion is:

nbits=12 % Bits-per-coefficient
ndigits=3 % Average igned-digits-per-coefficient
tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
n=400 % Frequency points across the band
fap=0.19 % Amplitude pass band upper edge
Arp=0.1 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Ars=0.1 % Amplitude stop band peak-to-peak ripple
Was=1 % Amplitude stop band weight
td=10 % Pass band group delay
tdr=0.02 % Pass band group delay peak-to-peak ripple
Wtp=0.02 % Pass band group delay weight
pr=0.0040 % Phase pass band peak-to-peak ripple(rad./π))
Wpp=2 % Phase pass band weight

The filter coefficients are truncated to 12 bits allocated with an average of 3 signed-digits allocated by the heuristic of Ito et al. as
shown in Section 11.2. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding
bounds are set in the bounds for that coefficient passed to the Octave function schurOneMlattice_socp_mmse. The results of this
MMSE optimisation are then passed to schurOneMlattice_slb for PCLS optimisation. The resulting PCLS coefficient value
selects the closer of the upper or lower signed-digit values as the final choice for that coefficient.

The signed-digit filter coefficients found by the heuristic of Ito et al. are:

k0_sd = [-256, 1952, -1312, 1392, ...
-1412, 1388, -1303, 1104, ...
-712, 288, -54]'/2048;

c0_sd = [-176, 4, 2528, 1184, ...
96, -288, -16, 96, ...
4, -16, -6, 5]'/2048;

The signed-digit filter coefficients found by the SOCP-relaxation search are:

k_min = [-256, 1952, -1312, 1392, ...
-1410, 1386, -1302, 1104, ...
-712, 288, -54]'/2048;

c_min = [-168, 1, 2528, 1184, ...
96, -288, -16, 96, ...
4, -16, -7, 5]'/2048;

Figure 15.18 compares the amplitude error, phase error and group delay responses of the filter with floating-point coefficients,
12-bit signed-digit coefficients allocated with the algorithm of Ito et al. and 12-bit signed-digit coefficients allocated with the
algorithm of Ito et al. and found by SOCP-relaxation search. The phase responses shown are adjusted for the nominal filter
delay. Table 15.7 compares the cost, the number of signed-digits and the number of 12-bit shift-and-add operations required
to implement the coefficient multiplications found by the signed-digit allocation heuristic of Ito et al. and by SOCP-relaxation
search.

478

0 0.1 0.2 0.3 0.4 0.5
-0.02
-0.01

0
0.01
0.02

Low-pass differentiator filter : fap=0.19,fas=0.25,Arp=0.1,Ars=0.1,td=10,pr=0.004
A

m
pl

itu
de

er
ro

r

0 0.1 0.2 0.3 0.4 0.5
-0.0004
-0.0002

0
0.0002
0.0004

Ph
as

e
er

ro
r(

ra
d.

/π
)

exact
s-d(Ito)

s-d(SOCP-relax)

0 0.1 0.2 0.3 0.4 0.5
-0.02
-0.01

0
0.01
0.02

G
ro

up
de

la
y

er
ro

r(
sa

m
pl

es
)

Frequency

Figure 15.18: Comparison of the amplitude error, phase error and group delay responses for a Schur one-multiplier lattice lowpass
differentiator filter with 12-bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the
heuristic of Ito et al. and performing SOCP-relaxation search. The phase responses shown are adjusted for the nominal delay.

Cost Signed-digits Shift-and-adds

Exact 5.53361e-05
12-bit 3-signed-digit(Ito) 6.24584e-05 60 37
12-bit 3-signed-digit(SOCP-relax) 6.6983e-05 61 38

Table 15.7: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice lowpass differentiator filter with 12-bit integer coefficients found by allocating an
average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing SOCP-relaxation search.

479

15.8 SOCP relaxation search for the 12-bit, 3-signed-digit coefficients of an FRM
low-pass filter

The Octave script socp_relaxation_schurOneMAPlattice_frm_12_nbits_test.m uses socp-relaxation search to optimise the re-
sponse of the FRM low-pass filter of Section 10.4.6 with 12-bit, 3 signed-digit coefficient. The filter specification is:

socp_relaxation_schurOneMAPlattice_frm_12_nbits_test_allocsd_Lim=0
socp_relaxation_schurOneMAPlattice_frm_12_nbits_test_allocsd_Ito=0
n=1000 % Frequency points across the band
nbits=12 % Bits-per-coefficient
ndigits=3 % Average signed-digits-per-coefficient
tol=0.0005 % Tolerance on coefficient update vector
ctol=5e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
mr=10 % Allpass model filter denominator order
Mmodel=9 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=20 % FIR masking filter delay
fap=0.3 % Magnitude-squared pass band edge
dBap=1 % Pass band magnitude peak-to-peak ripple
Wap=1 % Pass band magnitude-squared weight
fas=0.3105 % Magnitude-squared stop band edge
dBas=40 % Stop band magnitude minimum attenuation
Was=1 % Stop band magnitude-squared weight
ftp=0.3 % Delay pass band edge
tp=101 % Pass band nominal delay
tpr=tp/101 % Pass band delay peak-to-peak ripple
Wtp=1 % Pass band magnitude-squared weight
fpp=0.3 % Phase pass band edge
ppr=0.04*pi % Pass band phase peak-to-peak ripple (rad.)
Wpp=0.1 % Phase pass band weight
rho=0.992188 % Constraint on allpass pole radius

The filter coefficients found by the socp-relaxation search are:

k_min = [-35, 1184, 29, -292, ...
-19, 120, 13, -52, ...
-13, 21]'/2048;

epsilon_min = [1, 1, -1, 1, ...
1, -1, -1, 1, ...
1, -1];

u_min = [1184, 608, -118, -176, ...
104, 68, -88, -20, ...
81, -40, -25, 16, ...
21, -19, -8, 15, ...
2, -20, 18, 0, ...

-2]'/2048;

v_min = [-1344, -560, 270, 10, ...
-134, 97, 10, -73, ...

56, 1, -37, 28, ...
5, -22, 16, 4, ...

-16, 12, 1, -6, ...
3]'/2048;

Figures 15.19, 15.20 and 15.21 compare the amplitude, phase and delay responses of the FRM low-pass filter with floating-point
coefficients and with 12-bit, 3-signed-digit coefficients found by SOCP-relaxation search. The phase response shown is adjusted
for the nominal delay.

Table 15.8 compares the cost and the number of 12 bit shift-and-add operations required to implement the coefficient multiplica-
tions found by SOCP-relaxation search.

480

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

FRM filter (nbits=12,ndigits=3) : fap=0.3,fas=0.3105,dBap=1,dBas=40,tp=101,tpr=1,ppr=0.04*π

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-50

-45

-40

-35

-30

exact
s-d

s-d(SOCP-relax)

Figure 15.19: Comparison of the amplitude responses of an FRM low-pass filter with floating-point coefficients and with 12 bit,
3-signed-digit coefficients found by SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

0 0.1 0.2 0.3 0.4 0.5
-0.004

-0.002

0

0.002

0.004

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

exact
s-d

s-d(SOCP-relax)

Figure 15.20: Comparison of the pass-band phase responses of an FRM low-pass filter with floating-point coefficients and with
12 bit, 3-signed-digit coefficients found by SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

481

0 0.1 0.2 0.3 0.4 0.5
100

100.5

101

101.5

102

Frequency

D
el

ay
(s

am
pl

es
)

exact
s-d

s-d(SOCP-relax)

Figure 15.21: Comparison of the pass-band delay responses of an FRM low-pass filter with floating-point coefficients and with
12 bit, 3-signed-digit coefficients found by SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

Cost Signed-digits Shift-and-adds

Exact 0.001693
12-bit 3-signed-digit 0.004768 120 68
12-bit 3-signed-digit(SOCP-relax) 0.001608 120 69

Table 15.8: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for an FRM low-pass filter with 12-bit, 3-signed-digit coefficients found by SOCP-relaxation search.

482

15.9 SOCP relaxation search for the 16-bit, 3-signed-digit coefficients of an FRM
low-pass filter

The Octave script socp_relaxation_schurOneMAPlattice_frm_16_nbits_test.m uses socp-relaxation search to optimise the re-
sponse of the FRM low-pass filter of Section 10.4.6 with 16-bit coefficients each having an average of 3 signed-digits allocated
by the method of Ito et al.. The number of signed-digits per coefficient is as shown in Section 14.13. The filter specification is:

n=1000 % Frequency points across the band
tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
mr=10 % Allpass model filter denominator order
Mmodel=9 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=20 % FIR masking filter delay
fap=0.3 % Magnitude-squared pass band edge
dBap=0.2 % Pass band magnitude peak-to-peak ripple
Wap=1 % Pass band magnitude-squared weight
fas=0.3105 % Magnitude-squared stop band edge
dBas=40 % Stop band magnitude minimum attenuation
Was=1 % Stop band magnitude-squared weight
ftp=0.3 % Delay pass band edge
tp=101 % Pass band nominal delay
tpr=tp/126.25 % Pass band delay peak-to-peak ripple
Wtp=1 % Pass band magnitude-squared weight
fpp=0.3 % Phase pass band edge
ppr=0.02*pi % Pass band phase peak-to-peak ripple (rad.)
Wpp=0.1 % Phase pass band weight
rho=0.992188 % Constraint on allpass pole radius

The filter coefficients found by the socp-relaxation search are:

k_min = [-572, 19136, 480, -4672, ...
-288, 1920, 256, -832, ...
-224, 351]'/32768;

epsilon_min = [1, 1, -1, 1, ...
1, -1, -1, 1, ...
1, -1];

u_min = [18896, 9861, -1880, -2752, ...
1664, 1088, -1402, -256, ...
1264, -576, -447, 256, ...
320, -304, -136, 240, ...
16, -320, 264, 10, ...

-32]'/32768;

v_min = [-21872, -8956, 4320, 144, ...
-2160, 1576, 160, -1184, ...

920, -80, -592, 445, ...
96, -374, 260, 64, ...

-240, 192, -61, -112, ...
72]'/32768;

Figures 15.22, 15.23, Figures 15.24, compare the amplitude, phase and delay responses of the FRM low-pass filter with floating-
point coefficients, with 16-bit coefficients having an average of 3-signed-digits allocated by the method of Ito et al. and with the
coefficients found by SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

Table 15.9 compares the cost and the number of 16 bit shift-and-add operations required to implement the coefficient multiplica-
tions found by SOCP-relaxation search.

483

0 0.1 0.2 0.3 0.4 0.5
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

FRM filter (nbits=16,ndigits=3) : fap=0.3,fas=0.3105,dBap=0.2,dBas=40,tp=101,tpr=0.8,ppr=0.02*π

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-48

-46

-44

-42

-40

-38

-36

exact
s-d(Ito)

s-d(SOCP-relax)

Figure 15.22: Comparison of the amplitude responses of an FRM low-pass filter with floating-point coefficients, with 16 bit
coefficients having an average of 3-signed-digits allocated by the method of Ito et al. and with the coefficients found by SOCP-
relaxation search. The phase response shown is adjusted for the nominal delay.

0 0.1 0.2 0.3 0.4 0.5
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

FRM filter (nbits=16,ndigits=3) : fap=0.3,fas=0.3105,dBap=0.2,dBas=40,tp=101,tpr=0.8,ppr=0.02*π

exact
s-d(Ito)

s-d(SOCP-relax)

Figure 15.23: Comparison of the pass-band phase responses of an FRM low-pass filter with floating-point coefficients, with 16
bit coefficients having an average of 3-signed-digits allocated by the method of Ito et al. and with the coefficients found by
SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

484

0 0.1 0.2 0.3 0.4 0.5
100.4

100.6

100.8

101

101.2

101.4

Frequency

D
el

ay
(s

am
pl

es
)

FRM filter (nbits=16,ndigits=3) : fap=0.3,fas=0.3105,dBap=0.2,dBas=40,tp=101,tpr=0.8,ppr=0.02*π

exact
s-d(Ito)

s-d(SOCP-relax)

Figure 15.24: Comparison of the pass-band delay responses of an FRM low-pass filter with floating-point coefficients, with 16
bit coefficients having an average of 3-signed-digits allocated by the method of Ito et al. and with the coefficients found by
SOCP-relaxation search. The phase response shown is adjusted for the nominal delay.

Cost Signed-digits Shift-and-adds

Exact 0.001693
16-bit 3-signed-digit(Ito) 0.002048 147 95
16-bit 3-signed-digit(SOCP-relax) 0.001230 143 91

Table 15.9: Comparison of the cost and number of 16-bit shift-and-add operations required to implement the coefficient multi-
plications for an FRM low-pass filter with 16-bit coefficients with an average of 3-signed-digits allocated by the method of Ito et
al. and with the coefficients found by SOCP-relaxation search.

485

15.10 SOCP-relaxation search for the signed-digit coefficients of an FRM Hilbert
IIR filter with an all-pass lattice model filter

The Octave script socp_relaxation_schurOneMAPlattice_frm_hilbert_12_nbits_test.m performs successive SOCP relaxations to
optimise the response of the FRM Hilbert filter of Section 10.4.8 with 12-bit integer coefficients. The FRM model filter is
implemented as a Schur one-multiplier all-pass lattice filter. The filter specification is:

n=800 % Frequency points across the band
tol=5e-05 % Tolerance on coefficient update vector
ctol=5e-05 % Tolerance on constraints
n=800 % Frequency points across the band
mr=5 % Allpass model filter denominator order
Mmodel=7 % Model filter FRM decimation factor
Dmodel=9 % Model filter nominal pass band group delay
dmask=16 % FIR masking filter delay
fap=0.01 % Magnitude-squared pass band edge
fas=0.49 % Magnitude-squared stop band edge
dBap=0.22 % Pass band magnitude-squared peak-to-peak ripple
Wap=1 % Pass band magnitude-squared weight
ftp=0.01 % Delay pass band edge
fts=0.49 % Delay stop band edge
tp=79 % Pass band nominal delay
tpr=tp/50 % Pass band delay peak-to-peak ripple
Wtp=1 % Pass band magnitude-squared weight
fpp=0.01 % Phase pass band edge
fps=0.49 % Phase stop band edge
pp=-0.5*pi % Pass band nominal phase (rad.)
ppr=0.01*pi % Pass band phase peak-to-peak ripple (rad.)
Wpp=0.005 % Phase pass band weight

The filter coefficients are truncated to 12 bits allocated with an average of 2 signed-digits by the heuristic of Lim et al. shown in
Section 11.1.

As in Section 15.2, at each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding
filter is PCLS optimised by the function schurOneMAPlattice_frm_hilbert_slb. The resulting PCLS coefficient value selects the
nearer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last coefficient is
necessarily not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The signed-digit filter coefficients found by the heuristic of Lim et al. are:

k0_sd = [-1152, -272, -112, -32, ...
-16]'/2048;

u0_sd = [-2, -4, -15, -24, ...
-64, -72, -104, -116, ...
901]'/2048;

v0_sd = [16, 9, 15, 4, ...
-16, -64, -168, -644]'/2048;

The signed-digit filter coefficients found by the SOCP-relaxation search are:

k_min = [-1152, -272, -112, -32, ...
-16]'/2048;

u_min = [-1, -4, -14, -24, ...
-64, -72, -104, -116, ...
901]'/2048;

486

0 0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.22,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.25: Comparison of the amplitude responses for an FRM Hilbert filter with with 12 bit integer coefficients found by
allocating an average of 2 signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation
search. The FRM model filter is implemented as a Schur one-multiplier all-pass lattice filter.

v_min = [16, 10, 14, 4, ...
-16, -64, -164, -641]'/2048;

Table 15.10 compares the cost, the number of signed-digits and the number of 12-bit shift-and-add operations required to imple-
ment the coefficient multiplications found by the signed-digit allocation heuristic of Lim et al. optimised by SOCP-relaxation
search. The one-multiplier lattice implementation requires a further 15 additions (3 per coefficient) and the FIR masking filter
requires a further 33 additions. Figures 15.25, 15.27 and 15.26 compare the amplitude, delay and phase responses of the filter
with floating-point coefficients, 12 bit 2 signed-digit coefficients allocated with the algorithm of Lim et al. and 12-bit 2-signed-
digit coefficients allocated with the algorithm of Lim et al. and optimised by SOCP-relaxation search. The phase response shown
is adjusted for the nominal delay and normalised to π radians.

Cost Signed-digits Shift-and-adds

Exact 0.000656
12-bit 2-signed-digit(Lim) 0.001206 41 19
12-bit 2-signed-digit(SOCP-relax) 0.001701 41 19

Table 15.10: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for an FRM Hilbert filter with with 12 bit integer coefficients found by allocating an average of 2 signed-digits to each
coefficient using the heuristic of Lim et al. and performing SOCP-relaxation search. The FRM model filter is implemented as a
Schur one-multiplier all-pass lattice filter.

487

0 0.1 0.2 0.3 0.4 0.5

-0.504

-0.502

-0.5

-0.498

-0.496

Frequency

Ph
as

e(
ra

d.
/π

)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.22,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.26: Comparison of the phase responses for an FRM Hilbert filter with with 12 bit integer coefficients found by
allocating an average of 2 signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation
search. The phase response shown is adjusted for the nominal delay and normalised to π radians. The FRM model filter is
implemented as a Schur one-multiplier all-pass lattice filter.

0 0.1 0.2 0.3 0.4 0.5
78

78.5

79

79.5

80

Frequency

D
el

ay
(s

am
pl

es
)

FRM Hilbert filter (nbits=12) : fap=0.01,fas=0.49,dBap=0.22,Wap=1,tp=79,Wtp=0.005,Wpp=0.005

exact
s-d(Lim)

s-d(SOCP-relax)

Figure 15.27: Comparison of the delay responses for an FRM Hilbert filter with with 12 bit integer coefficients found by allocating
an average of 2 signed-digits to each coefficient using the heuristic of Lim et al. and performing SOCP-relaxation search. The
FRM model filter is implemented as a Schur one-multiplier all-pass lattice filter.

488

15.11 SOCP-relaxation search for the signed-digit coefficients of a direct-form FIR
Hilbert filter

The Octave script socp_relaxation_directFIRhilbert_12_nbits_test.m performs successive SOCP relaxations to optimise the re-
sponse of a direct-form FIR Hilbert filter having a response similar to that of Section 15.10. The filter specification is:

M=40 % Number of distinct coefficients
nbits=12 % Coefficient bits
ndigits=2 % Nominal average coefficient signed-digits
tol=1e-05 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
maxiter=1000 % SOCP iteration limit
npoints=500 % Frequency points across the band
fapl=0.01 % Amplitude pass band lower edge
fapu=0.49 % Amplitude pass band upper edge
dBap=0.1575 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Was=0 % Amplitude stop band weight

The filter has M distinct non-zero coefficients, the filter polynomial order is 4M − 2, the filter group-delay is 2M − 1 samples.
The filter coefficients are truncated to 12 bits allocated with an average of 2 signed-digits by the heuristic of Ito et al., as shown in
Section 11.2. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the current set
of active coefficients and selects the coefficient with the largest difference in those approximations. The corresponding bounds
are set in the bounds for that coefficient passed to the Octave function directFIRhilbert_socp_mmse. The results of this MMSE
optimisation are then passed to directFIRhilbert_slb for PCLS optimisation. The resulting PCLS coefficient value selects the
closer of the upper or lower signed-digit values as the final choice for that coefficient. The truncation of the last coefficient is, by
necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The 12-bit signed-digit filter coefficients found by the heuristic of Ito et al. are:

hM0_Ito_sd = [-1, -1, -1, -2, ...
-2, -2, -4, -3, ...
-4, -4, -4, -8, ...
-8, -8, -8, -8, ...

-12, -12, -16, -16, ...
-18, -20, -24, -24, ...
-28, -32, -36, -40, ...
-48, -52, -60, -68, ...
-80, -96, -112, -140, ...

-184, -258, -432, -1304]'/2048;

The 12-bit signed-digit filter coefficients found by the SOCP-relaxation search are:

hM_min = [-1, -1, -1, -1, ...
-2, -2, -2, -3, ...
-4, -4, -4, -4, ...
-8, -8, -8, -8, ...

-12, -12, -16, -16, ...
-18, -20, -24, -28, ...
-28, -32, -36, -40, ...
-48, -52, -60, -68, ...
-79, -96, -112, -142, ...

-184, -258, -432, -1304]'/2048;

Figure 15.28 compares the amplitude responses of the filter with floating-point coefficients, 12-bit 2-signed-digit coefficients,
12-bit signed-digit coefficients allocated with the algorithm of Ito et al. and 12-bit signed-digit coefficients allocated with the
algorithm of Ito et al. and SOCP-relaxation search. Table 15.11 compares the cost, the number of signed-digits and the number of
12-bit shift-and-add operations required to implement the coefficient multiplications found by the signed-digit allocation heuristic
of Ito et al. with SOCP-relaxation search. The FIR filter structure requires an extra 80 additions.

489

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form Hilbert filter pass-band (nbits=12,ndigits=2) : fapl=0.01,fapu=0.49,dBap=0.1575,Wap=1,Was=0

exact
s-d

s-d(Ito)

s-d(Ito and SOCP-relax)

Figure 15.28: Comparison of the amplitude responses for a direct-form FIR Hilbert filter with 12-bit integer coefficients found
by allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing SOCP-relaxation
search.

Cost Signed-digits Shift-and-adds

Exact 5.346e-07
12-bit 2-signed-digit 0.0002085 71 31
12-bit 2-signed-digit(Ito) 9.289e-06 68 28
12-bit 2-signed-digit(SOCP-relax) 9.126e-06 69 29

Table 15.11: Comparison of the cost and number of 12-bit shift-and-add operations required to implement the coefficient multi-
plications for a direct-form FIR Hilbert filter with 12-bit integer coefficients found by allocating an average of 2-signed-digits to
each coefficient using the heuristic of Ito et al. and performing SOCP-relaxation search.

490

15.12 POP relaxation search for the signed-digit coefficients of a one-multiplier
lattice bandpass filter

Lu [134] and Lu and Hinamoto [248] point out that the integer programming optimisation of the truncated filter coefficients
shown in Equation 16.1 can be rewritten as a polynomial optimisation problem (POP) in SOCP form as:

minimise E (xk) +∇xE (xk)⊤∆x + 1
2∆x⊤∇2

xxE (xk) ∆x

subject to (xk + ∆x− xu)⊤ (xk + ∆x− xl) = 0

where ∆x is the coefficient update vector, E is the weighted response error at xk and xu and xu are the upper and lower bounds
on the truncated coefficients, xk + ∆x.

Lasserre [129] and Waki et al. [82] show that polynomial optimisation can be reduced to the solution of “an often finite sequence
of convex linear matrix inequality problems”. Waki et al. have written SparsePOP [83], a “Matlab implementation of sparse
semidefinite programming (SDP) relaxation for polynomial optimization problems”. SparsePOP runs under Octave with minor
modifications. SparsePOP converts the POP problem to a larger SOCP problem that is solved by SeDuMi.

The Octave script pop_relaxation_schurOneMlattice_bandpass_10_nbits_test.m performs SparsePOP optimisation of the trun-
cated coefficients of the SQP optimised band-pass Schur one-multiplier lattice filter described in Section 10.3.9. The filter
specification is:

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
maxiter=2000 % SOCP iteration limit
npoints=250 % Frequency points across the band
% length(c0)=21 % Num. tap coefficients
% sum(k0~=0)=10 % Num. non-zero all-pass coef.s
rho=0.998047 % Constraint on allpass coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
ftpl=0.09 % Delay pass band lower edge
ftpu=0.21 % Delay pass band upper edge
tp=16 % Nominal passband filter group delay
tpr=0.2 % Delay pass band peak-to-peak ripple
Wtp=5 % Delay pass band weight
fasl=0.05 % Amplitude stop band(1) lower edge
fasu=0.25 % Amplitude stop band(1) upper edge
dBas=33 % Amplitude stop band(1) peak-to-peak ripple
fasll=0.04 % Amplitude stop band(2) lower edge
fasuu=0.26 % Amplitude stop band(2) upper edge
dBass=40 % Amplitude stop band(2) peak-to-peak ripple
Wasl=500000 % Amplitude lower stop band weight
Wasu=1000000 % Amplitude upper stop band weight

The filter coefficients are truncated to 10 bits and 3 signed-digits. At each coefficient relaxation step the script finds the upper
and lower signed-digit approximations to the current set of active coefficients, selects the coefficient with the largest difference in
those approximations and performs two optimisations. The first is an SOCP PCLS optimisation of the response with the current
set of active coefficients. The second optimisation calls SparsePOP with a 2nd order polynomial equality constraint requiring
that the previously selected coefficient be equal to either the signed-digit coefficient upper or lower bound. The remaining
active coefficients are allowed to vary within the corresponding signed-digit upper and lower bounds. SparsePOP failed when I
attempted to apply linear constraints on the response for PCLS optimisation (see schurOneMlattice_pop_socp_mmse_test.m).

The filter coefficients found by the SparsePOP relaxation search are:

k_min = [0, 332, 0, 256, ...
0, 176, 0, 214, ...
0, 148, 0, 128, ...
0, 76, 0, 54, ...
0, 18, 0, 9]'/512;

491

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1

0

1

2

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d

s-d(POP-relax)

Figure 15.29: Comparison of the pass-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10 bit 3
signed-digit coefficients optimised with POP-relaxation search.

c_min = [38, -8, -156, -248, ...
-81, 64, 200, 152, ...

8, -42, -40, -8, ...
-4, -16, -12, 2, ...
12, 8, 1, -1, ...
2]'/512;

Table 15.12 compares the cost, the number of signed-digits and the number of 10 bit shift-and-add operations required to imple-
ment the coefficient multiplications. Figure 15.29 compares the pass-band responses of the filter with floating-point coefficients
and with 10 bit 3 signed-digit coefficients optimised with POP-relaxation search. Similarly, Figure 15.30 shows the filter stop-
band response and Figure 15.31 shows the filter pass-band group delay response.

Cost Signed-digits Shift-and-adds

Exact 0.0164
10-bit 3-signed-digit 0.0652 65 34
10-bit 3-signed-digit(POP-relax) 0.0228 63 32

Table 15.12: Comparison of the cost and number of 10 bit shift-and-add operations required to implement the coefficient multi-
plications for a Schur one-multiplier lattice bandpass filter with 10 bit 3 signed-digit integer coefficients.

492

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=10) : fasl=0.05,fasu=0.25,dBas=33

exact
s-d

s-d(POP-relax)

Figure 15.30: Comparison of the stop-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10 bit 3
signed-digit coefficients optimised with POP-relaxation search.

0.1 0.12 0.14 0.16 0.18 0.2
15.9

15.95

16

16.05

16.1

16.15

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier lattice bandpass filter pass-band (nbits=10) : ftpl=0.09,ftpu=0.21,tp=16,tpr=0.2

exact
s-d

s-d(POP-relax)

Figure 15.31: Comparison of the pass-band group delay responses for a Schur one-multiplier lattice bandpass filter with 10 bit 3
signed-digit coefficients optimised with POP-relaxation search.

493

15.13 SOCP-relaxation search for the signed-digit coefficients of a lattice FIR filter

The Gaussian function in the continuous angular frequency domain is:

G (ω) = e−(ω
α)2

Appendix L shows that the corresponding time domain Fourier transform pair function is:

g (t) = α

2
√
π
e−(tα

2)2

If the symbol interval is TS then the normalised one-sided half-power bandwidth-symbol time product, BTS , is given by:

e
−
(2πBTS

TS α

)2

= 1√
2

so:

α = 2πBTS

TS

√
2

ln 2

Assume that the Gaussian filter has a length of NS symbols and an over-sampling rate of R samples per symbol. After shifting
and truncation the sampled filter coefficients of an odd length filter are:

g (k) = TS

R

1
2
√
π

2πBTS

TS

√
2

ln 2e
−
[(

πBTS
TS

√
2

ln 2

)
TS
R

(
k−RNS

2

)]2

where k = 0, . . . , RNS . Assume that the modulation scheme uses BTS = 0.3, that the Gaussian filter has a length of NS = 4
symbols and that the over-sampling rate is R = 8 samples per symbol. The filter coefficients are:

g0= = [0.000003984, 0.000013788, 0.000044042, 0.000129853, ...
0.000353389, 0.000887708, 0.002058274, 0.004405067, ...
0.008701970, 0.015867136, 0.026705172, 0.041486623, ...
0.059488999, 0.078737407, 0.096192548, 0.108471994, ...
0.112904093, 0.108471994, 0.096192548, 0.078737407, ...
0.059488999, 0.041486623, 0.026705172, 0.015867136, ...
0.008701970, 0.004405067, 0.002058274, 0.000887708, ...
0.000353389, 0.000129853, 0.000044042, 0.000013788, ...
0.000003984]';

Figure 15.32 shows the impulse response of the filter.

The Octave script socp_relaxation_schurFIRlattice_gaussian_16_nbits_test.m performs SOCP relaxation to find the 16-bit coef-
ficients of the Gaussian filter implemented as a complementary FIR lattice. (See Appendix N.1 for a description of the comple-
mentary FIR lattice filter). The response of this filter is compared with filters using 16-bit 3-signed-digit coefficients of the direct
form implementation and the 16-bit signed-digit coefficients of the lattice implementation. The coefficients of the lattice filters
are allocated an average of 3-signed-digits with the algorithm of Lim et al. shown in Section 11.2. The script does not implement
signed-digit allocation or SOCP-relaxation optimisation of the direct-form coefficients. The filter specification is:

BTs=0.3 % Bandwidth-Symbol-rate product
Ns=4 % Filter width in symbols
R=8 % Samples-per-symbol
tol=1e-08 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
nplot=1024 % Frequency points across the band
dBap=0.175 % Amplitude pass band peak-to-peak ripple
dBas=50 % Amplitude stop band peak-to-peak ripple
dBasu=63 % Amplitude upper stop band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Was=1e+06 % Amplitude stop band weight
tp=16 % Nominal pass band filter group delay (samples)
tpr=0.4 % Delay pass band peak-to-peak ripple (rad.)
Wtp=0.01 % Delay pass band weight

The amplitude response in the “pass-band” (up to dBas) found by SOCP-relaxation is required to be within ±dBap
2 of the

floating-point response and below dBasu in the “stop-band”.

The 16-bit 3-signed-digit direct form coefficients are:

494

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

Symbols

A
m

pl
itu

de

Gaussian filter impulse response : BTs=0.3,R=8,Ns=4

Figure 15.32: Impulse response of a sampled Gaussian filter with half-power bandwidth-symbol-interval product BTS =
0.3,length NS = 4 symbols and R = 8 samples per symbol

g0_sd = [0, 0, 1, 4, ...
12, 29, 67, 144, ...

284, 520, 880, 1344, ...
1952, 2576, 3136, 3552, ...
3712, 3552, 3136, 2576, ...
1952, 1344, 880, 520, ...
284, 144, 67, 29, ...
12, 4, 1, 0, ...
0]'/32768;

The floating-point lattice coefficients are:

k0= = [1.000000000, 1.000000000, 0.999999999, 0.999999987, ...
0.999999904, 0.999999379, 0.999996554, 0.999983626, ...
0.999933289, 0.999766665, 0.999298569, 0.998187370, ...
0.995980833, 0.992394921, 0.987837620, 0.983761807, ...
0.982093942, 0.983761807, 0.987837620, 0.992394921, ...
0.995980833, 0.998187370, 0.999298569, 0.999766665, ...
0.999933289, 0.999983626, 0.999996554, 0.999999379, ...
0.999999904, 0.999999987, 0.999999999, 1.000000000, ...
0.000004422]';

khat0= = [-0.000004422, -0.000016216, -0.000053022, -0.000158639, ...
-0.000437458, -0.001114397, -0.002625192, -0.005722584, ...
-0.011550656, -0.021601291, -0.037448233, -0.060182849, ...
-0.089566627, -0.123094763, -0.155489023, -0.179478986, ...
-0.188391850, -0.179478986, -0.155489023, -0.123094763, ...
-0.089566627, -0.060182849, -0.037448233, -0.021601291, ...
-0.011550656, -0.005722584, -0.002625192, -0.001114397, ...
-0.000437458, -0.000158639, -0.000053022, -0.000016216, ...
1.000000000]';

The 16-bit lattice coefficients with an average of 3-signed-digits each are:

495

k0_sd = [32768, 32768, 32768, 32768, ...
32768, 32768, 32768, 32767, ...
32766, 32760, 32745, 32709, ...
32636, 32519, 32368, 32236, ...
32180, 32236, 32368, 32519, ...
32636, 32709, 32745, 32760, ...
32766, 32767, 32768, 32768, ...
32768, 32768, 32768, 32768, ...

0]'/32768;

khat0_sd = [0, 0, 0, -4, ...
-14, -32, -80, -188, ...
-376, -704, -1224, -1972, ...

-2936, -4034, -5096, -5880, ...
-6173, -5880, -5096, -4034, ...
-2936, -1972, -1224, -704, ...
-376, -188, -80, -32, ...
-14, -4, 0, 0, ...

32768]'/32768;

The 16-bit lattice coefficients with an average of 3-signed-digits optimised by SOCP-relaxation are:

k_min = [32768, 32768, 32768, 32768, ...
32768, 32768, 32768, 32767, ...
32766, 32760, 32745, 32709, ...
32636, 32519, 32368, 32236, ...
32182, 32236, 32368, 32519, ...
32636, 32709, 32745, 32760, ...
32766, 32767, 32768, 32768, ...
32768, 32768, 32768, 32768, ...

0]'/32768;

khat_min = [0, 0, 0, -4, ...
-15, -32, -80, -188, ...
-376, -704, -1224, -1972, ...

-2936, -4032, -5096, -5880, ...
-6174, -5880, -5096, -4033, ...
-2936, -1972, -1224, -704, ...
-376, -184, -80, -32, ...
-14, -4, 0, 0, ...

32768]'/32768;

Table 15.13 compares the total number of signed-digits and 16-bit shift-and-add operations required to implement the coefficient
multiplications. The values for the direct form filter assume that the implementation makes use of the symmetry of the impulse
response, in which case the direct form filter has 17 multiplier scompared to the 130 required by the lattice implementation
(though a number of the latter multipliers are 1 or 0).

Signed-digits Shift-and-adds

16-bit 3-signed-digit(direct-folded) 73 44
16-bit 3-signed-digit(lattice) 158 98
16-bit 3-signed-digit(SOCP-relax) 156 96

Table 15.13: Comparison of the number of 16-bit shift-and-add operations required to implement the coefficient multiplications
for a direct form and a complementary FIR lattice implementation of a Gaussian filter with 16-bit 3-signed-digit coefficients.

Figure 15.33 compares the overall amplitude response of the filter for floating-point direct-form coefficients, direct-form coeffi-
cients implemented with 16-bit 3-signed-digits, complementary FIR lattice coefficients implemented with 16-bit, 3-signed-digits
having an average of 3-signed-digits per coefficient allocated with the algorithm of Lim et al. and lattice coefficients optimised
with SOCP-relaxation. Figure 15.34 compares the amplitude responses in the “pass-band” (up to dBas). Figure 15.35 compares
the group delay responses in the “pass-band” (up to dBas).

496

0 1 2 3
-120

-100

-80

-60

-40

-20

0

Frequency(Units of 1/Ts)

A
m

pl
itu

de
(d

B
)

Gaussian filter impulse response : BTs=0.3,R=8,Ns=4,nbits=16,ndigits=3

exact
s-d(direct)

s-d(lattice)

s-d(SOCP-relax)

Asqdu

Figure 15.33: Comparison of the amplitude response of the FIR Gaussian filter for floating-point direct-form coefficients, 16-bit
3-signed-digit direct-form coefficients, 16-bit coefficients with an average of 3-signed-digits per coefficient and 16-bit coefficients
with an average of 3-signed-digits per coefficient optimised by SOCP-relaxation.

0 0.2 0.4 0.6 0.8 1 1.2
-0.2

-0.1

0

0.1

0.2

Frequency(Units of 1/Ts)

A
m

pl
itu

de
er

ro
r(

dB
)

Gaussian filter impulse response : BTs=0.3,R=8,Ns=4,nbits=16,ndigits=3

s-d(Lim)

s-d(SOCP-relax)

s-d(direct)

Figure 15.34: Comparison of the pass-band amplitude response of the FIR Gaussian filter for 16-bit coefficients with an average
of 3-signed-digits per coefficient and 16-bit coefficients with an average of 3-signed-digits per coefficient optimised by SOCP-
relaxation.

497

0 0.2 0.4 0.6 0.8 1 1.2
15.6

15.8

16

16.2

Frequency(Units of 1/Ts)

D
el

ay
(s

am
pl

es
)

Gaussian filter impulse response : BTs=0.3,R=8,Ns=4,nbits=16,ndigits=3

s-d(Lim)

s-d(SOCP-relax)

Figure 15.35: Comparison of the “pass-band” (up to dBas) group-delay response of the FIR Gaussian filter for 16-bit coefficients
with an average of 3-signed-digits per coefficient and 16-bit coefficients with an average of 3-signed-digits per coefficient opti-
mised by SOCP-relaxation.

498

Chapter 16

Semi-definite programming search for integer
and signed-digit filter coefficients

This section follows the method introduced by Lu [252] and Ito et al. [209] to find the signed-digit coefficients of a direct-
form FIR filter. The branch-and-bound algorithm of Section 14 and the successive coefficient relaxation methods of Section 15
perform SQP or SOCP optimisation at each coefficient optimisation relaxation step. Alternatively, the optimisation problem can
be converted to an overall integer programming problem as follows: Given a set of floating-point coefficients, x, and signed-
power-of-two upper and lower bounds, u and l, corresponding to stable filter implementations such that ui ≥ xi ≥ li for each of
the N components of x, define

x̂ = (u + l)
2

δ = (u− l)
2

Then ui = x̂i + yiδi if yi = 1 and li = x̂i + yiδi if yi = −1. Define the filter coefficient vector as x = x̂ + y ◦ δ, where
◦ represents the element-by-element product, and approximate the filter amplitude response by A (ω) ≈ Â (ω) + Aδ (ω)a. The
weighted mean-squared-error of the filter amplitude response is approximately:

E ≈ 1
π

ˆ π

0
W (ω)

[
Â (ω) +Aδ (ω)−Ad (ω)

]2
dω

The weighted mean-squared-error of the amplitude response, E , of an IIR filter with signed-digit coefficients, x̂ + (y ◦ δ), is
approximately:

E ≈ E (x̂) +∇xE (x̂)⊤ (y ◦ δ) + 1
2 (y ◦ δ)⊤∇2

xE (x̂) (y ◦ δ) (16.1)

If Y = yy⊤ and ∆ = δδ⊤, then mean-squared-error can be expressed in the formb:

E ≈ 1
2 trace ((Q ◦∆) Y) + (q ◦ δ) y + const

The approximate minimum mean-squared-error is found by the integer programming optimisation:

minimise trace
(

Q̂Y
)

+ 2q̂y

subject to yi ∈ {−1, 1}

The integer programming constraints are equivalent to:

Yii = 1, rank
[

Y y
y⊤ 1

]
= 1,

[
Y y
y⊤ 1

]
⪰ 0

aThis is an equality for an FIR filter transfer function.
bThe trace of a matrix is defined in Appendix B.2.

499

where ⪰ 0 means that the array is positive semi-definite. Lu [252, Section 2.3] suggests a relaxation of the integer programming
problem by discarding the rank constraint. The resulting constraints are simplified by defining a symmetric matrix Ŷ with ones
on the diagonal:

minimise trace
(

Q̂Ŷ
)

+ 2q̂y

subject to Ȳ =
[

Ŷ y
y⊤ 1

]
⪰ 0

Define a length N(N+1)
2 augmented variable, ȳ, consisting of theN elements of y and the N(N−1)

2 distinct off-diagonal elements
of Ŷ . The relaxed optimisation problem becomes:

minimise c⊤ȳ

subject to Ȳ ⪰ 0

Murumatsu and Suzuki [141, Section 3.3] and Ito et al. [209] add triangle inequality constraints:

yi + yj + Ŷij ≥ −1
yi − yj − Ŷij ≥ −1
−yi − yj + Ŷij ≥ −1
−yi + yj − Ŷij ≥ −1

(16.2)

for 0 ≤ i < j < N .

Lu [251, Section V] shows how to solve this semidefinite programming optimisation problem with the SeDuMi [225] SOCP
solver by representing it in the form:

minimise c⊤ȳ

subject to Aȳ ≥ b

Ȳ = F 0 + ȳ1F 1 + . . .+ ȳP F P ⪰ 0

where P = N(N+1)
2 , ȳ = [ȳ1 . . . ȳP]⊤ and the F k are the symmetric matrixes that select the two off-diagonal elements of Ȳ

corresponding to ȳk. If the SDP solution is y∗ and Ŷ
∗
, then sign (y∗) is a reasonable solution to the original integer programming

problem. Lu [252] points out that, given the singular-value decomposition

Z∗ =
[

Ŷ
∗

y∗

y∗⊤ 1

]
= UΣU⊤

an alternative solution is sign (uN+1,lu1...N,l), where u1...N,l is the first column vector in U that corresponds to the largest
singular value, σl. “The motivation ... is that a perfect solution Y ∗ ... would imply that matrix Z∗ has rank one, hence
σlu1...N+1,lu

⊤
1...N+1,l is the best rank-one approximation of Z∗ in the 2-norm sense.”

16.1 SDP optimisation of the signed-digit coefficients of a direct-form symmetric
FIR filter

Following Appendix N.4, the components of the amplitude responses of a direct-form symmetic FIR filter with signed-digit
coefficients are:

Â (ω) = x̂M + 2
M−1∑
n=0

x̂n cos (M − n)ω

Aδ (ω) = yMδM + 2
M−1∑
n=0

ynδn cos (M − n)ω

The Octave script sdp_relaxation_directFIRsymmetric_bandpass_10_nbits_test.m performs SDP optimisation of the response of
a direct-form symmetric band-pass FIR filter. The filter specification is:

500

0 0.1 0.2 0.3 0.4 0.5
-2

-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form symmetric bandpass filter pass-band (nbits=10,ndigits=3) : fapl=0.1,fapu=0.2,dBap=1.5

exact
s-d

s-d(Lim)

s-d(SDP)

Figure 16.1: Comparison of the pass-band amplitude responses for a direct-form symmetric FIR bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SDP optimisation with triangle inequalities.

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=1e-06 % Tolerance on coef. update
ctol=1e-06 % Tolerance on constraints
npoints=1000 % Frequency points across the band
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=1.5 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude lower stop band edge
fasu=0.25 % Amplitude upper stop band edge
dBas=43 % Amplitude stop band peak-to-peak ripple
Wasl=100 % Amplitude lower stop band weight
Wasu=100 % Amplitude upper stop band weight

The filter coefficients are truncated to 10 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as
shown in Section 11.1. The Octave function directFIRsymmetric_sdp_mmsePW implements SDP optimisation with the triangle
inequalities of Equation 16.2. The resulting y values were all very close to −1 or 1. Attempts at PCLS optimisation with
directFIRsymmetric_slb failed.

The distinct direct-form symmetric FIR bandpass filter coefficients found by the SDP optimisation with triangle inequalities are:

hM1_sd_sdp = [0, -5, -10, -5, ...
11, 20, 10, -2, ...
5, 20, 0, -58, ...

-91, -36, 75, 132]'/512;

Figures 16.1 and 16.2 compare the pass-band and stop-band responses of the filter with floating-point coefficients, 10-bit signed-
digit coefficients, 10-bit signed-digit coefficients allocated with the algorithm of Lim et al. and 10-bit signed-digit coefficients
allocated with the algorithm of Lim et al. and SDP optimisation.

Table 16.1 compares the cost and the number of 10 bit shift-and-add operations required to implement the 16 distinct coefficient
multiplications found by the signed-digit allocation heuristic of Lim et al. with the SDP optimisation and triangle inequalities.

501

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form symmetric bandpass filter stop-band (nbits=10,ndigits=3) : fasl=0.05,fasu=0.25,dBas=43

exact
s-d

s-d(Lim)

s-d(SDP)

Figure 16.2: Comparison of the stop-band amplitude responses for a direct-form symmetric FIR bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SDP optimisation with triangle inequalities.

Cost Stop-band response Signed-digits Shift-and-adds

Exact 0.001901 -43.0
10-bit 3-signed-digit 0.005824 -33.5 34 20
10-bit 3-signed-digit(Lim) 0.002063 -37.8 36 22
10-bit 3-signed-digit(SDP) 0.001874 -40.5 33 19

Table 16.1: Comparison of the cost, maximum stop-band response and number of 10-bit shift-and-add operations required to
implement the coefficient multiplications for a direct-form symmetric FIR bandpass filter with 10-bit integer coefficients found
by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SDP optimisation
with triangle inequalities.

502

16.2 SDP optimisation of the signed-digit coefficients of an FIR Hilbert filter

The Octave script sdp_relaxation_directFIRhilbert_12_nbits_test.m performs SDP optimisation of the response of a direct-form
Hilbert FIR filter. The filter specification is:

M=40 % Number of distinct coefficients
nbits=12 % Coefficient bits
ndigits=2 % Nominal average coefficient signed-digits
tol=1e-05 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
npoints=500 % Frequency points across the band
fapl=0.01 % Amplitude pass band lower edge
fapu=0.49 % Amplitude pass band upper edge
dBap=0.135 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Was=0 % Amplitude stop band weight

The filter coefficients are truncated to 12 bits allocated with an average of 2 signed-digits by the heuristic of Ito et al. as shown in
Section 11.2. The Octave function directFIRhilbert_sdp_mmsePW implements SDP optimisation with the triangle inequalities
of Equation 16.2. The resulting y values were all very close to −1 or 1.

The distinct direct-form Hilbert FIR filter coefficients found by signed-digit allocation with the heuristic of Ito et al. are:

hM1_sd_Ito = [-1, -1, -1, -2, ...
-2, -2, -2, -4, ...
-4, -4, -4, -8, ...
-8, -8, -8, -10, ...

-12, -12, -16, -16, ...
-18, -20, -24, -24, ...
-28, -32, -36, -40, ...
-48, -52, -60, -69, ...
-80, -96, -112, -140, ...

-183, -258, -432, -1304]'/2048;

and by SDP optimisation with triangle inequalities are:

hM1_sd_sdp = [-1, -1, -1, -1, ...
-2, -2, -2, -2, ...
-4, -4, -4, -4, ...
-8, -8, -8, -10, ...

-12, -12, -16, -16, ...
-18, -20, -24, -24, ...
-28, -32, -36, -40, ...
-48, -52, -60, -69, ...
-80, -96, -112, -140, ...

-183, -258, -432, -1304]'/2048;

The corresponding FIR filter is:

h=[-flipud(kron(hM1_sd_sdp,[1;0]));0;kron(hM1_sd_sdp,[1;0])](2:end-1)

Figure 16.3 compares the responses of the filter with floating-point coefficients, 12-bit signed-digit coefficients, 12-bit signed-
digit coefficients allocated with the algorithm of Ito et al. and 12-bit signed-digit coefficients allocated with the algorithm of
Ito et al. and SDP optimisation. Table 16.2 compares the cost, maximum pass-band response error and the number of 12 bit
shift-and-add operations required to implement the 40 distinct coefficient multiplications found by the signed-digit allocation
heuristic of Ito et al. and performing SDP optimisation with triangle inequalities.

503

0 0.05 0.1 0.15 0.2 0.25
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form Hilbert filter (nbits=12,ndigits=2) : fapl=0.01,fapu=0.49,dBap=0.135

exact
s-d

s-d(Ito)

s-d(SDP)

Figure 16.3: Comparison of the amplitude responses for a direct-form Hilbert FIR filter with 12-bit integer coefficients found by
allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing SDP optimisation with
triangle inequalities.

Cost Pass-band response Signed-digits Shift-and-adds

Exact 5.232e-07 0.0675
12-bit 2-signed-digit 0.0002086 0.4029 71 31
12-bit 2-signed-digit(Ito) 7.87e-06 0.1384 70 30
12-bit 2-signed-digit(SDP) 6.988e-06 0.1013 70 30

Table 16.2: Comparison of the cost, maximum pass-band response error (in dB) and number of 12-bit shift-and-add operations
required to implement the coefficient multiplications for a direct-form Hilbert FIR filter with 12-bit integer coefficients found by
allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing SDP optimisation with
triangle inequalities.

504

16.3 SDP optimisation of the signed-digit coefficients of an FIR Hilbert band-pass
filter

The Octave script sdp_relaxation_directFIRhilbert_bandpass_12_nbits_test.m performs SDP optimisation of the response of a
direct-form Hilbert band-pass FIR filter. The initial filter is that shown in Appendix N.3.1. The filter specification is:

M=8 % Number of distinct coefficients
nbits=12 % Coefficient bits
ndigits=2 % Nominal average coefficient signed-digits
tol=1e-05 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
npoints=5000 % Frequency points across the band
fasl=0.1 % Amplitude stop band lower edge
fapl=0.16325 % Amplitude pass band lower edge
fapu=0.33675 % Amplitude pass band upper edge
fasu=0.4 % Amplitude stop band upper edge
Wap=2 % Amplitude pass band weight
dBap=0.1 % Amplitude pass band peak-to-peak ripple
Wat=0.001 % Amplitude transition band weight
Was=1 % Amplitude stop band weight
dBas=35 % Amplitude stop band peak ripple

The group-delay of the filter is 2M − 1 samples. The filter coefficients are truncated to 12 bits allocated with an average of
2 signed-digits by the heuristic of Ito et al. as shown in Section 11.2. The Octave function directFIRhilbert_sdp_mmsePW
implements SDP optimisation with the triangle inequalities of Equation 16.2.

The distinct direct-form Hilbert band-pass FIR filter coefficients found by signed-digit allocation with the heuristic of Ito et al.
are:

hM2_sd_Ito = [-20, 8, 64, -32, ...
-128, 112, 327, -868]'/2048;

and by SDP optimisation with triangle inequalities are:

hM2_sd_sdp = [-24, 8, 64, -32, ...
-128, 120, 326, -872]'/2048;

Figure 16.4 compares the responses of the filter with floating-point coefficients, 12-bit signed-digit coefficients, 12-bit signed-
digit coefficients allocated with the algorithm of Ito et al. and 12-bit signed-digit coefficients allocated with the algorithm of Ito
et al. and SDP optimisation. Figure 16.5 compares the pass-band responses. Table 16.3 compares the cost, maximum stop-band
response error and the number of 12 bit shift-and-add operations required to implement the 8 distinct coefficient multiplications
found by the signed-digit allocation heuristic of Ito et al. with the SDP relaxation optimisation and triangle inequalities.

Cost Stop-band response Signed-digits Shift-and-adds

Exact 0.0001338 -34.97
12-bit 2-signed-digit 0.0006283 -28.15 16 8
12-bit 2-signed-digit(Ito) 0.0001635 -33.11 16 8
12-bit 2-signed-digit(SDP) 0.0001392 -34.89 16 8

Table 16.3: Comparison of the cost, maximum stop-band response error and number of 12-bit shift-and-add operations required
to implement the coefficient multiplications for a direct-form Hilbert band-pass FIR filter with 12-bit integer coefficients found
by allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing SDP optimisation
with triangle inequalities.

505

0 0.05 0.1 0.15 0.2 0.25
-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form Hilbert filter (nbits=12,ndigits=2) : fapl=0.16325,fapu=0.33675

exact
s-d

s-d(Ito)

s-d(SDP)

Figure 16.4: Comparison of the amplitude responses for a direct-form Hilbert band-pass FIR filter with 12-bit integer coefficients
found by allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing SDP optimi-
sation with triangle inequalities.

0.16 0.18 0.2 0.22 0.24
-0.2

-0.1

0

0.1

0.2

Frequency

A
m

pl
itu

de
(d

B
)

Direct-form Hilbert filter (nbits=12,ndigits=2) : fapl=0.16325,fapu=0.33675

exact
s-d

s-d(Ito)

s-d(SDP)

Figure 16.5: Comparison of the pass-band amplitude responses for a direct-form Hilbert band-pass FIR filter with 12-bit integer
coefficients found by allocating an average of 2-signed-digits to each coefficient using the heuristic of Ito et al. and performing
SDP optimisation with triangle inequalities.

506

16.4 SDP-relaxation search for the signed-digit coefficients of a lattice bandpass
IIR filter

The Octave script sdp_relaxation_schurOneMlattice_bandpass_10_nbits_test.m performs successive SDP relaxations to opti-
mise the response of the SQP optimised band-pass Schur one-multiplier lattice filter of Section 10.3.9. The filter specification
is:

nbits=10 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coef. update
ctol=0.0001 % Tolerance on constraints
n=500 % Frequency points across the band
Nk=20 % Filter order
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
dBap=2 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
dBas=35 % Amplitude stop band peak-to-peak ripple
Wasl=500000 % Amplitude lower stop band weight
Wasu=1000000 % Amplitude upper stop band weight
ftpl=0.1 % Pass band delay lower edge
ftpu=0.2 % Pass band delay upper edge
tp=16 % Nominal pass band filter group delay
tpr=0.32 % Delay pass band peak-to-peak ripple
Wtp=2 % Delay pass band weight

The filter coefficients are truncated to 10 bits allocated with an average of 3 signed-digits by the heuristic of Lim et al. as shown
in Section 11.1.

The script compares the filter designed by a single call to the Octave function schurOneMlattice_sdp_mmse with that designed
by successively fixing the value of the remaining active coefficients to the SDP coefficient corresponding to that with the largest
difference between the upper and lower signed-digit approximations as in Section 15.2. At each coefficient relaxation step the
script finds the upper and lower signed-digit approximations to the current set of active coefficients and selects the coefficient with
the largest difference in those approximations. Then the active coefficients are optimised with schurOneMlattice_sdp_mmse, the
set of active coefficients is updated and the remaining active coefficients are optimised with the Octave function schurOneMlat-
tice_socp_mmse and the Selesnick-Lang-Burrus constraint algorithm implemented in the Octave function schurOneMlattice_slb.
The truncation of the last coefficient is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS
specifications.

The filter coefficients found by a single “global” SDP optimisation are:

k0_sd_sdp = [0, 340, 0, 255, ...
0, 177, 0, 212, ...
0, 156, 0, 129, ...
0, 76, 0, 52, ...
0, 18, 0, 7]'/512;

c0_sd_sdp = [36, -6, -153, -247, ...
-82, 63, 202, 153, ...
8, -42, -41, -7, ...

-6, -19, -13, 4, ...
13, 9, 1, 0, ...
2]'/512;

The filter coefficients found by the SDP-relaxation search are:

k0_sd_min = [0, 340, 0, 255, ...
0, 177, 0, 216, ...
0, 156, 0, 132, ...
0, 79, 0, 52, ...
0, 17, 0, 6]'/512;

507

0.1 0.12 0.14 0.16 0.18 0.2
-2

-1.5

-1

-0.5

0

0.5

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter pass-band amplitude (nbits=10,ndigits=3) : fapl=0.1,fapu=0.2,dBap=2

exact
s-d

s-d(Lim)

s-d(SDP)

s-d(min)

Figure 16.6: Comparison of the pass-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SDP-relaxation search.

c0_sd_min = [36, -7, -154, -246, ...
-82, 63, 201, 154, ...
11, -40, -41, -8, ...
-5, -17, -12, 2, ...
12, 10, 2, 0, ...
2]'/512;

Figure 16.6 compares the pass-band responses of the filter with floating-point coefficients, 10-bit signed-digit coefficients al-
located with the algorithm of Lim et al. and 10-bit signed-digit coefficients allocated with the algorithm of Lim et al. and
SDP-relaxation search. Figure 16.7 shows the filter stop-band response and Figure 16.8 shows the filter pass-band group delay
response. The “global” unconstrained SDP optimisation gives a poor delay response. Application of the Selesnick-Lang-Burrus
PCLS algorithm to that “global” signed-digit SDP optimisation failed by entering a loop of constraints. Figure 16.9 shows the
history of the difference of the successive relaxed signed-digit coefficients from the initial floating-point values. Table 16.4 com-
pares the cost and the number of 10 bit shift-and-add operations required to implement the 20 coefficient multiplications found
by the signed-digit allocation heuristic of Lim et al. with the SDP-relaxation search. A further 51 additions are required by the
lattice filter structure.

Cost Stop-band response Signed-digits Shift-and-adds

Exact 0.014314 -36.0
10-bit 3-signed-digit 0.032112 -35.8 73 42
10-bit 3-signed-digit(Lim) 0.027798 -35.2 78 47
10-bit 3-signed-digit(SDP) 0.047554 -33.0 78 48
10-bit 3-signed-digit(min) 0.019727 -34.5 74 44

Table 16.4: Comparison of the cost and number of 10-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a Schur one-multiplier lattice bandpass filter with 10-bit integer coefficients found by allocating an average of
3-signed-digits to each coefficient using the heuristic of Lim et al. and performing SDP-relaxation search.

508

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

Frequency

A
m

pl
itu

de
(d

B
)

Schur one-multiplier lattice bandpass filter stop-band (nbits=10,ndigits=3) : fasl=0.05,fasu=0.25,dBas=35

exact
s-d

s-d(Lim)

s-d(SDP)

s-d(min)

Figure 16.7: Comparison of the stop-band amplitude responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SDP-relaxation search.

0.1 0.12 0.14 0.16 0.18 0.2

15.7

15.8

15.9

16

16.1

16.2

16.3

Frequency

D
el

ay
(s

am
pl

es
)

Schur one-multiplier lattice bandpass filter pass-band delay (nbits=10,ndigits=3) : ftpl=0.1,ftpu=0.2,tpr=0.32

exact
s-d

s-d(Lim)

s-d(SDP)

s-d(min)

Figure 16.8: Comparison of the pass-band group delay responses for a Schur one-multiplier lattice bandpass filter with 10-bit
integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of Lim et al. and
performing SDP-relaxation search.

509

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

4

Relaxation step

B
its

di
ff

er
en

ce
fr

om
ex

ac
t

Schur one-multiplier lattice bandpass filter : 10 bit 3 signed-digit coefficients difference from exact

The coefficients [k,c] were fixed in the order : 2, 10, 21, 25, 4, 6, 8, 12, 14, 24,
16, 18, 20, 22, 23, 26, 27, 28, 29, 39, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41

Figure 16.9: History of the difference of the successive SDP relaxed signed-digit coefficients from the initial floating-point
values.

510

16.5 SDP-relaxation search for the signed-digit coefficients of a parallel allpass lat-
tice elliptic low-pass IIR filter

The Octave script sdp_relaxation_schurOneMPAlattice_elliptic_lowpass_14_nbits_test.m performs successive SDP relaxations
to optimise the response of an elliptic low-pass filter implemented with 14-bit coefficients. The filter specification is:

nbits=14 % Coefficient bits
ndigits=4 % Nominal average coefficient signed-digits
tol=1e-05 % Tolerance on coef. update
ctol=1e-08 % Tolerance on constraints
n=1000 % Frequency points across the band
difference=0 % Use difference of all-pass filters
rho=0.992188 % Constraint on allpass coefficients
m1=5 % All-pass filter 1 order
m2=4 % All-pass filter 2 order
fap=0.15 % Amplitude pass band edge
dBap=0.06 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fas=0.171 % Amplitude stop band edge
dBas=76 % Amplitude stop band peak-to-peak ripple
Was=10000000 % Amplitude stop band weight

The filter specification is similar to that for the filter designed with branch-and-bound search shown in Section 14.9. For com-
parison, the Octave script sdp_relaxation_schurOneMPAlattice_elliptic_lowpass_16_nbits_test.m performs successive SDP re-
laxations to optimise the response of an elliptic low-pass filter implemented with 16-bit coefficients each having an average of 5
signed-digits.

The initial parallel all-pass filters are those for the filter designed by the Octave function ellip(11,0.02,84,2*0.15). The filter coef-
ficients are truncated to 14-bit coefficients having 4 signed-digits each. The script compares the filter designed by a single call to
the Octave function schurOneMPAlattice_sdp_mmse with that designed by successively fixing the value of the remaining active
coefficients to the SDP coefficient corresponding to that with the largest difference between the upper and lower signed-digit
approximations as in Section 15.2. At each coefficient relaxation step the script finds the upper and lower signed-digit approx-
imations to the current set of active coefficients and selects the coefficient with the largest difference in those approximations.
Then the active coefficients are optimised with schurOneMPAlattice_sdp_mmse, the set of active coefficients is updated and the
remaining active coefficients are optimised with the Octave function schurOneMPAlattice_socp_mmse and the Selesnick-Lang-
Burrus constraint algorithm implemented in the Octave function schurOneMPAlattice_slb. The truncation of the last coefficient
is, by necessity, not PCLS optimised so the final set of coefficients may not meet the PCLS specifications.

The 14-bit 4-signed-digit filter coefficients found by the SDP-relaxation search are:

A1k0_sd_min = [-4896, 8096, -6432, 7088, ...
-5904, 2948]'/8192;

A2k0_sd_min = [-5640, 7670, -6720, 5984, ...
-2936]'/8192;

Figures 16.10 and 16.11 compare the pass-band and stop-band responses of the filter with floating-point coefficients, 14-bit
coefficients having 4 signed-digits each, signed-digit coefficients found with “global” SDP approximation and those found by
SDP-relaxation search. Figure 16.12 shows the history of the difference of the successive relaxed signed-digit coefficients from
the initial floating-point values. Table 16.5 compares the cost and the number of 14 bit shift-and-add operations required to
implement the 11 coefficient multiplications.

511

0 0.05 0.1 0.15
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Frequency

A
m

pl
itu

de
(d

B
)

Parallel allpass lattice elliptic lowpass filter pass-band amplitude nbits=14,ndigits=4) : fap=0.15

Initial
s-d

s-d(SDP)

s-d(min)

Figure 16.10: Comparison of the pass-band amplitude responses for a parallel all-pass Schur one-multiplier lattice elliptic low-
pass filter with 14-bit integer coefficients having 4-signed-digits each and performing SDP relaxation search.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-100

-90

-80

-70

-60

-50

-40

Frequency

A
m

pl
itu

de
(d

B
)

Parallel allpass lattice elliptic lowpass filter stop-band (nbits=14,ndigits=4) : fas=0.171

Initial
s-d

s-d(SDP)

s-d(min)

Figure 16.11: Comparison of the stop-band amplitude responses for a parallel all-pass Schur one-multiplier lattice elliptic low-
pass filter with 14-bit integer coefficients having 4-signed-digits each and performing SDP relaxation search.

512

0 2 4 6 8 10
-30

-20

-10

0

10

20

30

Relaxation step

B
its

di
ff

er
en

ce
fr

om
ex

ac
t

Parallel allpass lattice elliptic lowpass filter : 14 bit 4 signed-digit coefficient difference from exact

Figure 16.12: History of the difference of the successive SDP relaxed signed-digit coefficients from the initial floating-point
values.

Cost Stop-band response Signed-digits Shift-and-adds

Initial 7.52e-06 -84.0
14-bit 4-signed-digit 6.96e-03 -38.9 44 33
14-bit 4-signed-digit(SDP) 2.02e-01 -31.2 44 33
14-bit 4-signed-digit(min) 1.41e-05 -75.6 43 32

Table 16.5: Comparison of the cost, stop-band attenuation and number of 14-bit shift-and-add operations required to implement
the coefficient multiplications for a parallel all-pass Schur one-multiplier lattice elliptic-lowpass filter with 14-bit integer coeffi-
cients with 4-signed-digits each and performing SDP relaxation search.

513

16.6 SDP-relaxation search for the signed-digit coefficients of a parallel allpass lat-
tice bandpass Hilbert IIR filter

The Octave script sdp_relaxation_schurOneMPAlattice_bandpass_hilbert_13_nbits_test.m performs successive SDP relaxations
to optimise the response of the band-pass Hilbert filter designed by the script parallel_allpass_socp_slb_bandpass_hilbert_test.m
described in Section 10.2.3 implemented with 13 bit coefficients each having an average of 3 signed-digits allocated by the
heuristic of Ito et al. as shown in Section 11.1. The filter specification is:

nbits=13 % Coefficient bits
ndigits=3 % Nominal average coefficient signed-digits
tol=0.0001 % Tolerance on coef. update
ctol=1e-05 % Tolerance on constraints
n=1000 % Frequency points across the band
ma=10 % All-pass filter a order
mb=10 % All-pass filter b order
fapl=0.12 % Amplitude pass band lower edge
fapu=0.18 % Amplitude pass band upper edge
dBap=0.08 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
dBas=35 % Amplitude stop band peak-to-peak ripple
Wasl=200 % Amplitude lower stop band weight
Wasu=200 % Amplitude upper stop band weight
ftpl=0.12 % Pass band delay lower edge
ftpu=0.18 % Pass band delay upper edge
td=16 % Nominal pass band filter group delay
tdr=0.2 % Delay pass band peak-to-peak ripple
Wtp=2 % Delay pass band weight
fppl=0.12 % Pass band phase response lower edge
fppu=0.18 % Pass band phase response upper edge
pd=3.5 % Pass band initial phase response (rad./pi)
pdr=0.08 % Pass band phase response ripple(rad./pi)
Wpp=100 % Pass band phase response weight

The script compares the filter designed by a single call to the Octave function schurOneMPAlattice_sdp_mmse with that de-
signed by successively fixing the value of the remaining active coefficients to the SDP coefficient corresponding to that with
the largest difference between the upper and lower signed-digit approximations as in Section 15.2. At each coefficient relax-
ation step the script finds the upper and lower signed-digit approximations to the current set of active coefficients and selects
the coefficient with the largest difference in those approximations. Then the active coefficients are optimised with schurOneM-
PAlattice_sdp_mmse, the set of active coefficients is updated and the remaining active coefficients are optimised with the Octave
function schurOneMPAlattice_socp_mmse and the Selesnick-Lang-Burrus constraint algorithm implemented in the Octave func-
tion schurOneMPAlattice_slb. The truncation of the last coefficient is, by necessity, not PCLS optimised so the final set of
coefficients may not meet the PCLS specifications.

The filter coefficients found when the number of signed-digits is allocated by the heuristic of Ito et al. are:

A1k0_sd_Ito = [-1832, 3472, -1680, 1408, ...
2432, -1664, 1248, 1568, ...

-1312, 960]'/4096;

A2k0_sd_Ito = [-3264, 3640, -1856, 1280, ...
2496, -1568, 1280, 1600, ...

-1280, 992]'/4096;

The filter coefficients found by a single “global” SDP optimisation are:

A1k0_sd_sdp = [-1828, 3472, -1680, 1344, ...
2432, -1664, 1248, 1568, ...

-1312, 960]'/4096;

514

0.12 0.13 0.14 0.15 0.16 0.17 0.18
-0.08

-0.06

-0.04

-0.02

0

0.02

Frequency

A
m

pl
itu

de
(d

B
)

Parallel allpass lattice bandpass Hilbert filter pass-band amplitude nbits=13,ndigits=3) : fapl=0.12,fapu=0.18

initial
s-d

s-d(Ito)

s-d(SDP)

s-d(min)

Figure 16.13: Comparison of the pass-band amplitude responses for a parallel all-pass Schur one-multiplier lattice bandpass
Hilbert filter with 13-bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the
heuristic of Ito et al. and performing SDP-relaxation search.

A2k0_sd_sdp = [-3264, 3632, -1856, 1536, ...
2528, -1568, 1152, 1568, ...

-1280, 992]'/4096;

The filter coefficients found by the SDP-relaxation search are:

A1k0_sd_min = [-1864, 3424, -1668, 1552, ...
2368, -1664, 1168, 1568, ...

-1312, 960]'/4096;

A2k0_sd_min = [-3232, 3696, -1824, 1536, ...
2496, -1552, 1152, 1568, ...

-1280, 960]'/4096;

Figures 16.13, Figure 16.14 and Figure 16.15 compare the pass band responses of the filter with floating-point coefficients, 13-bit
signed-digit coefficients allocated with the algorithm of Ito et al. and 13-bit signed-digit coefficients allocated with the algorithm
of Ito et al. and SDP-relaxation search. The pass band phase response shown is adjusted for the nominal delay. Likewise,
Figure 16.16 shows the filter stop band response. Table 16.6 compares the cost and the number of 13 bit shift-and-add operations
required to implement the 20 coefficient multiplications found by the signed-digit allocation heuristic of Ito et al. with the
SDP-relaxation search.

515

0.12 0.13 0.14 0.15 0.16 0.17 0.18
-0.04

-0.02

0

0.02

0.04

Frequency

Ph
as

e
er

ro
r(

ra
d.

/π
)

Parallel allpass lattice bandpass Hilbert filter pass-band phase (nbits=13,ndigits=3) : fppl=0.12,fppu=0.18

initial
s-d

s-d(Ito)

s-d(SDP)

s-d(min)

Figure 16.14: Comparison of the pass-band phase responses for a parallel all-pass Schur one-multiplier lattice bandpass Hilbert
filter with 13-bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the heuristic of
Ito et al. and performing SDP-relaxation search. The phase responses shown are adjusted for the nominal delay.

0.12 0.13 0.14 0.15 0.16 0.17 0.18
15.8

15.9

16

16.1

16.2

Frequency

D
el

ay
(s

am
pl

es
)

Parallel allpass lattice bandpass Hilbert filter pass-band delay (nbits=13,ndigits=3) : ftpl=0.12,ftpu=0.18

initial
s-d

s-d(Ito)

s-d(SDP)

s-d(min)

Figure 16.15: Comparison of the pass-band group delay responses for a parallel all-pass Schur one-multiplier lattice bandpass
Hilbert filter with 13-bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the
heuristic of Ito et al. and performing SDP-relaxation search.

516

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

-25

-20

Frequency

A
m

pl
itu

de
(d

B
)

Parallel allpass lattice bandpass Hilbert filter stop-band (nbits=13,ndigits=3) : fasl=0.05,fasu=0.25

initial
s-d

s-d(Ito)

s-d(SDP)

s-d(min)

Figure 16.16: Comparison of the stop-band amplitude responses for a parallel all-pass Schur one-multiplier lattice bandpass
Hilbert filter with 13-bit integer coefficients found by allocating an average of 3-signed-digits to each coefficient using the
heuristic of Ito et al. and performing SDP-relaxation search.

Cost Stop-band response Signed-digits Shift-and-adds

Exact 0.000517 -40.0
13-bit 3-signed-digit 0.107295 -33.1 60 40
13-bit 3-signed-digit(Ito) 0.021676 -34.5 60 40
13-bit 3-signed-digit(SDP) 1.242764 -17.7 60 40
13-bit 3-signed-digit(min) 0.002711 -37.1 60 40

Table 16.6: Comparison of the cost and number of 13-bit shift-and-add operations required to implement the coefficient mul-
tiplications for a parallel all-pass Schur one-multiplier lattice bandpass Hilbert filter with 13-bit integer coefficients found by
allocating an average of 3-signed-digits to each coefficient using the heuristic of Ito et al. and performing SDP-relaxation search.

517

Chapter 17

Comparison of filter coefficient search methods
for a 5th order elliptic filter with 6-bit integer
and 2-signed-digit coefficients

The signed-digit allocation algorithms shown in Chapter 11 performed poorly when the coefficient word-length is less than 10.
This chapter compares the results of “brute force” search for the 6-bit integer coefficients of a 5th order elliptic filter. The filter
responses are compared to an ideal, “brick-wall”, amplitude response:

A (f) =
{

1 f <= 0.125
0 f > 0.150

The response errors are weighted as follows:

Wa (f) =

1 f <= 0.125
0.1 0.125 < f < 0.150
10 f >= 0.150

The prototype filter is a 5-th order elliptic filter with pass-band edge at fpass = 0.125, 1dB pass-band ripple and 40dB stop-band
ripple:

% Specify elliptic low pass filter
norder=5;dBpass=1;dBstop=40;fpass=0.125;
[n0,d0]=ellip(norder,dBpass,dBstop,2*fpass);

The prototype filter is implemented as a normalised-scaled lattice filter, parallel allpass normalised-scaled lattice filters, a one-
multiplier lattice filter, parallel all-pass one-multiplier lattice filters and a cascade of two 2nd order minimum noise state variable
sections followed by a first order section. The stability of each filter is maintained by checking the pole locations of the transfer
function denominator polynomial in the corresponding cost function. For each optimisation algorithm and filter, I compare the
cost function of the floating-point filter response to the response for each filter with the coefficients truncated as 6 bit rounded
and 6 bit 2 signed-digits. I anticipate that the average number of signed digits used by the signed-digit coefficients will be less
than 2. The 6 bit rounded coefficients can be represented exactly by 3 or fewer signed digits. Individual cases may be improved
by “tweaking” the optimisation parameters.

17.1 Searching with the bit-flipping algorithm

The Octave script bitflip_schurNSlattice_lowpass_test.m implements the prototype elliptic filter as a normalised-scaled lattice and
optimises the truncated coefficients with the bit-flipping algorithm using nbits = 6, bitstart = 4 and msize = 3. Figures 17.1
and 17.2 show the overall and passband responses of the prototype elliptic filter with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2
signed-digit coefficients optimised with the bit-flipping algorithm. The cost function used with the signed-digit coefficients does
not enforce the normalised-scaled orthogonal symmetry of s00 = s22 and s02 = −s20.

518

The Octave script bitflip_schurOneMlattice_lowpass_test.m implements the prototype elliptic filter as a one-multiplier lattice and
optimises the truncated coefficients with the bit-flipping algorithm using nbits = 6, bitstart = 4 and msize = 3. Figures 17.3
and 17.4 show the overall and passband responses of the filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit
rounded coefficients optimised with the bit-flipping algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients
optimised with the bit-flipping algorithm. The one-multiplier lattice state scaling coefficients are not truncated.

Appendix M.2 shows how odd-order “classical” digital filter transfer functions can be implemented as the sum of two parallel all-
pass filters. The Octave script bitflip_schurNSPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two
normalised-scaled all-pass lattice filters and optimises the truncated coefficients with the bit-flipping algorithm using nbits = 6,
bitstart = 4 and msize = 3. Figures 17.5 and 17.6 show the overall and passband responses of the parallel all-pass filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6 bit
2 signed-digit coefficients and 2 signed-digit coefficients optimised with the bit-flipping algorithm. The cost function used with
the signed-digit coefficients does not enforce the normalised-scaled orthogonal symmetry of s00 = s22 and s02 = −s20.

The Octave script bitflip_schurOneMPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two one-
multiplier all-pass lattice filters and optimises the truncated coefficients with the bit-flipping algorithm using nbits = 6,
bitstart = 4 and msize = 3. Figures 17.7 and 17.8 show the overall and passband responses of the parallel all-pass filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm
and 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm. The one-
multiplier lattice state scaling coefficients are not truncated. The structural boundedness of the parallel all-pass one-multiplier
lattice filter is evident.

Finally, the Octave script bitflip_svcasc_lowpass_test.m implements the 5th order elliptic filter as a pair of 2nd order minimum-
noise state variable sections followed by a 1st order state variable section. (See Section 4). The script optimises the truncated
coefficients with the bit-flipping algorithm using nbits = 6, bitstart = 4 and msize = 3. Figures 17.9 and 17.10 show the
overall and passband responses of the filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients
optimised with the bit-flipping algorithm and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm. Note
that the 2nd order state variable cascade filter obtained by simply converting the floating-point coefficients to 6 bit 2 signed-digit
coefficients is unstable.

Table 17.1 compares the cost result for each test of the bit-flipping algorithm.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Exact 1.0008 1.0008 1.0008 1.0008 1.0008
Rounded 1.5432 1.5299 1.2459 1.1097 1.2362
Rounded with bit-flipping 1.1289 1.5299 0.9861 1.1097 0.9929
Signed-digit 2.3373 2.7157 3.6059 3.9013 ∞
Signed-digit with bit-flipping 0.8744 2.1571 1.3824 3.1746 1.1334

Table 17.1: Summary of the cost results for the example 5th order elliptic low-pass filter synthesised as a normalised-scaled
or one-multiplier lattice filter or as a cascade of 2nd order state variable sections with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2
signed-digit coefficients optimised with the bit-flipping algorithm

The normalised-scaled 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm are:

s10_bfsd = [0.968750, 0.875000, 0.468750, 0.187500, 0.031250]';
s11_bfsd = [0.000000, 0.875000, 0.937500, 1.000000, 0.468750]';
s20_bfsd = [-0.750000, 0.937500, -0.875000, 0.750000, -0.468750]';
s00_bfsd = [0.625000, 0.312500, 0.468750, 0.562500, 0.875000]';
s02_bfsd = [0.750000, -0.968750, 0.875000, -0.750000, 0.437500]';
s22_bfsd = [0.625000, 0.218750, 0.468750, 0.500000, 0.875000]';

519

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.1: Amplitude response of the 5th order elliptic low-pass filter synthesised as a normalised-scaled lattice filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6 bit 2
signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.2: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a normalised-scaled lattice filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6
bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

520

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.3: Amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6 bit 2 signed-
digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.4: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6
bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

521

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.5: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-scaled lattice
filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algo-
rithm, 6 bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.6: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-
scaled lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-
flipping algorithm, 6 bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

522

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.7: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier lattice filters
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm, 6
bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

signed-digit

bitflip(s-d)

Figure 17.8: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping
algorithm, 6 bit 2 signed-digit coefficients, and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

523

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

bitflip(s-d)

Figure 17.9: Amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state variable
sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping
algorithm and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,bitstart=4,msize=3,ndigits=2

exact
round

bitflip(round)

bitflip(s-d)

Figure 17.10: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state
variable sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-
flipping algorithm and 6 bit 2 signed-digit coefficients optimised with the bit-flipping algorithm.

524

17.2 Searching with the Nelder-Mead simplex algorithm

The Octave script simplex_schurNSlattice_lowpass_test.m implements the prototype elliptic filter as a normalised-scaled lat-
tice and optimises the truncated coefficients with the nelder_mead_min simplex algorithm from the Octave-Forge optim pack-
age [163]. Figures 17.11 and 17.12 show the overall and passband responses of the prototype elliptic filter with floating-point
coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm, 6 bit 2 signed-digit co-
efficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm. The cost function used with the signed-digit
coefficients does not enforce the normalised-scaled orthogonal symmetry of s00 = s22 and s02 = −s20.

The Octave script simplex_schurOneMlattice_lowpass_test.m implements the 5th order elliptic filter as a one-multiplier lattice
and optimises the truncated coefficients with the simplex algorithm. Figures 17.13 and 17.14 show the overall and passband
responses of the filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the
simplex algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.
The one-multiplier lattice state scaling coefficients are not truncated.

The Octave script simplex_schurNSPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two normalised
scaled all-pass lattice filters and optimises the truncated coefficients with the simplex algorithm. Figures 17.15 and 17.16 show
the overall and passband responses of the parallel all-pass filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit
rounded coefficients optimised with the simplex algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients
optimised with the simplex algorithm. The cost function used with the signed-digit coefficients does not enforce the normalised-
scaled orthogonal symmetry of s00 = s22 and s02 = −s20.

The Octave script simplex_schurOneMPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two one-
multiplier all-pass lattice filters and optimises the truncated coefficients with the simplex algorithm. Figures 17.17 and 17.18 show
the overall and passband responses of the parallel all-pass filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit
rounded coefficients optimised with the simplex algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients
optimised with the simplex algorithm. The one-multiplier lattice state scaling coefficients are not truncated.

Finally, the Octave script simplex_svcasc_lowpass_test.m implements the 5th order elliptic filter as a pair of 2nd order minimum-
noise state variable sections followed by a 1st order state variable section. (See Section 4). The script optimises the truncated
coefficients with the simplex algorithm. Figures 17.19 and 17.20 show the overall and passband responses of the filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm and 6
bit 2 signed-digit coefficients optimised with the simplex algorithm. Note that the 2nd order state variable cascade filter obtained
by simply converting the floating-point coefficients to 6 bit 2 signed-digit coefficients is unstable.

Table 17.2 compares the cost result for each test of the simplex algorithm.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Exact 1.0008 1.0008 1.0008 1.0008 1.0008
Rounded 1.5432 1.5299 1.2459 1.1097 1.2362
Rounded with simplex 1.0397 1.4617 0.9861 1.1097 0.8395
Signed-digit 2.3373 2.7157 3.6059 3.9013 ∞
Signed-digit with simplex 1.6581 2.3918 3.2559 3.1746 3.2134

Table 17.2: Summary of the cost results for the example 5th order elliptic low-pass filter synthesised as a normalised-scaled
or one-multiplier lattice filter or as a cascade of 2nd order state variable sections with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the simplex algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-
digit coefficients optimised with the simplex algorithm.

525

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.11: Amplitude response of the 5th order elliptic low-pass filter synthesised as a normalised-scaled lattice filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm, 6 bit 2
signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.12: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a scaled=normalised lattice
filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm,
6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

526

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.13: Amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm, 6 bit 2 signed-digit
coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.14: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm, 6 bit
2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

527

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice,nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.15: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-scaled lattice
filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm,
6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice,nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.16: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-
scaled lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the
simplex algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

528

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.17: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier lattice
filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm,
6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

simplex(round)

signed-digit

simplex(s-d)

Figure 17.18: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex
algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

529

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

simplex(round)

simplex(s-d)

Figure 17.19: Amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state variable sec-
tions with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex algorithm
and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

simplex(round)

simplex(s-d)

Figure 17.20: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state
variable sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simplex
algorithm and 6 bit 2 signed-digit coefficients optimised with the simplex algorithm.

530

17.3 Searching with the simulated annealing algorithm

This section shows the results of searching for the coefficients of a 5-th order low-pass filter with the Octave-Forge optim
package [163] implementation of the simulated annealing algorithm, nonlin_min [164, Demonstartion 2]a. Unfortunately, the
minimum cost found by nonlin_min may vary by a factor of 2 or more from run to run. In this section I show the best results
from 20 runs of each test.

The Octave script samin_schurNSlattice_lowpass_test.m implements the prototype elliptic filter as a normalised-scaled lattice
and optimises the truncated coefficients with the nonlin_min simulated annealing algorithm from the Octave-Forge optim pack-
age [163]. Figures 17.21 and 17.22 show, for the best results from 10 runs, the overall and passband responses of the prototype
elliptic filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated
annealing algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing
algorithm. The cost function used with the signed-digit coefficients does not enforce the normalised-scaled orthogonal symmetry
of s00 = s22 and s02 = −s20.

The Octave script samin_schurOneMlattice_lowpass_test.m implements the prototype elliptic filter as a one-multiplier lattice and
optimises the truncated coefficients with the simulated annealing algorithm. Figures 17.23 and 17.24 show, for the best results
from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm, 6 bit 2 signed-digit coefficients and 6 bit
2 signed-digit coefficients optimised with the simulated annealing algorithm. The one multiplier lattice state scaling coefficients
are not truncated.

The Octave script samin_schurNSPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two normalised-
scaled all-pass lattice filters and optimises the truncated coefficients with the simulated annealing algorithm. Figures 17.25
and 17.26 show, for the best results from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm, 6
bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm. The cost
function used with the signed-digit coefficients does not enforce the normalised-scaled orthogonal symmetry of s00 = s22 and
s02 = −s20.

The Octave script samin_schurOneMPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two one-
multiplier all-pass lattice filters and optimises the truncated coefficients with the simulated annealing algorithm. Figures 17.27
and 17.28 show, for the best results from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm, 6
bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm. The one
multiplier lattice state scaling coefficients are not truncated.

Finally, the Octave script samin_svcasc_lowpass_test.m implements the 5th order elliptic filter as a pair of 2nd order minimum-
noise state variable sections followed by a 1st order state variable section. (See Section 4). The script optimises the truncated
coefficients with the simulated annealing algorithm. Figures 17.29 and 17.30 show the overall and passband responses of the filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping algorithm
and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm. Note that the 2nd order state variable
cascade filter obtained by simply converting the floating-point coefficients to 6 bit 2 signed-digit coefficients is unstable.

Table 17.3 shows the minimum cost result for 10 runs of each test.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Exact 1.0008 1.0008 1.0008 1.0008 1.0008
Rounded 1.5432 1.5299 1.2459 1.1097 1.2362
Rounded with samin 0.8420 1.4617 0.8295 0.8803 0.6781
Signed-digit 2.3373 2.7157 3.6059 3.9013 ∞
Signed-digit with samin 0.8309 1.7673 1.0841 1.6706 ∞

Table 17.3: Summary of the cost results for the example 5th order elliptic low-pass filter synthesised as a normalised-scaled
or one-multiplier lattice filter or as a cascade of 2nd order state variable sections with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm, 6 bit 2 signed-digit coefficients and 6
bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

The lowest cost 6 bit 2 signed-digit coefficients of the normalised-scaled lattice filter found with the simulated annealing algo-
rithm are:

aThe samin function has been deprecated.

531

s10_sasd = [0.968750, 0.750000, 0.375000, 0.156250, 0.031250]';
s11_sasd = [0.156250, 0.750000, 0.875000, 1.000000, 0.500000]';
s20_sasd = [-0.750000, 0.968750, -0.937500, 0.750000, -0.312500]';
s00_sasd = [0.625000, 0.281250, 0.468750, 0.562500, 0.937500]';
s02_sasd = [0.750000, -1.000000, 0.875000, -0.750000, 0.468750]';
s22_sasd = [0.625000, 0.250000, 0.531250, 0.500000, 0.875000]';

The lowest cost 6 bit rounded coefficients of the parallel-allpass one-multiplier lattice filter found with the simulated annealing
algorithm areb.

A1k_sa = [-0.812500, 0.625000];
A2k_sa = [-0.781250, 0.906250, -0.593750];

The lowest cost 6 bit rounded coefficients of the cascade of 2nd order sections found with the simulated annealing algorithm are:

a11_sa = [0.750000, 0.687500, 0.000000];
a12_sa = [-0.687500, -0.375000, 1.000000];
a21_sa = [0.656250, 0.531250, 0.000000];
a22_sa = [0.625000, 0.687500, 0.687500];
b1_sa = [0.406250, 0.656250, 0.000000];
b2_sa = [0.125000, 0.062500, 1.000000];
c1_sa = [0.375000, 0.062500, 0.000000];
c2_sa = [0.937500, 0.406250, 0.406250];
dd_sa = [0.250000, 0.281250, 0.218750];

bThese coefficient multiplications can be implemented with a total of 14 signed-digits and 9 adders

532

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.21: Amplitude response of the 5th order elliptic low-pass filter synthesised as a normalised-scaled lattice filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm,
6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.22: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a scaled=normalised lattice
filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing
algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

533

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.23: Amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing algorithm, 6 bit 2
signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.24: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing
algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

534

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.25: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-scaled
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated
annealing algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated annealing
algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.26: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-
scaled lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the
simulated annealing algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the simulated
annealing algorithm.

535

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.27: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier lattice
filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated annealing
algorithm and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

siman(round)

signed-digit

siman(s-d)

Figure 17.28: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated
annealing algorithm and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

536

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

siman(round)

siman(s-d)

Figure 17.29: Amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state variable
sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simulated
annealing algorithm and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

siman(round)

siman(s-d)

Figure 17.30: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state
variable sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the simu-
lated annealing algorithm and 6 bit 2 signed-digit coefficients optimised with the simulated annealing algorithm.

537

17.4 Searching with the differential evolution algorithm

This section shows the results of searching for the coefficients of a 5-th order low-pass filter with the Octave-Forge optim
package [163] implementation of the differential evolution algorithm of Storn and Price [202], de_min. Unfortunately, the
minimum cost found by de_min may vary from run to run. In this section I show the best results from 20 runs of each test. These
tests use the default control settings for de_min. The de_min function includes 12 possible optimisation strategies. The default
strategy is DEGL/SAW/bin.

The Octave script de_min_schurNSlattice_lowpass_test.m implements the prototype elliptic filter as a normalised-scaled lattice
and optimises the truncated coefficients with the de_min differential evolution algorithm from the Octave-Forge optim pack-
age [163]. Figures 17.31 and 17.32 show, for the best results from 10 runs, the overall and passband responses of the prototype
elliptic filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential
evolution algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution
algorithm. The cost function used with the signed-digit coefficients does not enforce the normalised-scaled orthogonal symmetry
of s00 = s22 and s02 = −s20.

The Octave script de_min_schurOneMlattice_lowpass_test.m implements the prototype elliptic filter as a one-multiplier lattice
and optimises the truncated coefficients with the differential evolution algorithm. Figures 17.33 and 17.34 show, for the best
results from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-point coefficients, 6 bit
rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution algorithm, 6 bit 2 signed-digit coeffi-
cients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm. The one multiplier lattice state
scaling coefficients are not truncated.

The Octave script de_min_schurNSPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two normalised-
scaled all-pass lattice filters and optimises the truncated coefficients with the differential evolution algorithm. Figures 17.35
and 17.36 show, for the best results from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution algorithm, 6
bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm. The cost
function used with the signed-digit coefficients does not enforce the normalised-scaled orthogonal symmetry of s00 = s22 and
s02 = −s20.

The Octave script de_min_schurOneMPAlattice_lowpass_test.m implements the 5th order elliptic filter as the sum of two one-
multiplier all-pass lattice filters and optimises the truncated coefficients with the differential evolution algorithm. Figures 17.37
and 17.38 show, for the best results from 10 runs, the overall and passband responses of the prototype elliptic filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution algorithm, 6
bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm. The one
multiplier lattice state scaling coefficients are not truncated.

Finally, the Octave script de_min_svcasc_lowpass_test.m implements the 5th order elliptic filter as a pair of 2nd order minimum-
noise state variable sections followed by a 1st order state variable section. (See Section 4). The script optimises the truncated
coefficients with the differential evolution algorithm. Figures 17.39 and 17.40 show the overall and passband responses of
the filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the bit-flipping
algorithm and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm. Note that the 2nd order state
variable cascade filter obtained by simply converting the floating-point coefficients to 6 bit 2 signed-digit coefficients is unstable.

Table 17.4 shows the minimum cost result for 10 runs of each test.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Exact 1.0008 1.0008 1.0008 1.0008 1.0008
Rounded 1.5432 1.5299 1.2459 1.1097 1.2362
Rounded with de_min 0.7797 1.2765 0.7874 0.8803 0.6572
Signed-digit 2.3373 2.7157 3.6059 3.9013 ∞
Signed-digit with de_min 0.7768 1.9147 1.1879 1.3505 0.6995

Table 17.4: Summary of the cost results for the example 5th order elliptic low-pass filter synthesised as a normalised-scaled
or one-multiplier lattice filter or as a cascade of 2nd order state variable sections with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with the differential evolution algorithm, 6 bit 2 signed-digit coefficients and 6
bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

538

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.31: Amplitude response of the 5th order elliptic low-pass filter synthesised as a normalised-scaled lattice filter with
floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution algo-
rithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.32: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a scaled=normalised lattice
filter with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution
algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

539

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.33: Amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter with floating-
point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution algorithm, 6 bit
2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.34: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a one multiplier lattice filter
with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolution
algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

540

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.35: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-scaled
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential
evolution algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential evolution
algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic NS PA lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.36: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass normalised-
scaled lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the
differential evolution algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit coefficients optimised with the differential
evolution algorithm.

541

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.37: Amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier lattice
filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential evolu-
tion algorithm and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic OneM PA lattice: nbits=6,ndigits=2

exact
round

de_min(round)

signed-digit

de_min(s-d)

Figure 17.38: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as parallel all-pass one multiplier
lattice filters with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential
evolution algorithm and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

542

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

10

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

de_min(round)

de_min(s-d)

Figure 17.39: Amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state variable
sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differential
evolution algorithm and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

0 0.02 0.04 0.06 0.08 0.1 0.12
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

5th order elliptic 2nd order cascade: nbits=6,ndigits=2

exact
round

de_min(round)

de_min(s-d)

Figure 17.40: Pass-band amplitude response of the 5th order elliptic low-pass filter synthesised as a cascade of 2nd order state
variable sections with floating-point coefficients, 6 bit rounded coefficients, 6 bit rounded coefficients optimised with the differ-
ential evolution algorithm and 6 bit 2 signed-digit coefficients optimised with the differential evolution algorithm.

543

17.5 Summary of the search algorithm comparison

Table 17.5 compares the cost result for each of the search algorithms. The relative time consumed by the algorithms is, in
increasing order: simplex, bit-flipping, differential evolution and simulated annealing. The simulated annealing and differential
evolution costs shown are the minimum found for 10 runs of the corresponding test script.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Exact 1.0008 1.0008 1.0008 1.0008 1.0008
Rounded 1.5432 1.5299 1.2459 1.1097 1.2362
Rounded with bit-flipping 1.1289 1.5299 0.9861 1.1097 0.9929
Rounded with simplex 1.0397 1.4617 0.9861 1.1097 0.8395
Rounded with samin 0.8420 1.4617 0.8295 0.8803 0.6781
Rounded with de_min 0.7797 1.2765 0.7874 0.8803 0.6572
Signed-digit 2.3373 2.7157 3.6059 3.9013 ∞
Signed-digit with bit-flipping 0.8744 2.1571 1.3824 3.1746 1.1334
Signed-digit with simplex 1.6581 2.3918 3.2559 3.1746 3.2134
Signed-digit with samin 0.8309 1.7673 1.0841 1.6706 ∞
Signed-digit with de_min 0.7768 1.9147 1.1879 1.3505 0.6995

Table 17.5: Comparison of the cost results for the example 5th order elliptic low-pass filter synthesised as a normalised-scaled
or one-multiplier lattice filter or as a cascade of 2nd order state variable sections with floating-point coefficients, 6 bit rounded
coefficients, 6 bit rounded coefficients optimised with each algorithm, 6 bit 2 signed-digit coefficients and 6 bit 2 signed-digit
coefficients optimised with each algorithm.

Table 17.6 shows the number of coefficients for each filter implementation. The figure in parentheses for the normalised-scaled
filters is the number of signed-digit coefficients optimised.

Cost Normalised-scaled One-multiplier Normalised-scaled One-multiplier 2nd Order
lattice lattice PA lattice PA lattice cascade

Number of filter coefficients 20(30) 11 10(20) 5 23

Table 17.6: Comparison of the number of coefficients for the example 5th order elliptic low-pass filter synthesised as a
normalised-scaled or one-multiplier lattice filter or as a cascade of 2nd order state variable sections. The figure in parenthe-
ses for the normalised-scaled filters is the number of signed-digit coefficients that are optimised assuming symmetry is not
required.

544

Part IV

Appendixes

545

546

Appendix A

Review of Complex Variables

This chapter summarises Kreyszig [52, Chapter 12(Sections 4 and 5), Chapter 14].

A.1 Complex Functions

Define a function f on the complex numbers, C, w = f (z), where z varies in S and is called a “complex variable”. S is called
the domain of z and the set of complex numbers, w, that f (z) assumes is called the range of f (z). Write the real and imaginary
parts of w in terms of the real and imaginary parts of z = x+ ıy as w = f (z) = u(x, y) + ıv(x, y) where u and v are real valued
functions of the real variables x and y and, of course, ı =

√
−1.

A.2 Limit

A function f (z) is said to have a limit ℓ as z approaches w = f (z) = u(x, y) + ıv(x, y) if f (z) is defined in a neighbourhood
of z0 (except perhaps at z0 itself) and if for any positive, non-zero real number ϵ we can find a real positive δ such that, for all z
̸=z0 in the disk |z − z0| < δ , |f (z)− ℓ| < ϵ. We write:

lim
z→z0

f (z) = ℓ

A function f (z) is continuous at z = z0 if f(z0) is defined and

lim
z→z0

f (z) = f(z0)

A function f (z) is differentiable at z = z0 if the limit

f ′ (z) = lim
z→z0

f(z0 + ∆z)− f(z0)
∆z

exists. This limit is called the derivative of f (z) at z = z0. f (z) is said to be analytic (or holomorphic) in a domain D, if f (z)
is defined and differentiable at all points of D. For example, f (z) = x− ıy is not differentiable. If ∆z = ∆x+ ı∆y then:

f(z + ∆z)− f (z)
∆z = ∆x− ı∆y

∆x+ ı∆y

If ∆z approaches z with ∆y = 0 then the derivative is −1 but if ∆z approaches z with ∆x = 0 then the derivative is 1. Hence
the limit approaches different values along different paths to z = x+ ıy.

A.3 The Cauchy-Riemann Equations

Suppose f (z) = u(x, y) + ıv(x, y) is defined and continuous within a neighbourhood of an arbitrary fixed point z and differen-
tiable at z so that f ′ (z) exists. Set ∆z = ∆x+ ı∆y. On a path for which ∆z approaches z with ∆y = 0, then:

f ′ (z) = lim
∆x→0

u(x+ ∆x, y)− u(x, y)
∆x + ı lim

∆x→0

v(x+ ∆x, y)− v(x, y)
∆x

547

= ∂u

∂x
+ ı

∂v

∂x

Similarly, for a path on which ∆z approaches z with ∆x = 0

f ′ (z) = ∂v

∂y
− ı∂u

∂y

Equating real and imaginary parts, we obtain the Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y

and

∂u

∂y
= −∂v

∂x

If f (z) = u(x, y) + ıv(x, y) is analytic in D then the real and imaginary parts of f satisfy Laplace’s equation in D and have
continuous second partial derivatives in D

∇2u = ∂2u

∂x2 + ∂2u

∂y2 = 0

and

∇2v = 0

A.4 Line integrals in the complex plane

Let C be a smooth curve in the z plane with z(t) = x(t) + ıy(t) with a ≤ t ≤ b where z(t) has a continuous derivative
ż(t) ̸= 0 for all t. Let f (z) be a continuous function defined at each point of C. Divide the interval a ≤ t ≤ b into sub-intervals
t0 = a ≤ t1 ≤ · · · ≤ tn = b corresponding to z0 = z(t0), z1, . . . , zn = z(tn). For each sub-interval of C choose an arbitrary
point, ζi, between zi−1 and zi. Then form the sums

Sn =
n∑

i=1
f(ζi)∆zi

where ∆zi = zi − zi−1. Define ζi = εi + ıηi and ∆zi = ∆xi + ı∆yi and let f (z) = u(x, y) + ıv(x, y). Then Sn consists of
four real sums

Sn =
n∑

i=1
(u+ ıv) (∆xi + ı∆yi)

=
n∑

i=1
u∆xi −

n∑
i=1

v∆yi + ı

[
n∑

i=1
u∆yi +

n∑
i=1

v∆xi

]
and the line integral of f (z) along C is defined as the limit of the sums Sn andˆ

C

f (z) dz = lim
n→∞

Sn

=
ˆ

C

udx−
ˆ

C

vdy + ı

ˆ
C

udy +
ˆ

C

vdx

=

bˆ

a

uẋdt−
bˆ

a

vẏdt+ ı

 bˆ

a

uẋdt+
bˆ

a

vẏdt

=
ˆ

c

f [z (t)] żdt

The absolute value of the line integral is bounded by ∣∣∣∣∣∣
ˆ

C

f (z) dz

∣∣∣∣∣∣ ≤Ml

where l is the length of the path C and M is a real constant such that |f (z)| ≤M everywhere on the path C.

548

A.5 Cauchy’s Integral Theorem

A domain D in the complex plane is called simply connected if every simple closed curve in D encloses only points in D. Such
a domain D is said to be bounded if D lies entirely within a circle about the origin. If f (z)is analytic in a simply connected
bounded domain D then for each simple closed path C in D

‰
C

f (z) = 0

PROOF: Cauchy made the additional assumption that f ′ (z) is continuous and applied Green’s theorem. Write
‰

C

f (z) =
ˆ

C

udx− vdy + ı

ˆ

C

udy + vdx

f (z) is analytic so f ′ (z) exists. For the real part, using the Cauchy-Riemann equations, by Green’s theorem

ˆ

C

udx− vdy =
¨

R

[
−∂v
∂x
− ∂u

∂y

]
dxdy

= 0

where R is the region bounded by C. Similarly for the imaginary part. Goursat provided a proof that does not require f ′ (z) to
be continuous. A corollary of Cauchy’s Integral theorem is that the line integral of f (z) is independent of the path in D.

A.6 Cauchy’s Integral Formula

Let f (z) be analytic in a simply connected domain, D. Then for any point z0 in D and any simple closed path C in D which
encloses z0

‰
C

f (z)
z − z0

dz = 2πıf(z0)

PROOF: Let

f (z) = f(z0) + [f (z)− f(z0)]

so
‰

C

f (z)
z − z0

dz = f(z0)
‰

C

dz

z − z0
+
‰

C

f (z)− f(z0)
z − z0

dz

For the first term use the identity

ˆ

c

(z − z0)mdz =
{

2πı m = −1
0 m ̸= −1, integral

found by setting z(t) = z0 + ρeıt and integrating over t. For the second term, replace C by a small circle K, with centre z0.
f (z) is analytic so for any ϵ > 0 we can find a δ > 0 so that |f (z)− f(z0)| < ϵ for all z in |z − z0| < δ. Choose the radius ρ
of K smaller than δ then ∣∣∣∣f (z)− f(z0)

z − z0

∣∣∣∣ < ϵ

ρ

at each point of K. Since the length of K is 2πρ ∣∣∣∣∣∣
ˆ

K

f (z)− f(z0)
z − z0

dz

∣∣∣∣∣∣ < 2πϵ

at each point of K and the second term is shown to be zero.

549

A.7 Derivatives of an analytic function

If f (z) is analytic in D then it has derivatives of all orders in D which are also analytic functions in D

f (n) (z0) = n!
2πı

‰

c

f (z)
(z − z0)n+1 dz, n = 1, 2, · · ·

PROOF: For f ′(z0)

f ′(z0) = lim
∆z→0

f (z0 + ∆z) f (z0)
∆z

Applying Cauchy’s Integral formula

f ′(z0) = lim
∆z→0

1
2πı∆z

ˆ
C

f (z)
z − (z0 + ∆z)dz −

ˆ

C

f (z)
z − z0

dz

= 1

2πı

ˆ

C

f (z)
(z − z0)2 dz + lim

∆z→0

∆z
2πı

ˆ

C

f (z)
(z − z0 −∆z)(z − z0)2 dz

So we need to establish that the second term on the right is zero. On C the function f (z) is continuous. Hence f (z) is bounded
in absolute value on C, say |f (z)| < M . Let d be the distance of the point or points of C which are closest to z0. Then for all
z on C, |z − z0| ≥ d hence |z − z0|−1 ≤ 1

d . Also, if |∆z| ≤ d
2 , then for all z on C we have the inequality |z − z0 −∆z| ≥ d

2
hence |z − z0 −∆z|−1 ≤ 2

d . Denoting the length of C by L∣∣∣∣∣∣∆z2πı

ˆ

C

f (z)
(z − z0 −∆z)(z − z0)2 dz

∣∣∣∣∣∣ < |∆z|2π
M

1
2dd

2L

As ∆z approaches zero the right hand side approaches zero. The general formula follows by induction.

A.8 Laurent’s Theorem

If f (z) is analytic on two concentric circles with centre a and in the annulus between them, then f (z) can be represented by the
Laurent series

f (z) =
∞∑

n=0
bn (z − a)n +

∞∑
n=1

cn

(z − a)n

where

bn = 1
2πı

‰

C

f (z∗)
(z∗ − a)n+1 dz

∗

cn = 1
2πı

‰

C

(z∗ − a)n−1
f (z∗) dz∗

each integral being taken in the counter-clockwise direction around any simple closed path, C, which lies in the annulus and
encloses the inner circle. This series converges and represents f (z) in the open annulus obtained from the given annulus by
continuously increasing the circle C1 and decreasing C2 until each if the two circles reaches a point where f (z) is singular.

For a proof see Kreyszig [52, Section 16.7]. A common case occurs when z = a is the only singular point of f (z) in C2. Then
the Laurent expansion converges for all z in C1 except at z = a.

A.9 Residues

If f (z) is analytic in the neighbourhood of a point z = a, then by Cauchy’s integral theorem
‰

C

f (z) dz = 0

550

for any closed path, C, in that neighbourhood. If, however, f (z) has an isolated singularity at z = a and a lies in the interior of
C, then we may represent f (z) by the Laurent series

f (z) =
∞∑

n=0
bn (z − a)n + c1

(z − a) + c2

(z − a)2 + · · ·

which converges on the domain 0 < |z − a| < R. Consequently
‰

C

f (z) dz = 2πıc1

c1 is called the residue of f (z) at z = a. The integral of f (z) over C can be extended to paths that contain finitely many singular
points.

A.10 Cauchy’s Argument Principle

A meromorphic function on an open subset, D, of the complex plane is a function that is holomorphic on all D except at a set of
isolated points (the poles of the function) at which it must have a Laurent series. If f (z) is a meromorphic function inside and
on a closed contour, C, and has no poles or zeros on C, then

‰

C

f ′ (z)
f (z) dz = 2πı (k −m)

where k and m denote the number of zeros and poles, respectively, of f (z) inside C. Each zero and pole is counted as many
times as its multiplicity and order, respectively, indicate.

PROOF: Let zN be a zero of f (z) with multiplicity k, then

f (z) = (z − zN)k
g (z)

where g (zN) ̸= 0. Differentiating

f ′ (z) = k (z − zN)k−1
g (z) + (z − zN)k

g′ (z)

and

f ′ (z)
f (z) = k

z − zN
+ g′ (z)
g (z)

Since g (zN) ̸= 0, g′(z)
g(z) has no singularities and is analytic at zN and the residue of f ′(z)

f(z) at zN is k.

Similarly, let zP be a pole of f (z) with order k, then

f (z) = (z − zP)−m
h (z)

where h (zP) ̸= 0. Differentiating

f ′ (z) = −m (z − zP)−m−1
h (z) + (z − zN)−m

h′ (z)

and

f ′ (z)
f (z) = −m

z − zP
+ h′ (z)
h (z)

Since h (zP) ̸= 0, h′(z)
h(z) has no singularities and is analytic at zP and the residue of f ′(z)

f(z) at zP is −m.

A.11 Rouché’s Theorem

If f (z) and g (z) are analytic inside and on a closed contour C, and |g (z)| < |f (z)| on C, then f (z) and f (z) + g (z) have the
same number of zeros inside C.

551

Appendix B

Review of selected results from linear algebra

This appendix collects some results from linear algebra used in convex optimization. See, for example, Golub and Van Loan [58],
Boyd and Vandenberghe [212, Appendixes A, B and C], Antoniou and Lu [2, Appendix A], Gallier [64] and many, many other
on-line resources.

B.1 Norm of a matrix

The vector norms are:

∥x∥p = (|x1|p + · · ·+ |xn|p)
1
p p ≥ 1

∥x∥∞ = max
1≤i≤n

|xi|

∥x∥ is assumed to mean ∥x∥2.

The matrix norm, ∥A∥α,β , is:

∥A∥α,β = sup
x ̸=0

∥Ax∥β

∥x∥α

Golub and Van Loan [58, Section 2.3.1, Section 2.2.1] define the Frobenius norm (also called the Euclidean norm) of a matrix,
A, as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1
|aij |2

The Octave manual defines the Frobenius norm of a matrix, A, as:

norm(A,"fro") = sqrt(sum(diag(A'*A))

B.2 Trace of a matrix

The elements of the product of two matrixes, R and S, of equal size, are:

[RS]kl =
∑
m

RkmSml

The trace of a matrix is the sum of the diagonal elements:

trace (T) =
∑

n

Tnn

552

For a column vector, y, and a matrix, Q:

y⊤Qy =
∑

k

∑
l

Qklykyl

=
∑

k

∑
l

QklYkl

= trace (QY)

where Y = yy⊤ is symmetric.

B.3 Rank, range, span and null-space of a matrix

Golub and Van Loan [58, Section 2.1.2] define the range and null-space or kernel of a matrix, B, as

range (B) = {y ∈ Rn | y = Bx , x ∈ Rn}
null (B) = {x ∈ Rn | Bx = 0}

IfB = [b1, . . . , bn] is a column vector partitioning then the span ofB is the set of all linear combinations of those column vectors

span {b1, . . . , bn} =

n∑

j=1
βjbj | βj ∈ R

Golub and Van Loan [58, Theorem 2.5.2] show that if A is a real m-by-n matrix then there exist orthogonal matrixes:

U = [u1, . . . , um] ∈ Rm×m

V = [v1, . . . , vn] ∈ Rn×n

such that:

U⊤AV = diag [σ1, . . . , σp] ∈ Rm×n p = min (m,n)

where σ1 ≥ σ1 ≥ . . . ≥ σp ≥ 0. The σk are called the singular values of A. Define r by:

σ1 ≥ σ1 ≥ . . . ≥ σr > σr+1 = . . . σp = 0

then, given the singular value decomposition (SVD) of a matrix, A:

rank (A) = r

null (A) = span {vr+1, . . . , vn}
range (A) = span {u1, . . . , ur}

A =
r∑

k=1
σkukv

⊤
k = UΣV ⊤

The columns of U , U∗, V and V ∗ each form an orthonormal basis. The column vectors, uk, are called left singular vectors.
Similarly, the column vectors, vk, are called right singular vectors.

B.4 Matrix determinants

B.4.1 Definitions

The following definitions of the determinant of a matrix are equivalent:

1. The determinant is a function of a square matrix A ∈ Rn×n, det : {A 7→ R}, with the following properties:

• row replacement on row rk (ie: rk = rk +m× rl) does not change detA
• scaling a row by a scalar p multiplies detA by p

553

• swapping adjacent rows of A multiplies detA by −1
• the determinant of the identity matrix In is 1

2. Suppose a square matrix, A, is reduced to row-echelon form, B, by Gaussian elimination. Then:

detA = −1s × product of the diagonal entries of B
product of the scaling factors used

where s is the number of row swaps performed. This is often the most efficient means of calculating detA.

3. The parallelpiped determined by n vectors r1, . . . , rn ∈ Rn is the set P = {p1r1 + . . .+ pnrn | 0 ≤ p1, . . . , pn ≤ 1}. If
A is the matrix formed from the rows, rk, then the volume of the parallelpiped is |detA|. If the unit cube is transformed by
the affine transformation corresponding to matrix A and then by that for matrix B it follows that detAB = detA×detB
and that detA−1 = [detA]−1.

4. The (k, l)-minor of A ∈ Rn×n, Mkl, is the determinant of the (n− 1) × (n− 1) matrix formed by deleting row k and
column l of A. The cofactor matrix of A is C =

(
(−1)k+l

Mkl

)
. The adjugate matrix of A is adjA = C⊤. The adjugate

matrix is defined so that A adjA = adjAA = detAIn and A−1 = [detA]−1 adjA. If the entries of A are akl and the
entries of C are ckl = (−1)k+l

Mkl, then the cofactor expansion alongthe k’th row is detA =
∑n

l=1 aklCkl. The cofactor
expansion along the l’th column is similar.

B.4.2 Matrix exponential

The matrix exponential is given by the power series:

eA =
∞∑

k=0

1
k!A

k

Jacobi’s formula for the derivative of the determinant of a matrix, A, is:

d

dt
detA (t) = trace

(
adjA (t) d

dt
A (t)

)
The following corollory is obtained by substituting A (t) = etB :

det etB = etrace tB

B.5 Positive-definite matrixes

A matrix, Q ∈ Rn×n, is positive-definite if x⊤Qx > 0 for all nonzero x ∈ Rn.

A complex matrix can be expressed in terms of the real and imaginary parts as Z = X + ıY . The matrix Z is positive-definite if,
for all complex vectors z, z∗Zz is real and greater than 0 (∗ represents the complex conjugate transpose operation). If z = x+ ıy,
then:

z∗Zz =
(
x⊤ − ıy⊤

)
(X + ıY) (x+ ıy)

=
(
x⊤X − ıy⊤X + ıx⊤Y + y⊤Y

)
(x+ ıy)

= x⊤Xx− ıy⊤Xx+ ıx⊤Y x+ y⊤Y x+ ıx⊤y + y⊤Xy − x⊤Y y + ıy⊤Y y

=
(
x⊤Xx+ y⊤Xy

)
+ ı
(
x⊤Y x+ y⊤Y y

)
Z ≻ 0 if-and-only-if x⊤Y x + y⊤Y y = 0 and

[
X Y
−Y X

]
≻ 0. Alternatively, Z ≻ 0 if-and-only-if Z is Hermitian, that is

Z⊤ = Z̄, where Z̄ means the element-wise conjugate of Z.

B.6 Schur complement

This section follows Gallier [64]. See also Jönsson [243, Section 2.1]. The Schur complement is often used to convert non-linear
matrix inequalities into linear matrix inequalities.

554

B.6.1 Schur complement of a matrix

The Schur complement appears in the decomposition of a matrix M =
[
A B
C D

]
when solving the linear system:[

A B
C D

] [
x
y

]
=
[
c
d

]
If D is invertible:

y = D−1 (d− Cx)

Substituting:

Ax+BD−1 (d− Cx) = c(
A−BD−1C

)
x = c−BD−1d

If A−BD−1C is invertible, then:

x =
(
A−BD−1C

)−1
c−

(
A−BD−1C

)−1
BD−1d

y = D−1
(
d− C

(
A−BD−1C

)−1 (
c−BD−1d

))
so that: [

A B
C D

]−1
=
[(

A−BD−1C
)−1 −

(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]

=
[(

A−BD−1C
)−1 0

−D−1C
(
A−BD−1C

)−1
D−1

] [
I −BD−1

0 I

]
=
[

I 0
−D−1C I

] [(
A−BD−1C

)−1 0
0 D−1

] [
I −BD−1

0 I

]
Since: [

I −BD−1

0 I

]−1
=
[
I BD−1

0 I

]
then: [

A B
C D

]
=
[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
A−BD−1C is called the Schur complement of D in M a.

Alternatively, if A and D − CA−1B are invertible, and with x = A−1 (c−By):[
A B
C D

]−1
=
[
A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1 (

D − CA−1B
)−1

]

=
[
A−1 −A−1B

(
D − CA−1B

)−1

0
(
D − CA−1B

)−1

] [
I 0

−CA−1 I

]
=
[
I −A−1B
0 I

] [
A−1 0

0
(
D − CA−1B

)−1

] [
I 0

−CA−1 I

]
[
A B
C D

]
=
[

I 0
CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
D − CA−1B is the Schur complement of A in M .

Comparing the two decompositions of M :(
A−BD−1C

)−1 = A−1 +A−1B
(
D − CA−1B

)−1
CA−1

so that: [
A B
C D

]−1
=
[(

A−BD−1C
)−1 −A−1B

(
D − CA−1B

)−1

−
(
D − CA−1B

)−1
CA−1 (

D − CA−1B
)−1

]
aA corollary is: det

[
A B
C D

]
= det

[
A−BD−1C

]
× det D.

555

B.6.2 Schur complement of a positive definite matrix

If M is symmetric (A and D are symmetric and C = B⊤) then if D is invertible:

1. M ≻ 0⇔ D ⪰ 0 and A−BD−1B⊤ ≻ 0

2. If D ≻ 0, then M ⪰ 0⇔ A−BD−1B⊤ ⪰ 0

Similarly, if A is invertible, then:

1. M ≻ 0⇔ A ⪰ 0 and D −B⊤A−1B ≻ 0

2. If A ≻ 0, then M ⪰ 0⇔ D −B⊤A−1B ⪰ 0

These results follow from:

1. a block diagonal matrix, M , is positive definite, M ≻ 0,⇔ each diagonal block is positive definite

2. if matrix T is symmetric and matrix N is invertible then T ≻ 0⇔ NTN⊤ ≻ 0

3. the block decomposition of M with
[

A B
B⊤ D

]
≻ 0⇔

[
D B⊤

B A

]
≻ 0

Given the quadratic constraint:

(Ax+ b)⊤ (Ax+ b) ≤ c⊤x+ d

the equivalent positive semi-definite condition: [
I (Ax+ b)

(Ax+ b)⊤ c⊤x+ d

]
⪰ 0

follows from the properties of the Schur complement.

556

B.7 Convex vector spaces

B.7.1 Definitions on convex sets

See, for example, Jönsson [243, Section 2]. A set, C, in a linear vector space is convex if αx1 + (1− α)x2 ∈ C for all x1, x2 ∈ C
and α ∈ [0, 1].

A set, C, is a convex cone if it is convex and αx ∈ C for all x ∈ C and all α > 0.

A convex polytope, C, with vertices at x1, . . . , xn ∈ Rm is defined as the convex hull of those points:

C = cohull {x1, . . . , xn} =
{

n∑
k=0

αkxk : αk ≥ 0,
n∑
1
αk = 1

}

An ellipsoid, E , with centre m, can be defined by:

E =
{
x : (x−m)⊤Q−1 (x−m) ≤ 1

}
=
{
x : x⊤Px+ 2x⊤b+ c ≤ 0

}
where Q is positive definite and symmetric. In the second characterisation P = Q−1, b = −Q−1m and c = m⊤Q−1m− 1. The
size, shape and location of the ellipsoid are determined by m and Q. The orientation of E is determined by the eigenvectors of Q
and the lengths of the semi-axes of E are defined by the eigenvalues of Q. The volume of an ellipsoid is:

V (E) = k (n) det (Q)
1
2 = k (n) det

((
b⊤P−1b− c

)
P−1) 1

2

where k (n) is a dimension-dependent constraint. A linear transformation of the ellipsoid, E , changes the centre, shape and
location:

Ẽ = AE + b

= {y : y = Ax+ b : x ∈ E}

=
{
y : (y − b−Am)⊤

(
AQA⊤

)−1 (y − b−Am) ≤ 1
}

B.7.2 The separating hyperplane theorem

The separating hyperplane theorem is an important result in convex optimisation. I follow the finite dimensional proof of
Jönsson [243, Section 3]. Also see Rockafellar [203, Section 11].

Jönsson makes the following definitions relating to a linear vector space, V , over the real numbers, R:

• a linear functional on V is a function f : V 7→ R, which is linear, i.e. f (α1v1 + α2v2) = α1f (v1) + α2f (v2) for all
v1, v2 ∈ V and α1, α2 ∈ R

• the continuous linear functions on V also make a vector space, called the dual of V , denoted V̂

• in applications considering a finite dimensional Hilbert space over R, the dual space is V̂ = V itself, and the linear
functional v̂ (v) := ⟨v, v̂⟩ is the inner product

• the affine hull of S, denoted by aff S, is the set of all linear combinations of the form
∑
αkxk where xk ∈ S and

∑
αk = 1

• the relative interior of a set S ⊂ R, denoted by riS, is the set of points of S which are interior relative to aff S. This means
that for any x ∈ S, there exists an ε > 0 such that all y ∈ aff S with |x− y| < ε are also members of S

• a hyperplane is an affine subset of V with maximal dimension. In other words, if V has dimension n, then every hyperplane
is a translation of an n− 1 dimensional subspace of V . A hyperplane can be represented as H = {x ∈ V : ⟨v, z⟩ = c} for
z ∈ V̂ and c ∈ R. The sets H = {x ∈ V : ⟨v, z⟩ ≥ c} and H = {x ∈ V : ⟨v, z⟩ ≤ c} are closed half-spaces of V

557

Jönsson states the following lemma:

The separation lemma: Let C ⊂ V be a relatively open convex set (ie: riC = C) in a finite dimensional vector
space, V , and let V1 be a linear subspace of V such that C ∩ V1 = ∅. Then there exists a hyperplane containing V1
such that one of the open half-spaces associated with the hyperplane contains C, ie: ∃z ∈ V ⋆ \ 0 such that ⟨x, z⟩ >
0 ∀x ∈ C and ⟨x, z⟩ ≤ 0 ∀x ∈ V1.

Jönsson applies this lemma to prove the following theorem:

Theorem: Let C1 be an open convex cone and C2 be a convex set. If these sets are disjoint, C1∩C2 = ∅, then there
exists a separating hyperplane, ie: ∃z ∈ V ⋆ \ 0 such that ⟨x1, z⟩ > 0 ∀x1 ∈ C1 and ⟨x2, z⟩ ≤ 0 ∀x2 ∈ C2.

B.7.3 The S-procedure

Jönsson [243, Section 4]b describes the S-procedure as follows. Let σk : V 7→ R, k = 0, . . . , N , be real valued functionals on a
linear vector space V and consider the following two conditions:

S1 : σ0 (y) ≥ 0 ∀ y ∈ V such that σk (y) ≥ 0, k = 1, . . . , N

S2 : ∃ τk ≥ 0, k = 1, . . . , N such that σ0 (y)−
∑N

k=1 τkσk (y) ≥ 0

Clearly S2 ⇒ S1. The S-procedure is the method of verifying that S1 ⇒ S2.

Suppose that the functionals are quadratic, σk (y) = y⊤Qky+ 2s⊤k y+ rk, k = 0, . . . , N , where Qk = Q⊤k ∈ Rm×m, sk ∈ Rm

and rk ∈ R. In general, σ0 is not convex and, likewise, the set of constraints, {y ∈ Rm : σk (y) ≥ 0, k = 1, . . . , N} is not
convex. On the other hand, S2 corresponds to a linear matrix inequality:

S2 ⇔ ∃ τk ≥ 0 such that σ0 (y)−
N∑

k=1
τkσk (y) ≥ 0, ∀ y ∈ Rm

⇔ ∃ τk ≥ 0 such that
[
Q0 s0
s⊤0 r0

]
−

N∑
k=1

τk

[
Qk sk

s⊤k rk

]
⪰ 0

If the conditions S1 and S2 are equivalent, then the S-procedure is said to be lossless. The constraints σk (y) ≥ 0 for k = 1, . . . , N
are said to be regular if ∃ y⋆ ∈ V such that σk (y⋆) ≥ 0.

Jönsson [243] gives the following example of the application of the S-procedure to a quadratic programming problem with one
quadratic constraint:

minimise y⊤Q0y + 2s⊤0 y + r0

subject to y⊤Q1y + 2s⊤1 y + r1 ≥ 0

A lower bound is obtained by the semi-definite relaxation:

minimise traceQ0Y + 2s⊤0 y + r0

subject to traceQ1Y + 2s⊤1 y + r1 ≥ 0[
Y y
y⊤ 1

]
⪰ 0

since traceQkyy
⊤ = y⊤Qky and the second constraint is equivalent to Y ⪰ yy⊤.

The dual problem of the semi-definite relaxation is:

maximise γ

subject to
[
Q0 − λQ1 s0 − λs1
s⊤0 − λs⊤1 r0 − λr1 − γ

]
⪰ 0

λ ≥ 0
γ ∈ R

bSee also, for example, Pólik and Terlaky [85].

558

B.7.4 The log det A penalty function

The log detA function is widely used as a penalty function in convex optimisation. VanAntwerp and Braatz [93, Appendix] show
that the function − log detA is convex if A = A⊤ ≻ 0. Their proof uses the following lemma:

Lemma: A function f (x) is convex in x ∈ S if-and-only-if f (t) = f (x0 + th) is convex in t for all x0, h and t such that
x0 + th ∈ S and x0 ∈ S.

The proof begins by defining S =
{
A : A = A⊤ ≻ 0

}
. The lemma implies that − log detA is convex in A on A = A⊤ ≻ 0

if-and-only-if − log det (A0 + tH) is convex in t for all A0 = A⊤0 ≻ 0 and H which satisfy A0 + tH = (A0 + tH)⊤ ≻ 0.

The latter condition is equivalent to I + tA
− 1

2
0 HA

− 1
2

0 ≻ 0. Also, if λk are the eigenvaluesc of A−
1
2

0 HA
− 1

2
0 , then 1 + tλk are the

eigenvalues of I + tA
− 1

2
0 HA

− 1
2

0 . Combining these:

− log det (A0 + tH) = − log detA0 − log det
(
I + tA

− 1
2

0 HA
− 1

2
0

)
= − log detA0 −

∑
k

log (1 + tλk)

The first and second derivatives of the summand are:

− d

dt
log (1 + tλk) = − λk

1 + tλk

− d2

dt2
log (1 + tλk) = λ2

k

(1 + tλk)2

The second derivative is positive implying that − log det (A0 + tH) is convex in t for all t.

cThe eigenvalues, λk , of A are the solutions of det (λI −A). Also det A =
∏

k
λk .

559

Appendix C

Review of Chebyshev’s polynomials

This appendix gathers together results for Chebyshev’s polynomials of the first and second kind.

An FIR filter approximation function is generally written as:

H (z) =
N∑

k=0
hkz
−k

If N = 2M and the filter is symmetric, hk = hN−k, then the amplitude response is:

A (ω) = a0 +
M∑

k=1
2ak cos kω

where ak = hk+M . The Chebyshev polynomials of the first kind are:

Tk (cosω) = cos kω (C.1)

The Octave function chebyshevT(k) returns the coefficients of the k’th Chebyshev polynomial of the first kind. Figure C.1 plots
the first seven Chebyshev polynomials of the first kind.

Similarly, the Chebyshev polynomials of the second kind are:

Uk (cosω) sinω = sin (k + 1)ω

The Chebyshev polynomials of the second kind are related to the Dirichlet kernel a, Dk (x):

2πDk (x) = 1 + 2
k∑

l=1
cos lx

=
k∑

l=−k

eılx

=
sin (2k + 1) x

2
sin x

2

= U2k

(
cos x2

)
The Octave function chebyshevU(k) returns the coefficients of the k’th Chebyshev polynomial of the second kind. Figure C.2
plots the first seven Chebyshev polynomials of the second kind.

aThe convolution of the k’th Dirichlet kernel, Dk (x), with a function, f , of period 2π, is the k’th degree Fourier series approximation to f :

(D ⋆ f) (x) =
ˆ π

−π
f (y) Dk (x− y) dy =

k∑
l=−k

f̂ (l) eılx

where:

f̂ (l) =
1

2π

ˆ π

−π
f (x) e−ılxdx

560

]

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Chebyshev polynomials of the first kind, Tk

0
1
2
3
4
5
6

Figure C.1: Chebyshev polynomials of the first kind

]

-1 -0.5 0 0.5 1

-2

-1

0

1

2

Chebyshev polynomials of the second kind, Uk

0
1
2
3
4
5
6

Figure C.2: Chebyshev polynomials of the second kind

561

C.1 Recurrence relations

The Chebyshev polynomials of the first kind have the recurrence relation:

T0 (x) = 1
T1 (x) = x

Tk+1 (x) = 2xTk (x)− Tk−1 (x)
(C.2)

The recurrence follows from the trigonometric definition:

Tk+1 (cosω) = cosω Tk (cosω)− sinω sin kω
Tk−1 (cosω) = cosω Tk (cosω) + sinω sin kω

The Chebyshev polynomials of the second kind have the recurrence relation:

U0 (x) = 1
U1 (x) = 2x

Uk+1 (x) = 2xUk (x)− Uk−1 (x)

The recurrence follows from the trigonometric definition:

Uk+1 (cosω) sinω = cosω sin (k + 1)ω + sinω cos (k + 1)ω
Uk−1 (cosω) sinω = cosω sin (k + 1)ω − sinω cos (k + 1)ω

Again, by substitution of the trigonometric definitions, the Chebyshev polynomials of the first and second kinds are related by
the recurrence relations:

Tk+1 (x) = 1
2 (Uk+1 (x)− Uk−1 (x))

Tk (x) = Uk (x)− xUk−1 (x)

C.2 Differentiation and integration of the Chebyshev polynomials

Differentiating the trigonometric definition of Tk (cosω) with respect to ω gives:

dTk (cosω)
dω

= −k sin kω

Substituting x = cosω:

dTk (x)
dx

= dTk (cosω)
dω

dω

dx
= k

sin kω
sinω

= kUk−1 (x)

Consequently:

Tk+1 (x) = (k + 1)
ˆ
Uk (x) dx

Similarly:

dUk (x)
dx

= dUk (cosω)
dω

dω

dx
= −1

sinω
d

dω

sin (k + 1)ω
sinω

= (k + 1)Tk+1 (x)− xUk (x)
x2 − 1

Finally, integrate Tk (x) with the recurrence relation:
ˆ
Tk (x) dx = 1

2

[ˆ
Uk (x) dx−

ˆ
Uk−2 (x) dx

]
= 1

2

[
Tk+1 (x)
k + 1 − Tk−1 (x)

k − 1

]

562

C.3 Chebyshev differential equations

The Chebyshev polynomials of the first kind satisfy the second order differential equation:(
1− x2) y′′ − xy′ + k2y = 0

since, from the previous section:

dTk (x)
dx

− kUk−1 (x) = 0

d2Tk (x)
dx2 − kdUk−1 (x)

dx
= 0(

1− x2) d2Tk (x)
dx2 − kxUk−1 (x) + k2Tk (x) = 0(

1− x2) d2Tk (x)
dx2 − xdTk (x)

dx
+ k2Tk (x) = 0

The Chebyshev polynomials of the second kind satisfy the second order differential equation:(
1− x2) y′′ − 3xy′ + k (k + 2) y = 0

since, similarly: (
1− x2) dUk (x)

dx
− xUk (x) + (k + 1)Tk+1 (x) = 0(

1− x2) d2Uk (x)
dx2 − 3xdUk (x)

dx
− Uk (x) + (k + 1)2

Uk (x) = 0(
1− x2) d2Uk (x)

dx2 − 3xdUk (x)
dx

+ k (k + 2)Uk (x) = 0

C.4 Orthogonality of the Chebyshev polynomials

The Chebyshev polynomials of the first kind are orthogonal at the Chebyshev nodes, xk:

n−1∑
k=0

Tl (xk)Tm (xk) =

0 if l ̸= m

n if l = m = 0
n
2 if l = m ̸= 0

(C.3)

where n ≥ max (l,m) and xk are the n zeros of Tn (x) in the interval [−1, 1]:

xk = cosπ 2k + 1
2n for k = 0, 1, . . . , n− 1

C.5 Approximation of functions by Clenshaw’s recurrence

The Clenshaw algorithm [244, Sections 5.4 and 5.8] calculates the weighted sum:

S (x) =
n∑

k=0
akϕk (x)

where ϕk, k = 0, 1, . . . , is a sequence of functions that satisfy the recurrence relation:

ϕk+1 (x) = αk (x)ϕk (x) + βk (x)ϕk−1 (x)

If the coefficients, ak, are known in advance then the Clenshaw recurrence calculates auxiliary values, bk (x), as follows:

bn+1 (x) = 0
bn (x) = 0
bk (x) = ak + bk+1 (x)αk (x) + bk+2 (x)βk+1 (x)

563

By induction:

bkϕk + bk+1βkϕk−1 = akϕk + bk+1αkϕk + bk+2βk+1ϕk + bk+1βkϕk−1

= akϕk + bk+1ϕk+1 + bk+2βk+1ϕk

so that:

S (x) = a0ϕ0 (x) + b1 (x)ϕ1 (x) + b2 (x)β1 (x)ϕ0 (x)

The Chebyshev approximation to an arbitrary function, f (x), on the interval [−1, 1]b is:

f(x) ≈ −a0

2 +
n−1∑
k=0

akTk(x)

With the orthogonality of the Chebyshev polynomials at the Chebyshev nodes:

n−1∑
l=0

f (xk)Tl (xk) =
n−1∑
l=0

[
−a0

2 +
n−1∑
k=0

akTk (xk)
]
Tl (xk)

= −
n−1∑
l=0

a0

2 Tl (xk) +
n−1∑
l=0

n−1∑
k=0

akTk (xk)Tl (xk)

= n

2 ak

and:

ak = 2
n

n−1∑
l=0

f

(
cosπ 2k + 1

2n

)
cosπl2k + 1

2n

Now I can use Clenshaw’s recurrence to approximate f (x) with the Chebyshev polynomials of the first kind, for which, from
Equation C.2, α (x) = 2x and β (x) = −1:

bn+1 = 0
bn = 0
bk = ak + 2xbk+1 − bk+2 k = n− 1, n− 2, . . . , 1
b0 = 2a0 + 2xb1 − b2

f(x) ≈ 1
2 (b0 − b2)

The Octave script clenshaw_gaussian_test.m calculates the Chebychev polynomial expansion coefficients of an approximation
to the Gaussian function, e−2x2

. The exact approximation coefficients are:

ak= = [0.9315190686, 0.0000000000, -0.4158196500, 0.0000000000, ...
0.0998610074, 0.0000000000, -0.0161108841, -0.0000000000];

Figure C.3 shows the Chebyshev approximation and error with exact coefficients. The approximation is close to mini-max. The
approximation coefficients rounded to 8 -bits are:

ak_fixed_point= = [119, 0, -53, 0, ...
13, 0, -2, 0];

Figure C.4 shows the Chebyshev approximation and error with coefficients rounded to 8 -bits and the Clenshaw recurrence
calculated with a 10 -bit accumulator.

bUse the following change of variables for a function defined on the interval [a, b]:

y ≡
x− 1

2 (b + a)
1
2 (b− a)

564

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation to a Gaussian function

A
m

pl
itu

de

-1 -0.5 0 0.5 1
-0.003

-0.002

-0.001

0

0.001

0.002

0.003

E
rr

or

x

Figure C.3: Chebychev polynomial approximation to a Gaussian.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Chebyshev polynomial approximation to a Gaussian function with fixed point arithmetic

A
m

pl
itu

de

-1 -0.5 0 0.5 1
-0.01

-0.005

0

0.005

0.01

E
rr

or

x

Figure C.4: Chebychev polynomial approximation to a Gaussian with fixed-point coefficients and arithmetic.

565

Appendix D

Review of Legendre’s elliptic integrals and
Jacobi’s elliptic functions

This appendix reviews the notation for Legendre’s elliptic integrals and Jacobi’s elliptic functions. See Whittaker and Watson [51,
Chapters 20, 21 and 22] and the NIST Digital Library of MathematicalFunctions [55, Chapters 19, 20 and 22]a. Vlček and
Unbehauen [145, Appendix] provide a brief review of the elliptic function theory required for IIR filter design.

D.1 Doubly periodic functions

Whittaker and Watson [51, Section 20.1] give the following definition of elliptic functions as doubly-periodic functions:

Let ω1 and ω2 be any two numbers whose ratio is not purely real. A function which satisfies the equations

f (z + 2ω1) = f (z)
f (z + 2ω2) = f (z)

for all values of z for which f (z) exists, is called a doubly periodic function of z, with periods 2ω1 and 2ω2. A
doubly-periodic function which is analytic (except at poles), and which has no singularities other than poles in the
finite part of the plane, is called an elliptic function.

A cell of an elliptic function, f (z) is a parallelogram z, z + 2ω1, z + 2ω1 + 2ω2, z + 2ω2 for which none of the poles of f (z)
lie on the edges of the cell. If c is constant, then the number of roots of f (z) = c that lie within a cell is the order of the elliptic
function and is equal to the number of poles of f (z) within the cell [51, Section 20.13].

Whittaker and Watson introduce the general properties of elliptic functions by considering the Weierstrass function:

℘ (z) = 1
z2 +

∑
ω∈L\{0}

(
1

(z − ω)2 −
1
ω2

)

where the set of points ω = 2mω1 + 2nω2 with m,n ∈ Z, constitutes a lattice, L. Whittaker and Watson [51, Section 20.51]
show that “any elliptic function can be expressed in terms of the Weierstrassian elliptic functions ℘ (z) and ℘′ (z) with the same
periods, the expression being rational in ℘ (z) and linear in ℘′ (z)”. ℘′ (z) represents the derivative of ℘ (z) with-respect-to z.

D.2 Legendre’s elliptic integrals

F (ϕ, κ) is the incomplete elliptic integral of the first kind [55, Equation 19.2.4]

F (ϕ, κ) =
ˆ ϕ

0

dθ√
1− κ2 sin2 θ

aThe “NIST Digital Library of Mathematical Functions” is the successor to the “Handbook of Mathematical Functions” by Abramowitz and Stegun [136].
Unfortunately, pages are missing from scans of Abramowitz and Stegun available on the WWW.

566

=
ˆ sin ϕ

0

dt√
1− t2

√
1− κ2t2

where κ is the elliptic modulus. κ′ =
√

1− κ2 is the complementary elliptic modulus.

K (κ) = F
(

π
2 , κ

)
is the complete elliptic integral of the first kind [55, Equation 19.2.8]. K ′ (κ) = K (κ′).

E (ϕ, κ) is the incomplete elliptic integral of the second kind [55, Equation 19.2.5]:

E (ϕ, κ) =
ˆ ϕ

0

√
1− κ2 sin2 θdθ

=
ˆ sin ϕ

0

√
1− κ2t2√
1− t2

dt

E (κ) = E
(

π
2 , κ

)
is the complete elliptic integral of the second kind.

Π (ϕ, η, κ) is the incomplete elliptic integral of the third kind [55, Equation 19.2.7]:

Π (ϕ, η, κ) =
ˆ ϕ

0

dθ√
1− κ2 sin2 θ

(
1− η sin2 θ

)
=
ˆ sin ϕ

0

dt√
1− t2

√
1− κ2t2 (1− ηt2)

Π (η, κ) = Π
(

π
2 , η, κ

)
is the complete elliptic integral of the third kind.

D.3 Computation of Legendre’s elliptic integrals

Carlson [16] and [55, Section 19.15] describes a method of computing Legendre’s elliptic integrals. He defines the functions:

RF (x, y, z) = 1
2

ˆ ∞
0

[(t+ x) (t+ y) (t+ z)]−
1
2 dt

RC (x, y) = RF (x, y, y)

RJ (x, y, z, ρ) = 3
2

ˆ ∞
0

[(t+ x) (t+ y) (t+ z)]−
1
2 (t+ ρ)−1

dt

RD (x, y, z) = RJ (x, y, z, z)

and states that [16, Section 4]:

F (ϕ, κ) = (sinϕ)RF

(
cos2 ϕ, 1− κ2 sin2 ϕ, 1

)
E (ϕ, κ) = (sinϕ)RF

(
cos2 ϕ, 1− κ2 sin2 ϕ, 1

)
− 1

3κ
2 (sinϕ)3

RD

(
cos2 ϕ, 1− κ2 sin2 ϕ, 1

)
Π (ϕ, η, κ) = sin (ϕ)RF

(
cos2 ϕ, 1− κ2 sin2 ϕ, 1

)
+ η

3RJ

(
cos2 ϕ, 1− κ2 sin2 ϕ, 1, 1− η sin2 ϕ

)
Note that for Π (ϕ, η, κ) the sign of the terms in η is the reverse of that shown by Carlson [16, Equation 4.3].

The complete elliptic integrals are:

K (κ) = RF

(
0, 1− κ2, 1

)
E (κ) = RF

(
0, 1− κ2, 1

)
− 1

3κ
2RD

(
0, 1− κ2, 1

)
Π (η, κ) = RF

(
0, 1− κ2, 1

)
+ η

3κ
2RJ

(
0, 1− κ2, 1, 1− η

)
The computation of RF uses the, so-called, duplication formula [55, Equation 19.26.18]:

RF (x, y, z) = RF

(
x+ λ

4 ,
y + λ

4 ,
z + λ

4

)
where λ = √xy +√yz +

√
zx.

Algorithm D.1 [16, Algorithm 1] computes Carlson’s RF function, Algorithm D.2 [16, Algorithm 2] computes Carlson’s RC

function, Algorithm D.3 [16, Algorithm 3] computes Carlson’s RJ function, and Algorithm D.4 [16, Algorithm 4] computes
Carlson’s RD function.

567

Algorithm D.1 Carlson’s algorithm for computing the RF function [16, Algorithm 1]
Require: x0 ≥ 0, y0 > 0 and z0 > 0

for n = 0, . . . do

λn = (xnyn)
1
2 + (xnzn)

1
2 + (ynzn)

1
2

µn = (xn + yn + zn) /3
Xn = 1− (xn/µn), Yn = 1− (yn/µn), Zn = 1− (zn/µn)
xn+1 = (xn + λn) /4, yn+1 = (yn + λn) /4, zn+1 = (zn + λn) /4

s
(m)
n = (Xm

n + Y m
n + Zm

n) /2m, m = 2, 3
εn = max {|Xn|, |Yn|, |Zn|} (εn ∼ O (4−n))
if εn < 1 then

RF (x0, y0, z0) = µ
− 1

2
n

[
1 + 1

5s
(2)
n + 1

7s
(3)
n + 1

6

(
s

(2)
n

)2
+ 3

11s
(2)
n s

(3)
n + rn

]
|rn| < ε6

n

4(1−εn) , rn ∼ 5
26

(
s

(2)
n

)3
+ 3

26

(
s

(3)
n

)2

end if
end for

Algorithm D.2 Carlson’s algorithm for computing the RC function [16, Algorithm 2]
Require: x0 ≥ 0 and y0 > 0

for n = 0, . . . do

λn = 2 (xnyn)
1
2 + yn

µn = (xn + 2yn) /3
sn = (yn − xn) /3µn,

xn+1 = (xn + λn) /4, yn+1 = (yn + λn) /4
if |sn| < 1

2 then

Rc (x0, y0) = µ
− 1

2
n

[
1 + 3

10s
2
n + 1

7s
3
n + 3

8s
4
n + 9

22s
5
n + rn

]
|rn| < 16|sn|6

1−2|sn| , rn ∼ 159
208s

6
n

end if
end for

Algorithm D.3 Carlson’s algorithm for computing the RJ function [16, Algorithm 3]
Require: x0 ≥ 0, y0 > 0, z0 > 0 and ρ0 > 0

for n = 0, . . . do

λn = (xnyn)
1
2 + (xnzn)

1
2 + (ynzn)

1
2

µn = (xn + yn + zn + 2ρn) /5
Xn = 1− (xn/µn), Yn = 1− (yn/µn), Zn = 1− (zn/µn), Pn = 1− (ρn/µn)
xn+1 = (xn + λn) /4, yn+1 = (yn + λn) /4, zn+1 = (zn + λn) /4, ρn+1 = (ρn + λn) /4

s
(m)
n = (Xm

n + Y m
n + Zm

n + 2Pm
n) /2m, m = 2, 3, 4, 5

αn =
[
ρn

(
x

1
2 + y

1
2 + z

1
2

)
+ (xnynzn)

1
2
]2

, β = ρn (ρn + λn)2

εn = max {|Xn|, |Yn|, |Zn|, |Pn|} (εn ∼ O (4−n))
if εn < 1 then

RJ (x0, y0, z0, ρ0) = 3
∑n−1

m=0 4−mRC (αm, βm) + . . .

4−nµ
− 3

2
n

[
1 + 3

7s
(2)
n + 1

3s
(3)
n + 3

22

(
s

(2)
n

)2
+ 3

11s
(4)
n + 3

13s
(2)
n s

(3)
n + 3

13s
(5)
n + rn

]
|rn| < 3ε6

n

(1−εn)
3
2

rn ∼ − 1
10

(
s

(2)
n

)3
+ 3

10

(
s

(3)
n

)2
+ 3

5s
(2)
n s

(4)
n

end if
end for

568

Algorithm D.4 Carlson’s algorithm for computing the RD function [16, Algorithm 4]
Require: x0 ≥ 0, y0 > 0 and z0 > 0

for n = 0, . . . do

λn = (xnyn)
1
2 + (xnzn)

1
2 + (ynzn)

1
2

µn = (xn + yn + 3zn) /5
Xn = 1− (xn/µn), Yn = 1− (yn/µn), Zn = 1− (zn/µn)
xn+1 = (xn + λn) /4, yn+1 = (yn + λn) /4, zn+1 = (zn + λn) /4

s
(m)
n = (Xm

n + Y m
n + 3Zm

n) /2m, m = 2, 3, 4, 5
εn = max {|Xn|, |Yn|, |Zn|} (εn ∼ O (4−n))
if εn < 1 then

RD (x0, y0, z0) = 3
∑n−1

m=0
4−m

z
1
2

m(zm+λm)

+4−nµ
− 3

2
n

[
1 + 3

7s
(2)
n + 1

3s
(3)
n + 3

22

(
s

(2)
n

)2
+ 3

11s
(4)
n + 3

13s
(2)
n s

(3)
n + 3

13s
(5)
n + rn

]
|rn| < 3ε6

n

(1−εn)
3
2

, rn ∼ − 1
10

(
s

(2)
n

)3
+ 3

10

(
s

(3)
n

)2
+ 3

5s
(2)
n s

(4)
n

end if
end for

D.4 Jacobi’s theta functions

Jacobi’s elliptic functions can be defined as ratios of Jacobi’s theta functions [55, Section 20.2]. These are defined by the Fourier
series:

θ1 (z, q) = 2
∞∑

n=0
(−1)n

q(n+ 1
2)2

sin ((2n+ 1) z)

θ2 (z, q) = 2
∞∑

n=0
q(n+ 1

2)2
cos ((2n+ 1) z)

θ3 (z, q) = 1 + 2
∞∑

n=1
qn2

cos (2nz)

θ4 (z, q) = 1 + 2
∞∑

n=1
(−1)n

qn2
cos (2nz)

where q = eıπτ is called the nome, with ℑτ > 0 so that 0 < |q| < 1. For most applications, the unit cell is a rectangle so that
ℜτ = 0 and 0 < q < 1.

Jacobi’s Eta and Theta functions [55, Section 20.1] are, respectively:

H (z, q) = θ1

(
z

θ2
3 (0, q) , q

)
Θ (z, q) = θ4

(
z

θ2
3 (0, q) , q

)

D.5 Computation of Jacobi’s theta functions

The Fourier series of Jacobi’s theta functions usually converge rapidly because of the doubly-exponential factors qn2
. The

following transformationsb are used to compute Jacobi’s theta functions when |q| is close to 1 with τ ′ = − 1
τ [55, Section

bSee [55, Section 23.15(i)].SupposeA denotes a bilinear transformation on τ :

Aτ =
aτ + b

cτ + d

where a, b, c and d are integers and ad − bc = 1. A modular function f (τ) is a function of τ that is meromorphic in the half-plane ℑτ > 0, and has the
property that for allA:

f (Aτ) = cA (cτ + d)l f (τ)

569

20.7(viii)]:

(−ıτ) 1
2 θ1 (z, τ) = −ı exp

(
ıτ ′z2

π

)
θ1 (zτ ′, τ ′)

(−ıτ) 1
2 θ2 (z, τ) = exp

(
ıτ ′z2

π

)
θ4 (zτ ′, τ ′)

(−ıτ) 1
2 θ3 (z, τ) = exp

(
ıτ ′z2

π

)
θ3 (zτ ′, τ ′)

(−ıτ) 1
2 θ4 (z, τ) = exp

(
ıτ ′z2

π

)
θ2 (zτ ′, τ ′)

D.6 Jacobi’s elliptic functions

See [55, Section 22.2]. The nome, q, is, in terms of the modulus, κ:

q = e−π
K′(κ)
K(κ)

The elliptic modulus, κ, is, in terms of the nome, q:

κ = θ2
2 (0, q)
θ2

3 (0, q)

κ′ = θ2
4 (0, q)
θ2

3 (0, q)

K (κ) = π

2 θ
2
3 (0, q)

If ζ = πz
2K(κ) , then:

sn (z, κ) = θ3 (0, q)
θ2 (0, q)

θ1 (ζ, q)
θ4 (ζ, q) = 1

ns (z, κ)

cn (z, κ) = θ4 (0, q)
θ2 (0, q)

θ2 (ζ, q)
θ4 (ζ, q) = 1

nc (z, κ)

dn (z, κ) = θ4 (0, q)
θ3 (0, q)

θ3 (ζ, q)
θ4 (ζ, q) = 1

nd (z, κ)

sd (z, κ) = θ2
3 (0, q)

θ2 (0, q) θ4 (0, q)
θ1 (ζ, q)
θ3 (ζ, q) = 1

ds (z, κ)

cd (z, κ) = θ3 (0, q)
θ2 (0, q)

θ2 (ζ, q)
θ3 (ζ, q) = 1

dc (z, κ)

sc (z, κ) = θ3 (0, q)
θ4 (0, q)

θ1 (ζ, q)
θ2 (ζ, q) = 1

cs (z, κ)

From [55, Section 22.2]:

As a function of z with fixed κ, each of the 12 Jacobian elliptic functions is doubly periodic, having two periods
whose ratio is not real. Each is meromorphicc in z for fixed κ, with simple poles and zeros, and each is meromorphic
in κ for fixed z. For k ∈ [0, 1], all functions are real for z ∈ R.

The Jacobian elliptic functions have order 2; there are two simple poles in each cell. Table D.1 [55, Tables 22.4.1 and 22.4.2]
summarises the periods, pole locations and zero locations of the Jacobian elliptic functions.

Glaisher’s notation for the Jacobian elliptic functions is [55, Equation 22.2.10]:

pq (z, κ) = pr (z, κ)
qr (z, κ) = 1

qp (z, κ)

where p, q and r are any three of the letters s, c, d and n. Figure D.1 [55, Figure 22.4.2] shows a mnemonic for the nomenclature
of the Jacobian elliptic functions. If p and q are any two distinct letters from the set s, c, d and n which appear in counter-
clockwise orientation at all corners of all lattice unit cells. Then:
where cA is a constant depending onA, and l, called the level, is an integer or half an odd integer. If, as a function of q, f (τ) is analytic at q = 0, then f (τ) is
called a modular form.

cSee Appendix A.10.

570

Periods
z-poles z-zeros

ıK ′ K + ıK ′ K 0 0 K K + ıK ′ ıK ′

4K, 2ıK ′ sn cd dc ns sn cd dc ns
4K, 2K + 2ıK ′ cn sd nc ds sd cn ds nc
2K, 4ıK ′ dn nd sc cs sc cs dn nd

Table D.1: Periods, pole locations and zero locations of the Jacobian elliptic functions.

Figure D.1: Jacobian elliptic filter z-plane unit cell

• in any lattice unit cell pq (z, κ) has a simple zero at z = p and a simple pole at z = q

• the difference between p and the nearest q is a half-period of pq (z, κ)

The half-period will be plus or minus a member of the triple K, ıK ′, K + ıK ′; the other two members of this triple are quarter-
periods of pq (z, κ).

D.7 Inverses of Jacobi’s elliptic functions

The inverses of Jacobi’s sn, cn and cd elliptic functions are, respectively [55, Section 22.15(ii)]:

arcsn (x, κ) =
ˆ x

0

dt√
(1− t2) (1− κ2t2)

, − 1 ≤ x ≤ 1

arccn (x, κ) =
ˆ 1

x

dt√
(1− t2) (κ′2 + κ2t2)

, − 1 ≤ x ≤ 1

arcdn (x, κ) =
ˆ 1

x

dt√
(1− t2) (κ′2 + κ2t2)

, − 1 ≤ x ≤ 1

arcdn (x, κ) =
ˆ 1

x

dt√
(1− t2) (t2 − κ′2)

, κ′ ≤ x ≤ 1

arccd (x, κ) =
ˆ 1

x

dt√
(1− t2) (1− κ2t2)

, − 1 ≤ x ≤ 1

Carlson [17, Section 2.1] shows how to calculate the inverse Jacobian elliptic functions with the RF function. For example,

arcsn (z, κ) = zRF

(
1, 1− z2, 1− κ2z2)

D.8 Elementary identities for the elliptic integrals and elliptic functions

Note that arcsn (x, κ) = F (arcsin x, κ) so that:

x =
ˆ sn(x,κ)

0

dt√
(1− t2) (1− κ2t2)

, − 1 ≤ x ≤ 1 , 0 ≤ κ ≤ 1

571

The identities:

sn (x, κ) = sinϕ
cn (x, κ) = cosϕ

dn (x, κ) =
√

1− κ2 sn2 (x, κ)

give (omitting the x and κ arguments):

sn2 + cn2 = 1
dn2 = 1− κ2 sn2 = κ′2 + κ2 cn2 = cn2 +κ′2 sn2

The identities:

sn (x, κ) = sinϕ
cn (x, κ) = cosϕ

dn (x, κ) =
√

1− κ2 sn2 (x, κ)

give (omitting the x and κ arguments):

sn2 + cn2 = 1
dn2 = 1− κ2 sn2 = κ′2 + κ2 cn2 = cn2 +κ′2 sn2

The half-argument identities for the sn and cn functions are [55, Equations 22.6.19 and 22.6.20]:

sn2
(z

2 , κ
)

= 1− cn (z, κ)
1 + dn (z, κ)

cn2
(z

2 , κ
)

= −κ
′2 + dn (z, κ) + κ2 cn (z, κ)

κ2 (1 + cn (z, κ))

For many more such identities, see, for example, the DLMF [55, Section 22.6].

D.9 Related functions

Jacobi’s amplitude function [55, Equation 22.16.1] is:

am (x, κ) = arcsin (sn (x, κ))

If −K ≤ x ≤ K then the following four equations are equivalent [55, Equations 22.16.10 to 22.16.13]:

x = F (ϕ, κ)
am (x, κ) = ϕ

sn (x, κ) = sinϕ = sin (am (x, κ))
cn (x, κ) = cosϕ = cos (am (x, κ))

Jacobi’s Epsilon function [55, Equations 22.16.14 and 22.16.31] is, for −K ≤ x ≤ K:

E (x, κ) =
ˆ sn(x,κ)

0

√
1− κ2t2

1− t2 dt

= E (am (x, κ) , κ)

where −K < x < K.

Jacobi’s Zeta function [55, Equation 22.16.32] is:

Z (x, κ) = E (arcsin (sn (x, κ)) , κ)− E (κ)
K (κ)x

572

0 2 4 6 8 10

-0.5

0

0.5

x/π

Jacobi’s Zeta function, Z(x,k) (DLMF Figure 22.16.3)

k=0.4
k=0.7
k=0.99
k=0.999999

Figure D.2: Jacobi’s Zeta function as shown in Figure 22.16.3 of the NIST Digital Library of Mathematical Functions [55].

Alternatively [55, Equation 22.16.30]:

Z (z, κ) = 1
Θ (z, κ)

dΘ (z, κ)
dz

= 1
θ2

3 (0, q) θ4 (ξ, q)
dθ4 (ξ, q)

dξ

where ξ = z
θ2

3(0,q) and q is the nome corresponding to κ.

The Zeta function is periodic in 2K [55, 22.16.34]:

Z (x+ 2K,κ) = Z (x, κ)

Also [55, 22.16.33]:

Z (x+K,κ) = Z (x, κ)− κ2 sn (x, κ) cd (x, κ)

The Boost C++ library [29] and Mathematica [250] implementations of Jacobi’s Zeta function use:

Z (ϕ, κ) = E (ϕ, κ)− E (κ)
K (κ)F (ϕ, κ)

This definition obscures the periodicity in K. Figure 22.16.3 of the DLMF [55], shows the values of Jacobi’s Zeta function
for several elliptic moduluses, κ. Confusingly, this figure expresses the x argument as a multiple of π. The Octave script
jacobi_Zeta_test.m reproduces Figure 22.16.3, as shown in Figure D.2.

D.10 Octave implementations

Table D.2 lists the Octave functions that implement the elliptic functions and integrals referred to in this Appendix. ellipj and
ellipke are Octave built-in functions.

573

Function Octave implementation

sn (z, κ), cn (z, κ), dn (z, κ) ellipj
K (κ), E (κ) ellipke
arcsn (z, κ) arcsn
arcsc (z, κ) arcsc
arccs (z, κ) arccs
F (ϕ, κ) elliptic_F
E (ϕ, κ) elliptic_E
Π (ϕ, η, κ) elliptic_Pi
RF (x, y, z) carlson_RF
RC (x, y) carlson_RC
RJ (x, y, z, ρ) carlson_RJ
RD (x, y, z) carlson_RD
θ1 (z, q) jacobi_theta1
θ2 (z, q) jacobi_theta2
θ3 (z, q) jacobi_theta3
θ4 (z, q) jacobi_theta4
H (z, κ) jacobi_Eta
Θ (z, κ) jacobi_Theta
Z (x, κ) jacobi_Zeta

Table D.2: Octave implementations of elliptic and related functions.

574

Appendix E

Review of Lanczos tridiagonalisation of an
unsymmetric matrix

See Golub and Van Loan [58, Section 9.4.3]. The Lanczos tridiagonalisation calculates an orthogonal similarity transform, T ,
that reduces a matrix A ∈ RN×N to tridiagonal form, A:

T−1AT = A =

α0 β1 0 0 · · · 0
γ1 α1 β2 0 · · · 0
0 γ2 α2 β3 · · · 0
...

...
...

...
. . .

...
0 0 · · · γN−2 αN−2 βN−1
0 0 · · · 0 γN−1 αN−1

The Lanczos tridiagonalisation calculates the column partitionings:

T =
[
t1 · · · tN

]
T−1⊤ = P =

[
p1 · · · pN

]
Comparing columns in AT = TA and A⊤P = PA⊤, for k ∈ [1, N − 1]:

Atk = βk−1tk−1 + αk−1tk + γktk+1 with β0t0 ≡ 0
A⊤pk = γk−1pk−1 + αk−1pk + βkpk+1 with γ0p0 ≡ 0

In addition, since T is orthogonal and P⊤T = IN×N :

αk−1 = p⊤k Atk

βkpk+1 ≡ rk = (A− αk−1I)⊤ pk − γk−1pk−1

γktk+1 ≡ sk = (A− αk−1I) tk − βk−1tk−1

Note that:

1 = p⊤k+1tk+1 =
(
rk

βk

)⊤(
sk

γk

)
(E.1)

and so if γk is specified in advance:

βk = r⊤k sk

γk
(E.2)

A common choice is γk = ∥sk∥2
a. Algorithm E.1 calculates the Lanczos tridiagonalisation of an unsymmetric matrix.

aRecall that ∥sk∥2 =
(

s⊤
k sk

) 1
2 .

575

Algorithm E.1 Lanczos tridiagonalisation of an unsymmetric matrix.
Convert the matrix A to tri-diagonal form:
r0 and s0 are given unit 2-norm vectors with r⊤0 s0 ̸= 0
t0 = 0
p0 = 0.
k = 0
while rk ̸= 0 ∧ sk ̸= 0 ∧ r⊤k sk ̸= 0 do

γk = ∥sk∥2

βk = r⊤
k sk

γk

tk+1 = sk

γk

pk+1 = rk

βk

k = k + 1
αk−1 = p⊤k Atk
rk = (A− αk−1I)⊤ pk − γk−1pk−1
sk = (A− αk−1I) tk − βk−1tk−1

end while

If

Ak =

α0 β1 0 0 · · · 0
γ1 α1 β2 0 · · · 0
0 γ2 α2 β3 · · · 0
...

...
...

...
. . .

...
0 0 · · · γk−2 αk−2 βk−1
0 0 · · · 0 γk−1 αk−1

then, when the loop of Algorithm E.1 terminates:

A⊤
[
p1 · · · pk

]
=
[
p1 · · · pk

]
A⊤k + rke

⊤
k

A
[
t1 · · · tk

]
=
[
t1 · · · tk

]
Ak + ske

⊤
k

If rk = 0 when the iteration terminates then span
{
p1 · · · pk

}
is a subspace for A. If sk = 0 when the iteration terminates

then span
{
t1 · · · tk

}
is a subspace for A. If neither of these conditions is true and r⊤k sk = 0, then the tridiagonalisation

process has failed. Golub and Van Loan [58, Section 9.4.4] give a brief review of the Look-Ahead technique for solving this
problem. The Octave function lanczos_tridiag implements Algorithm E.1.

576

Appendix F

Review of Lagrange Interpolation

This chapter follows the review article of Berrut and Trefethen [100].

F.1 The barycentric Lagrange polynomial

Let n+ 1 distinct interpolation points or nodes, xj , be given, together with corresponding values, fj . The interpolation problem
is to find a polynomial such that p (xj) = fj . The Lagrange solution is:

p (x) =
n∑

j=0
fj lj (x)

lj =
∏n

k=0,k ̸=j (x− xk)∏n
k=0,k ̸=j (xj − xk)

(F.1)

The Lagrange polynomial lj corresponding to xj has the property:

lj (xk) =
{

1, j = k

0, otherwise

If l (x) = (x− x0) . . . (x− xn), and the barycentric weights are defined as:

wj = 1∏
k ̸=j (xj − xk) = 1

l′ (xj) (F.2)

then lj can be rewritten as:

lj = l (x) wj

(x− xj) (F.3)

so that:

p (x) = l (x)
n∑

j=0

wj

x− xj
fj (F.4)

If all fj = 1,

1 =
n∑

j=0
lj (x) = l (x)

n∑
j=0

wj

x− xj

giving the barycentric formula for p (x):

p (x) =
∑n

j=0
wj

x−xj
fj∑n

j=0
wj

x−xj

(F.5)

577

F.2 Node distributions

Explicit formulas for the weights, wj , are available for certain sets of nodes, xj . If the nodes are equidistant, with spacing h = 2
n ,

in the interval [−1, 1], then:

wj =
(−1)n−j (n

j

)
hnn!

After cancelling factors independent of j:

wj = (−1)j

(
n

j

)
Clearly, for large n, the weights vary by exponentially large factors and, consequently, interpolation in equally spaced points is
ill-conditioneda. Unless n is small, it is better to use node distributions that are clustered at the end-points of the interval. The
simplest such distributions are the Chebyshev nodes, formed by projecting equally spaced points on the unit circle down to the
interval [−1, 1]. The Chebyshev nodes of the first kind are:

xj = cos (2j + 1)π
2n+ 2

with weights:

wj = (−1)j sin (2j + 1)π
2n+ 2

The Chebyshev nodes of the second kind are:

xj = cos jπ
n

with weights:

wj = (−1)j
δj

δj =
{

1
2 , j = 0 or j = n

1, otherwise

Higham [157] has shown that Equation F.4 is unconditionally numerically stable and that Equation F.5 is stable if the interpolation
points are clustered appropriately.

The Octave script lagrange_interp_test.m exercises the implementation of Lagrange interpolation in the Octave function la-
grange_interpb. Figure F.1 attempts to reproduce Berrut and Trefethen’s Figure 5.1 for 21 Chebyshev nodes of the second kind.
Figure F.2 repeats the interpolation experiment with linearly spaced nodes.

aThis is called the Runge phenomenon
bThe interpolation is much more accurate if the function calculates the weights by the product in Equation F.2 rather than Equation F.3

578

-1 -0.5 0 0.5 1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

Berrut and Trefethen : n=20, Chebyshev type 2 node spacing

In
te

rp
ol

at
ed

f

-1 -0.5 0 0.5 1
-0.03

-0.02

-0.01

0

0.01

0.02

f-
fu

n(
x)

Figure F.1: Lagrange interpolation of the function fun (x) = |x|+ x
2 −x

2 with 21 Chebyshev nodes of the second kind and 101
interpolated values on [−1, 1]. The marks indicate the values, fk, being interpolated.

-1 -0.5 0 0.5 1
-20

0

20

40

60

80

100

Berrut and Trefethen : n=20, linear node spacing

In
te

rp
ol

at
ed

f

Figure F.2: Lagrange interpolation of the function fun (x) = |x| + x
2 − x

2 with 21 linearly spaced nodes and 101 interpolated
values on [−1, 1]. The marks indicate the values, fk, being interpolated.

579

Appendix G

IIR filter amplitude, phase and group-delay
frequency responses

This section describes the derivation of the amplitude (magnitude) and group delay responses and their first and second partial
derivatives (gradient vector and Hessian matrix) with respect to the pole and zero locations of the transfer function. Some
possibilities for constructing the first and second partial derivatives are:

• numerical differentiation by evaluation of the function at a perturbed input coefficent vector

• symbolic differentiation by a symbolic algebra package. For example, Maxima [249] or the Octave-Forge symbolic calcu-
lation toolbox [167]

• differentiation by hand

• so-called automatic differentiation: “a technology for automatically augmenting computer programs, including arbitrarily
complex simulations, with statements for the computation of derivatives”. See [15, tools].

Below I use a mixture of differentiation by hand and symbolic differentiation to derive the formulas implemented in Octave code
and use numerical differentiation to test the formulasa.

Richards [135] shows expressions for the magnitude and group-delay of an IIR filter with an integer decimation factor, R, and
transfer function

H (z) = N (z)
D (z) = K

∑J
j=0 njz

−j

1 +
∑L

l=1 dlz−Rl
(G.1)

The polar coordinates of the zeros of H (z) are assumed to be {z0j} = {(R0j , 0) , (r0j , ±θ0j)}. Similarly, the poles of H (z)
are assumed to be {vpk} = {(Rpk , 0) , (rpk , ±θpk)} where v = zR (so that each pole on the v plane corresponds to R equally
spaced poles on the z plane). All coefficients are allowed to be negative so that the responses are differentiable with respect to
the coefficients. This means that the amplitude response derived below can be negative if the gain coefficient is negative and,
consequently, the phase of the gain coefficient is not included in the phase response listed below. If R ≥ 2, the gradients of the
amplitude response are undefined for real and complex poles with radius 0.

For convenience in the following, rewrite Equation G.1 as:

H (z) = K
z−J

z−RL

∑J
j=0 njz

J−j[
zRL +

∑L
l=1 dlzR(L−l)

]

Suppose there is a zero at v = reıθ, then the magnitude response due to this zero is∣∣(eıω − reıθ
)∣∣ = |(cosω − r cos θ) + ı (sinω − r sin θ)|

=
{

cos2 ω − 2r cosω cos θ + r2 cos2 θ + sin2 ω − 2r sinω sin θ + r2 sin2 θ
} 1

2

aIn the examples above, the Hessian of the phase response is calculated numerically and that matrix initialises the diagonal of the BFGS positive-definite
approximation to the Hessian.

580

=
{

1− 2r cos (ω − θ) + r2} 1
2

and the phase due to this zero is

arg
{
eıω − reıθ

}
= arctan

{
sinω − r sin θ
cosω − r cos θ

}
so that the group delay due to this zero is

− d

dω
arg
{
eıω − reıθ

}
= −

[
1 +

(
sinω − r sin θ
cosω − r cos θ

)2
]−1 [

(cosω − r cos θ) cosω + (sinω − r sin θ) sinω
(cosω − r cos θ)2

]

= − 1− r cos θ cosω − r sin θ sinω
(cosω − r cos θ)2 + (sinω − r sin θ)2

= − 1− r cos (ω − θ)
1− 2r cos (ω − θ) + r2

An alternative derivation of the group delay, T (ω), requires that the amplitude response, A (ω), be positive:

H (eıω) = A (ω) eıΘ(ω)

lnH (eıω) = lnA (ω) + ıΘ (ω)

T (ω) = − d

dω
Θ (ω) = −ℑ

{
H ′ (eıω)
H (eıω)

}

In the following, the filter transfer function, H (z), has decimation factor R, s = 1
R , U real zeros, V real poles, M

2 conjugate
zero pairs and Q

2 conjugate pole pairs.

G.1 IIR filter responses

G.1.1 IIR filter amplitude response

The amplitude response of H (z) is:

A (ω) = K ×
∏U

j=1
{

1− 2R0j cosω +R2
0j

} 1
2∏V

j=1
∏R−1

i=0
{

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

} 1
2
× · · ·

· · ·
∏M

2
j=1

{
1− 2r0j cos (ω − θ0j) + r2

0j

} 1
2∏Q

2
j=1

∏R−1
i=0

{
1− 2rs

pj cos (ω − s (θpj + 2πi)) + r2s
pj

} 1
2
× · · ·

· · ·
∏M

2
j=1

{
1− 2r0j cos (ω + θ0j) + r2

0j

} 1
2∏Q

2
j=1

∏R−1
i=0

{
1− 2rs

pj cos (ω + s (θpj + 2πi)) + r2s
pj

} 1
2

The sign of K is included in the amplitude response so that ∂A(ω)
∂K is well defined at K = 0.

581

G.1.2 IIR filter phase response

The phase response of H (z) is:

P (ω) = [(V +Q)R− (U +M)]ω + · · ·

· · ·
U∑

j=1
arctan

(
sinω

cosω −R0j

)
− · · ·

· · ·
V∑

j=1

{
R−1∑
i=0

arctan
(

sinω −Rs
pj sin (s2πi)

cosω −Rs
pj cos (s2πi)

)}
+ · · ·

· · ·
M
2∑

j=1
arctan

(
sin 2ω − 2r0j cos θ0j sinω

cos 2ω − 2r0j cos θ0j cosω + r2
0j

)
− · · ·

· · ·

Q
2∑

j=1

{
R−1∑
i=0

arctan
(

sin 2ω − 2rs
pj cos [s (θpj + 2πi)] sinω

cos 2ω − 2rs
pj cos [s (θpj + 2πi)] cosω + r2s

pj

)}

As noted above, the phase response does not include the sign of K.

G.1.3 IIR filter group-delay response

The group-delay response of H (z) is:

T (ω) = − [(V +Q)R− (U +M)]− · · ·

· · ·
U∑

j=1

1−R0j cosω
1− 2R0j cosω +R2

0j

+ · · ·

· · ·
V∑

j=1

{
R−1∑
i=0

1−Rs
pj cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
− · · ·

· · ·
M
2∑

j=1

{
1− r0j cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ 1− r0j cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
+ · · ·

· · ·

Q
2∑

j=1

{
R−1∑
i=0

1− rs
pj cos (ω − s (θpj + 2πi))

1− 2rs
pj cos (ω − s (θpj + 2πi)) + r2s

pj

}
+ · · ·

· · ·

Q
2∑

j=1

{
R−1∑
i=0

1− rs
pj cos (ω + s (θpj + 2πi))

1− 2rs
pj cos (ω + s (θpj + 2πi)) + r2s

pj

}

G.2 Partial derivatives of the IIR filter responses

G.2.1 Partial derivatives of the IIR filter amplitude response

The partial derivatives of the magnitude response with respect to the coefficients are:

∂A (ω)
∂K

= A (ω)
K

∂A (ω)
∂R0j

= A (ω)
{

R0j − cosω
1− 2R0j cosω +R2

0j

}
∂A (ω)
∂Rpj

= −sRs−1
pj A (ω)

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂A (ω)
∂r0j

= A (ω)
{

r0j − cos (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}

582

∂A (ω)
∂θ0j

= A (ω)
{

r0j sin (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

− r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

}
∂A (ω)
∂rpj

= −srs−1
pj A (ω)

R−1∑
i=0

{
rs

pj − cos (ω − s (θpj + 2πi))
1− 2rs

pj cos (ω − s (θpj + 2πi)) + r2s
pj

+ · · ·

· · ·
rs

pj − cos (ω + s (θpj + 2πi))
1− 2rs

pj cos (ω + s (θpj + 2πi)) + r2s
pj

}
∂A (ω)
∂θpj

= −srs
pjA (ω)

R−1∑
i=0

{
sin (ω + s (θpj + 2πi))

1− 2rs
pj cos (ω + s (θpj + 2πi)) + r2s

pj

− · · ·

· · · sin (ω − s (θpj + 2πi))
1− 2rs

pj cos (ω − s (θpj + 2πi)) + r2s
pj

}

G.2.2 Partial derivatives of the IIR filter phase response

The partial derivatives of the phase response are

∂P (ω)
∂K

= 0

∂P (ω)
∂R0j

= sinω
1− 2R0j cosω +R2

0j

∂P (ω)
∂Rpj

= −sRs−1
pj

R−1∑
i=0

sin (ω − s2πi)
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

For convenience, write

P0N = sin 2ω − 2r0j cos θ0j sinω
∂P0N

∂r0j
= −2 cos θ0j sinω

∂P0N

∂θ0j
= 2r0j sin θ0j sinω

P0D = cos 2ω − 2r0j cos θ0j cosω + r2
0j

∂P0D

∂r0j
= −2 cos θ0j cosω + 2r0j

∂P0D

∂θ0j
= 2r0j sin θ0j cosω

then

∂P (ω)
∂r0j

=
P0D

∂P0N

∂r0j
− P0N

∂P0D

∂r0j

P 2
0N + P 2

0D

∂P (ω)
∂θ0j

=
P0D

∂P0N

∂θ0j
− P0N

∂P0D

∂θ0j

P 2
0N + P 2

0D

For convenience, write

PpN = sin 2ω − 2rs
pj cos [s (θpj + 2πi)] sinω

∂PpN

∂rpj
= −2srs−1

pj cos [s(θpj + 2πi)] sinω

∂PpN

∂θpj
= 2srs

pj sin [s(θpj + 2πi)] sinω

PpD = cos 2ω − 2rs
pj cos [s (θpj + 2πi)] cosω + r2s

pj

∂PpD

∂rpj
= −2srs−1

pj cos [s(θpj + 2πi)] cosω + 2sr2s−1
pj

∂PpD

∂θpj
= 2srs

pj sin [s(θpj + 2πi)] cosω

583

then

∂P (ω)
∂rpj

= −
R−1∑
i=0

PpD
∂PpN

∂rpj
− PpN

∂PpD

∂rpj

P 2
pN + P 2

pD

∂P (ω)
∂θpj

= −
R−1∑
i=0

PpD
∂PpN

∂θpj
− PpN

∂PpD

∂θpj

P 2
pN + P 2

pD

G.2.3 Partial derivatives of the IIR filter group-delay response

The partial derivatives of the group delay are

∂T (ω)
∂K

= 0

∂T (ω)
∂R0j

=
2R0j −

(
R2

0j + 1
)

cosω[
1− 2R0j cosω +R2

0j

]2
∂T (ω)
∂Rpj

= sRs−1
pj

R−1∑
i=0

(
R2s

pj + 1
)

cos (ω − s2πi)− 2Rs
pj[

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

]2
∂T (ω)
∂r0j

=
2r0j −

(
r2

0j + 1
)

cos (ω − θ0j)[
1− 2r0j cos (ω − θ0j) + r2

0j

]2 +
2r0j −

(
r2

0j + 1
)

cos (ω + θ0j)[
1− 2r0j cos (ω + θ0j) + r2

0j

]2
∂T (ω)
∂θ0j

=
r0j(r2

0j − 1) sin (ω − θ0j)[
1− 2r0j cos (ω − θ0j) + r2

0j

]2 − r0j(r2
0j − 1) sin (ω + θ0j)[

1− 2r0j cos (ω + θ0j) + r2
0j

]2
∂T (ω)
∂rpj

= srs−1
pj

R−1∑
i=0

{ (
r2s

pj + 1
)

cos (ω − s (θpj + 2πi))− 2rs
pj[

1− 2rs
pj cos (ω − s (θpj + 2πi)) + r2s

pj

]2 + · · ·

· · ·
(
r2s

pj + 1
)

cos (ω + s (θpj + 2πi))− 2rs
pj[

1− 2rs
pj cos (ω + s (θpj + 2πi)) + r2s

pj

]2
}

∂T (ω)
∂θpj

= srs
pj

(
1− r2s

pj

)R−1∑
i=0

{
sin (ω − s (θpj + 2πi))[

1− 2rs
pj cos (ω − s (θpj + 2πi)) + r2s

pj

]2 − · · ·
· · · sin (ω + s (θpj + 2πi))[

1− 2rs
pj cos (ω + s (θpj + 2πi)) + r2s

pj

]2
}

G.3 Second partial derivatives of the IIR filter response

G.3.1 Second partial derivatives of the IIR filter amplitude response

The second partial derivatives of the magnitude response are (with j ̸= k, and otherwise assumed to vary across all indexes):

∂2A (ω)
∂K2 = 0

∂2A (ω)
∂K∂R0j

= 1
K

∂A (ω)
∂R0j

∂2A (ω)
∂K∂Rpj

= 1
K

∂A (ω)
∂Rpj

∂2A (ω)
∂K∂r0j

= 1
K

∂A (ω)
∂r0j

∂2A (ω)
∂K∂θ0j

= 1
K

∂A (ω)
∂θ0j

∂2A (ω)
∂K∂rpj

= 1
K

∂A (ω)
∂rpj

584

∂2A (ω)
∂K∂θpj

= 1
K

∂A (ω)
∂θpj

∂2A (ω)
∂R2

0j

= A (ω) sin2 ω[
1− 2R0j cosω +R2

0j

]2
∂2A (ω)
∂R0k∂R0j

= ∂A (ω)
∂R0k

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂Rpj∂R0j

= ∂A (ω)
∂Rpj

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂r0j∂R0j

= ∂A (ω)
∂r0j

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂θ0j∂R0j

= ∂A (ω)
∂θ0j

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂rpj∂R0j

= ∂A (ω)
∂rpj

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂θpj∂R0j

= ∂A (ω)
∂θpj

{
R0j − cosω

1− 2R0j cosω +R2
0j

}
∂2A (ω)
∂R2

pj

= −sRs−1
pj

∂A (ω)
∂Rpj

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
+ · · ·

· · · sRs−2
pj A (ω)

R−1∑
i=0

{
R3s

pj + (s− 3)R2s
pj cos (ω − s2πi)[

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

]2 + · · ·

· · ·
(
2 cos2 (ω − s2πi)− 2s+ 1

)
Rs

pj + (s− 1) cos (ω − s2πi)[
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

]2
}

∂2A (ω)
∂Rpk∂Rpj

= −sRs−1
pj

∂A (ω)
∂Rpk

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂2A (ω)
∂r0j∂Rpj

= −sRs−1
pj

∂A (ω)
∂r0j

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂2A (ω)
∂θ0j∂Rpj

= −sRs−1
pj

∂A (ω)
∂θ0j

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂2A (ω)
∂rpj∂Rpj

= −sRs−1
pj

∂A (ω)
∂rpj

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂2A (ω)
∂θpj∂Rpj

= −sRs−1
pj

∂A (ω)
∂θpj

{
R−1∑
i=0

Rs
pj − cos (ω − s2πi)

1− 2Rs
pj cos (ω − s2πi) +R2s

pj

}
∂2A (ω)
∂r2

0j

= ∂A (ω)
∂r0j

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
+ · · ·

· · · A (ω)
{

2 sin2 (ω − θ0j)[
1− 2r0j cos (ω − θ0j) + r2

0j

]2 − 1
1− 2r0j cos (ω − θ0j) + r2

0j

+ · · ·

· · · 2 sin2 (ω + θ0j)[
1− 2r0j cos (ω + θ0j) + r2

0j

]2 − 1
1− 2r0j cos (ω + θ0j) + r2

0j

}
∂2A (ω)
∂r0k∂r0j

= ∂A (ω)
∂r0k

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
∂2A (ω)
∂θ0j∂r0j

= ∂A (ω)
∂θ0j

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
+ · · ·

· · · A (ω)
{ (

1− r2
0j

)
sin (ω + θ0j)[

1− 2r0j cos (ω + θ0j) + r2
0j

]2 −
(
1− r2

0j

)
sin (ω − θ0j)[

1− 2r0j cos (ω − θ0j) + r2
0j

]2
}

585

∂2A (ω)
∂θ0k∂r0j

= ∂A (ω)
∂θ0k

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
∂2A (ω)
∂rpj∂r0j

= ∂A (ω)
∂rpj

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
∂2A (ω)
∂θpj∂r0j

= ∂A (ω)
∂θpj

{
r0j − cos (ω − θ0j)

1− 2r0j cos (ω − θ0j) + r2
0j

+ r0j − cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

}
∂2A (ω)
∂θ2

0j

= ∂A (ω)
∂θ0j

{
r0j sin (ω + θ0j)

1− 2r0j cos (ω + θ0j) + r2
0j

− r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

}
+ · · ·

· · · A (ω)
{(

r0j + r3
0j

)
cos (ω + θ0j)− 2r2

0j[
1− 2r0j cos (ω + θ0j) + r2

0j

]2 +
(
r0j + r3

0j

)
cos (ω − θ0j)− 2r2

0j[
1− 2r0j cos (ω − θ0j) + r2

0j

]2
}

∂2A (ω)
∂θ0k∂θ0j

= ∂A (ω)
∂θ0k

{
r0j sin (ω + θ0j)

1− 2r0j cos (ω + θ0j) + r2
0j

− r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

}
∂2A (ω)
∂rpj∂θ0j

= ∂A (ω)
∂rpj

{
r0j sin (ω + θ0j)

1− 2r0j cos (ω + θ0j) + r2
0j

− r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

}
∂2A (ω)
∂θpj∂θ0j

= ∂A (ω)
∂θpj

{
r0j sin (ω + θ0j)

1− 2r0j cos (ω + θ0j) + r2
0j

− r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

}

For convenience set

Nn = r2s−1
pj − rs−1

pj cos (ω − s (θpj + 2πi))
Np = r2s−1

pj − rs−1
pj cos (ω + s (θpj + 2πi))

Dn = 1− 2rs
pj cos (ω − s (θpj + 2πi)) + r2s

pj

Dp = 1− 2rs
pj cos (ω + s (θpj + 2πi)) + r2s

pj

so, to continue

∂2A (ω)
∂r2

pj

= −s∂A (ω)
∂rpj

R−1∑
i=0

{
Nn

Dn
+ Np

Dp

}
− · · ·

· · · sA (ω)
R−1∑
i=0

{
(2s− 1) r2s−2

pj − (s− 1) rs−2
pj cos (ω − s (θpj + 2πi))
Dn

− 2sN2
n

D2
n

+ · · ·

· · ·
(2s− 1) r2s−2

pj − (s− 1) rs−2
pj cos (ω + s (θpj + 2πi))
Dp

−
2sN2

p

D2
p

}
∂2A (ω)
∂rpk∂rpj

= −s∂A (ω)
∂rpk

R−1∑
i=0

{
Nn

Dn
+ Np

Dp

}
∂2A (ω)
∂θpj∂rpj

= −s∂A (ω)
∂θpj

R−1∑
i=0

{
Nn

Dn
+ Np

Dp

}
− · · ·

· · · sA (ω)
R−1∑
i=0

{
srs−1

pj sin (ω + s (θpj + 2πi))
[

1
Dp
− 2Nprpj

D2
p

]
− · · ·

· · · srs−1
pj sin (ω − s (θpj + 2πi))

[
1
Dn
− 2Nnrpj

D2
n

]}
∂2A (ω)
∂θpk∂rpj

= −s∂A (ω)
∂θpk

R−1∑
i=0

{
Nn

Dn
+ Np

Dp

}
∂2A (ω)
∂θ2

pj

= −s∂A (ω)
∂θpj

R−1∑
i=0

{
rs

pj sin (ω + s (θpj + 2πi))
Dp

−
rs

pj sin (ω − s (θpj + 2πi))
Dn

}
− · · ·

· · · sA (ω)
R−1∑
i=0

{
srs

pj cos (ω + s (θpj + 2πi))
Dp

−
2sr2s

pj sin2 (ω + s (θpj + 2πi))
D2

p

+ · · ·

· · ·
srs

pj cos (ω − s (θpj + 2πi))
Dn

−
2sr2s

pj sin2 (ω − s (θpj + 2πi))
D2

n

}

586

∂2A (ω)
∂θpk∂θpj

= −s∂A (ω)
∂θpk

R−1∑
i=0

{
rs

pj sin (ω + s (θpj + 2πi))
Dp

−
rs

pj sin (ω − s (θpj + 2πi))
Dn

}

G.3.2 Second partial derivatives of the IIR filter phase response

The non-zero second partial derivatives of the phase response are:

∂2P (ω)
∂R2

0j

=∂P (ω)
∂R0j

2 cosω − 2R0j

1− 2R0j cosω +R2
0j

∂2P (ω)
∂R2

pj

=− s (s− 1)Rs−2
pj

R−1∑
i=0

sin (ω − s2πi)
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

. . .

− 2s2R2s−2
pj

R−1∑
i=0

sin (ω − s2πi)
[
cos (ω − s2πi)−Rs

pj

][
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

]2
For convenience, write:

∂2P0N (ω)
∂r2

0j

= 0

∂2P0N (ω)
∂r0jθ0j

= 2 sin θ0j sinω

∂2P0N (ω)
∂θ2

0j

= 2r0j cos θ0j sinω

∂2P0D (ω)
∂r2

0j

= 2

∂2P0D (ω)
∂r0jθ0j

= 2 sin θ0j cosω

∂2P0D (ω)
∂θ2

0j

= 2r0j cos θ0j cosω

then:

∂2P (ω)
∂r2

0j

=
∂P0D

∂r0j

∂P0N

∂r0j
+ P0D

∂2P0N

∂r2
0j
− ∂P0N

∂r0j

∂P0D

∂r0j
− P0N

∂2P0D

∂r2
0j

P 2
0N + P 2

0D

· · ·

−

[
P0D

∂P0N

∂r0j
− P0N

∂P0D

∂r0j

] [
2P0N

∂P0N

∂r0j
+ 2P0D

∂P0D

∂r0j

]
[P 2

0N + P 2
0D]2

∂2P (ω)
∂r0j∂θ0j

=
∂P0D

∂θ0j

∂P0N

∂r0j
+ P0D

∂2P0N

∂r0j∂θ0j
− ∂P0N

∂θ0j

∂P0D

∂r0j
− P0N

∂2P0D

∂r0j∂θ0j

P 2
0N + P 2

0D

· · ·

−

[
P0D

∂P0N

∂r0j
− P0N

∂P0D

∂r0j

] [
2P0N

∂P0N

∂θ0j
+ 2P0D

∂P0D

∂θ0j

]
[P 2

0N + P 2
0D]2

∂2P (ω)
∂θ2

0j

=
∂P0D

∂θ0j

∂P0N

∂θ0j
+ P0D

∂2P0N

∂θ2
0j
− ∂P0N

∂θ0j

∂P0D

∂θ0j
− P0N

∂2P0D

∂θ2
0j

P 2
0N + P 2

0D

· · ·

−

[
P0D

∂P0N

∂θ0j
− P0N

∂P0D

∂θ0j

] [
2P0N

∂P0N

∂θ0j
+ 2P0D

∂P0D

∂θ0j

]
[P 2

0N + P 2
0D]2

For convenience, write:

∂2PpN (ω)
∂r2

pj

= −2s (s− 1) rs−2
pj cos [s(θpj + 2πi)] sinω

∂2PpN (ω)
∂rpjθpj

= 2s2rs−1
pj sin [s(θpj + 2πi)] sinω

∂2PpN (ω)
∂θ2

pj

= 2s2rs
pj cos [s(θpj + 2πi)] sinω

587

∂2PpD (ω)
∂r2

pj

= −2s (s− 1) rs−2
pj cos [s(θpj + 2πi)] cosω + 2s (2s− 1) r2s−2

pj

∂2PpD (ω)
∂rpjθpj

= 2s2rs−1
pj sin [s(θpj + 2πi)] cosω

∂2PpD (ω)
∂θ2

pj

= 2s2rs
pj cos [s(θpj + 2πi)] cosω

then:

∂2P (ω)
∂r2

pj

= −
R−1∑
i=0

∂PpD

∂rpj

∂PpN

∂rpj
+ PpD

∂2PpN

∂r2
pj
− ∂PpN

∂rpj

∂PpD

∂rpj
− PpN

∂2PpD

∂r2
pj

P 2
pN + P 2

pD

· · ·

−

[
PpD

∂PpN

∂rpj
− PpN

∂PpD

∂rpj

] [
2PpN

∂PpN

∂rpj
+ 2PpD

∂PpD

∂rpj

]
[
P 2

pN + P 2
pD

]2

∂2P (ω)
∂rpj∂θpj

= −
R−1∑
i=0

∂PpD

∂θpj

∂PpN

∂rpj
+ PpD

∂2PpN

∂rpj∂θpj
− ∂PpN

∂θpj

∂PpD

∂rpj
− PpN

∂2PpD

∂rpj∂θpj

P 2
pN + P 2

pD

· · ·

−

[
PpD

∂PpN

∂rpj
− PpN

∂PpD

∂rpj

] [
2PpN

∂PpN

∂θpj
+ 2PpD

∂PpD

∂θpj

]
[
P 2

pN + P 2
pD

]2

∂2P (ω)
∂θ2

pj

= −
R−1∑
i=0

∂PpD

∂θpj

∂PpN

∂θpj
+ PpD

∂2PpN

∂θ2
pj
− ∂PpN

∂θpj

∂PpD

∂θpj
− PpN

∂2PpD

∂θ2
pj

P 2
pN + P 2

pD

· · ·

−

[
PpD

∂PpN

∂θpj
− PpN

∂PpD

∂θpj

] [
2PpN

∂PpN

∂θpj
+ 2PpD

∂PpD

∂θpj

]
[
P 2

pN + P 2
pD

]2

G.3.3 Second partial derivatives of the IIR filter group-delay response

The non-zero second partial derivatives of the group-delay response are:

∂2T (ω)
∂R2

0j

=
2
(
R3

0j cosω − 3R2
0j + 3R0j cosω − cos 2ω

)[
1− 2R0j cosω +R2

0j

]3
∂2T (ω)
∂R2

pj

= −sRs−2
pj

R−1∑
i=0

{
(s+ 1) cos (ω − s2πi)R4s

pj + 2
[
(s− 1) cos2 (ω − s2πi)− (2s+ 1)

]
R3s

pj[
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

]3 + · · ·

· · ·
6 cos (ω − s2πi)R2s

pj + 2
[
(2s− 1)− (s+ 1) cos2 (ω − s2πi)

]
Rs

pj − (s− 1) cos (ω − s2πi)[
1− 2Rs

pj cos (ω − s2πi) +R2s
pj

]3
}

∂2T (ω)
∂r2

0j

=
2
[
r3

0j cos (ω − θ0j)− 3r2
0j + 3r0j cos (ω − θ0j)− cos 2 (ω − θ0j)

][
1− 2r0j cos (ω − θ0j) + r2

0j

]3 + · · ·

2
[
r3

0j cos (ω + θ0j)− 3r2
0j + 3r0j cos (ω + θ0j)− cos 2 (ω + θ0j)

][
1− 2r0j cos (ω + θ0j) + r2

0j

]3
∂2T (ω)
∂θ0j∂r0j

=
sin (ω + θ0j)

[
r4

0j + 2r3
0j cos (ω + θ0j)− 6r2

0j + 2r0j cos (ω + θ0j) + 1
][

1− 2r0j cos (ω + θ0j) + r2
0j

]3 − · · ·

sin (ω − θ0j)
[
r4

0j + 2r3
0j cos (ω − θ0j)− 6r2

0j + 2r0j cos (ω − θ0j) + 1
][

1− 2r0j cos (ω − θ0j) + r2
0j

]3
∂2T (ω)
∂θ2

0j

= −
r0j

(
r2

0j − 1
) [
r2

0j cos (ω − θ0j)− 2r0j

(
1 + sin2 (ω − θ0j)

)
+ cos (ω − θ0j)

][
1− 2r0j cos (ω − θ0j) + r2

0j

]3 − · · ·

r0j

(
r2

0j − 1
) [
r2

0j cos (ω + θ0j)− 2r0j

(
1 + sin2 (ω + θ0j)

)
+ cos (ω + θ0j)

][
1− 2r0j cos (ω + θ0j) + r2

0j

]3
588

∂2T (ω)
∂r2

pj

= −s
R−1∑
i=1

rs−2
pj

{
2rs

pj

(
s
(
r2s

pj − 1
)
−
(
r2s

pj + 1
))

cos2 (ω + s (θpj + 2πi))
D3

p

+ · · ·

· · ·
(
s
(
r4s

pj − 1
)

+
(
r4s

pj + 6r2s
pj + 1

))
cos (ω + s (θpj + 2πi))− 4srs

pj

(
r2s

pj − 1
)
− 2rs

pj

(
r2s

pj + 1
)

D3
p

+ · · ·

· · ·
2rs

pj

(
s
(
r2s

pj − 1
)
−
(
r2s

pj + 1
))

cos2 (ω − s (θpj + 2πi))
D3

n

+ · · ·

· · ·
(
s
(
r4s

pj − 1
)

+
(
r4s

pj + 6r2s
pj + 1

))
cos (ω − s (θpj + 2πi))− 4srs

pj

(
r2s

pj − 1
)
− 2rs

pj

(
r2s

pj + 1
)

D3
n

}
∂2T (ω)
∂θpj∂rpj

= s2
R−1∑
i=1

rs−1
pj

{[
2rs

pj

(
r2s

pj + 1
)

cos (ω − s (θpj + 2πi)) +
(
r4s

pj − 6r2s
pj + 1

)]
sin (ω − s (θpj + 2πi))

D3
n

− · · ·

· · ·
[
2rs

pj

(
r2s

pj + 1
)

cos (ω + s (θpj + 2πi)) +
(
r4s

pj − 6r2s
pj + 1

)]
sin (ω + s (θpj + 2πi))

D3
p

}
∂2T (ω)
∂θ2

pj

= s2
R−1∑
i=1

rs
pj

(
r2s

pj − 1
){2rs

pj cos2 (ω + s (θpj + 2πi)) +
(
r2s

pj + 1
)

cos (ω + s (θpj + 2πi))− 4rs
pj

D3
p

+ · · ·

· · ·
2rs

pj cos2 (ω − s (θpj + 2πi)) +
(
r2s

pj + 1
)

cos (ω − s (θpj + 2πi))− 4rs
pj

D3
n

}

The results for group delay were calculated with the assistance of the Maxima [249] script delay.max.

G.4 Octave implementations

The Octave function iirA calculates the amplitude, and partial derivatives and Hessian of the amplitude response of an IIR filter
with decimation factor R, U real zeros, V real poles, M

2 conjugate zero pairs and Q
2 conjugate pole pairs. The Octave script

iirA_test.m exercises iirA. Note thatR0 and r0 are moved off the unit circle when testing the gradients. Likewise, Octave function
iirT calculates the group delay, partial derivatives and Hessian of the group delay response of an IIR filter and is exercised by the
test script iirT_test.m. Again, Octave function iirP calculates the phase, partial derivatives and Hessian of the phase response of
an IIR filter and is exercised by the test script iirP_test.m.

!!! WARNING !!! The iirA, iirP and iirT functions do not attempt to handle the discontinuity and non-differentiability of
the properties of a zero at z = 1.

The Octave function iirA_parallel.m uses the parcellfun function included in the Octave-Forge parallel package [165] to test
“parallelising” the calculation of amplitude response and gradients by the iirA function over 4 processes. (My Intel i7-7700K
CPU has 4 CPUs). No benefit was seen on my PC until the frequency vector length was much longer than those used in the
examples.

589

Appendix H

Gradient of the IIR filter amplitude response
with respect to frequency

This section describes the derivatives with respect to angular frequency of the amplitude response,A (ω), of an IIR filter expressed
in gain-pole-zero form. This section derives formulas for ∂A(ω)

∂ω , ∂2A(ω)
∂ω2 and formulas for the gradients with respect to the gain-

pole-zero coefficients, ∂2A(ω)
∂ω∂K , ∂2A(ω)

∂ω∂R0j
, ∂2A(ω)

∂ω∂Rpj
, etc. In this case the denominator polynomial is not decimated byR. The squared

amplitude response is:

A2 (ω) = K2
∏U

j=1
{

1− 2R0j cosω +R2
0j

}∏V
j=1

{
1− 2Rpj cosω +R2

pj

} ∏M
2

j=1
{(

1− 2r0j cos (ω − θ0j) + r2
0j

) (
1− 2r0j cos (ω + θ0j) + r2

0j

)}
∏Q

2
j=1

{(
1− 2rpj cos (ω − θpj) + r2

pj

) (
1− 2rpj cos (ω + θpj) + r2

pj

)}
The gradient of the amplitude response with respect to angular frequency is given by:

1
A (ω)

∂A (ω)
∂ω

=
U∑

j=1

R0j sinω
1− 2R0j cosω +R2

0j

−
V∑

j=1

Rpj sinω
1− 2Rpj cosω +R2

pj

· · ·

+
M
2∑

j=1

r0j sin (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

−

Q
2∑

j=1

rpj sin (ω − θpj)
1− 2rpj cos (ω − θpj) + r2

pj

· · ·

+
M
2∑

j=1

r0j sin (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

−

Q
2∑

j=1

rpj sin (ω + θpj)
1− 2rpj cos (ω + θpj) + r2

pj

The gradients with respect to the coefficients are given by

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂K

+ 1
A (ω)

∂2A (ω)
∂ω∂K

= 0

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂R0j

+ 1
A (ω)

∂2A (ω)
∂ω∂R0j

=
(
1−R2

0j

)
sinω(

1− 2R0j cosω +R2
0j

)2

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂Rpj

+ 1
A (ω)

∂2A (ω)
∂ω∂Rpj

= −
(
1−R2

pj

)
sinω(

1− 2Rpj cosω +R2
pj

)2

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂r0j

+ 1
A (ω)

∂2A (ω)
∂ω∂r0j

=
(
1− r2

0j

)
sin (ω − θ0j)(

1− 2r0j cos (ω − θ0j) + r2
0j

)2 +
(
1− r2

0j

)
sin (ω + θ0j)(

1− 2r0j cos (ω + θ0j) + r2
0j

)2

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂θ0j

+ 1
A (ω)

∂2A (ω)
∂ω∂θ0j

= −
r0j

(
1 + r2

0j

)
cos (ω − θ0j)− 2r2

0j(
1− 2r0j cos (ω − θ0j) + r2

0j

)2 +
r0j

(
1 + r2

0j

)
cos (ω + θ0j)− 2r2

0j(
1− 2r0j cos (ω + θ0j) + r2

0j

)2

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂rpj

+ 1
A (ω)

∂2A (ω)
∂ω∂rpj

= −
(
1− r2

pj

)
sin (ω − θpj)(

1− 2rpj cos (ω − θpj) + r2
pj

)2 −
(
1− r2

pj

)
sin (ω + θpj)(

1− 2rpj cos (ω + θpj) + r2
pj

)2

− 1
A2 (ω)

∂A (ω)
∂ω

∂A (ω)
∂θpj

+ 1
A (ω)

∂2A (ω)
∂ω∂θpj

=
rpj

(
1 + r2

pj

)
cos (ω − θpj)− 2r2

pj(
1− 2rpj cos (ω − θpj) + r2

pj

)2 −
rpj

(
1 + r2

pj

)
cos (ω + θpj)− 2r2

pj(
1− 2rpj cos (ω + θpj) + r2

pj

)2

590

The second derivative of the amplitude response with respect to angular frequency is given by:

−
[

1
A (ω)

∂A (ω)
∂ω

]2
+ 1
A (ω)

∂2A (ω)
∂ω2 =

U∑
j=1

R0j cosω
1− 2R0j cosω +R2

0j

−
U∑

j=1

2R2
0j sin2 ω[

1− 2R0j cosω +R2
0j

]2 · · ·
−

V∑
j=1

Rpj cosω
1− 2Rpj cosω +R2

pj

+
V∑

j=1

2R2
pj sin2 ω[

1− 2Rpj cosω +R2
pj

]2 · · ·
+

M
2∑

j=1

r0j cos (ω − θ0j)
1− 2r0j cos (ω − θ0j) + r2

0j

−
M
2∑

j=1

2r2
0j sin2 (ω − θ0j)[

1− 2r0j cos (ω − θ0j) + r2
0j

]2 · · ·
−

Q
2∑

j=1

rpj cos (ω − θpj)
1− 2rpj cos (ω − θpj) + r2

pj

+

Q
2∑

j=1

2r2
pj sin2 (ω − θpj)[

1− 2rpj cos (ω − θpj) + r2
pj

]2 · · ·
+

M
2∑

j=1

r0j cos (ω + θ0j)
1− 2r0j cos (ω + θ0j) + r2

0j

−
M
2∑

j=1

2r2
0j sin2 (ω + θ0j)[

1− 2r0j cos (ω + θ0j) + r2
0j

]2 · · ·
−

Q
2∑

j=1

rpj cos (ω + θpj)
1− 2rpj cos (ω + θpj) + r2

pj

+

Q
2∑

j=1

2r2
pj sin2 (ω + θpj)[

1− 2rpj cos (ω + θpj) + r2
pj

]2

591

Appendix I

Allpass filter frequency response

I.1 Allpass filter phase response

This section describes the phase response and the gradient of the phase response of an all-pass filter in terms of the pole and zero
locations of the transfer function. If D (z) has V real zeros and Q

2 pairs of complex conjugate zeros within the unit circle

D (z) =
{

V∏
k=1

z −Rpk

}
Q
2∏

k=1

(
z − rpke

ıθpk
) (
z − rpke

−ıθpk
)

where Rpk are the real zeros and rpke
±ıθpk are the complex conjugate zeros of of D (z).

The all-pass filter transfer function with decimation factor, R, is:

A (z) = z−R(V +Q)D
(
z−R

)
D (zR)

=
{

V∏
k=1

z−R −Rpk

1−Rpkz−R

}
Q
2∏

k=1

z−R − rpke
ıθpk

1− rpke−ıθpkz−R

Q
2∏

k=1

z−R − rpke
−ıθpk

1− rpkeıθpkz−R

The squared-magnitude response of A (z) is |A (eıω)|2 = 1. The phase response of A (z) is

P (ω) =−
V∑

k=1

{
arctan Rpk sinRω

1−Rpk cosRω + arctan sinRω
cosRω −Rpk

}
· · ·

−

Q
2∑

k=1

{
arctan rpk sin (Rω + θpk)

1− rpk cos (Rω + θpk) − arctan sinRω + rpk sin θpk

cosRω − rpk cos θpk

}
· · ·

−

Q
2∑

k=1

{
arctan rpk sin (Rω − θpk)

1− rpk cos (Rω − θpk) − arctan sinRω − rpk sin θpk

cosRω − rpk cos θpk

}
The partial derivatives of the phase response are:

∂P (ω)
∂Rpk

= − 2 sinRω
R2

pk − 2Rpk cosRω + 1
∂P (ω)
∂rpk

= − 2 sin (Rω − θpk)
r2

pk − 2rpk cos (Rω − θpk) + 1 −
2 sin (Rω + θpk)

r2
pk − 2rpk cos (Rω + θpk) + 1

∂P (ω)
∂θpk

= −
2r2

pk − 2rpk cos (Rω − θpk)
r2

pk − 2rpk cos (Rω − θpk) + 1 +
2r2

pk − 2rpk cos (Rω + θpk)
r2

pk − 2rpk cos (Rω + θpk) + 1

The second partial derivatives of the phase response (on the diagonal of the Hessian matrix only) are:

∂2P (ω)
∂R2

pk

= 4 [Rpk − cosRω] sinRω[
R2

pk − 2Rpk cosRω + 1
]2

592

∂2P (ω)
∂r2

pk

=4 [rpk − cos (Rω − θpk)] sin (Rω − θpk)[
r2

pk − 2rpk cos (Rω − θpk) + 1
]2 + 4 [rpk − cos (Rω + θpk)] sin (Rω + θpk)[

r2
pk − 2rpk cos (Rω + θpk) + 1

]2

∂2P (ω)
∂θ2

pk

= 2rpk sin (Rω − θpk)
r2

pk − 2rpk cos (Rω − θpk) + 1 −
4
[
r2

pk − rpk cos (Rω − θpk)
]
rpk sin (Rω − θpk)[

r2
pk − 2rpk cos (Rω − θpk) + 1

]2 · · ·

+ 2rpk sin (Rω + θpk)
r2

pk − 2rpk cos (Rω + θpk) + 1 −
4
[
r2

pk − rpk cos (Rω + θpk)
]
rpk sin (Rω + θpk)[

r2
pk − 2rpk cos (Rω + θpk) + 1

]2

The Octave function allpassP calculates the phase and partial derivatives of the phase response of an allpass IIR filter and is
exercised by the test script allpassP_test.m.

I.2 Allpass filter group delay response

This section describes the group delay response and the gradient of the group delay response of an all-pass filter in terms of the
pole and zero locations of the transfer function. The phase response, P (ω), of the allpass filter is derived in Section I.1. The
group delay of the allpass filter is:

T (ω) =−R
V∑

k=1

R2
pk − 1

R2
pk − 2Rpk cosRω + 1 . . .

−R

Q
2∑

k=1

r2
pk − 1

r2
pk − 2rpk cos (Rω + θpk) + 1 . . .

−R

Q
2∑

k=1

r2
pk − 1

r2
pk − 2rpk cos (Rω − θpk) + 1

The partial derivatives of the group delay with respect to the coefficients are:

∂T (ω)
∂Rpk

= 2R

(
R2

pk + 1
)

cosRω − 2Rpk[
R2

pk − 2Rpk cosRω + 1
]2

∂T (ω)
∂rpk

= 2R

(
r2

pk + 1
)

cos (Rω + θpk)− 2rpk[
r2

pk − 2rpk cos (Rω + θpk) + 1
]2 + 2R

(
r2

pk + 1
)

cos (Rω − θpk)− 2rpk[
r2

pk − 2rpk cos (Rω − θpk) + 1
]2

∂T (ω)
∂θpk

= 2R
rpk

(
r2

pk − 1
)

sin (Rω + θpk)[
r2

pk − 2rpk cos (Rω + θpk) + 1
]2 − 2R

rpk

(
r2

pk − 1
)

sin (Rω − θpk)[
r2

pk − 2rpk cos (Rω − θpk) + 1
]2

The second partial derivatives of the group delay response (on the diagonal of the Hessian matrix only) are:

∂2T (ω)
∂R2

pk

=− 4R
R3

pk cosRω − 3R2
pk + 3Rpk cosRω + 1− 2 cos2 Rω[

R2
pk − 2Rpk cosRω + 1

]3

∂2T (ω)
∂r2

pk

=− 4R
r3

pk cos (Rω + θpk)− 3r2
pk + 3rpk cos (Rω + θpk) + 1− 2 cos2 (Rω + θpk)[

r2
pk − 2rpk cos (Rω + θpk) + 1

]3 · · ·

− 4R
r3

pk cos (Rω − θpk)− 3r2
pk + 3rpk cos (Rω − θpk) + 1− 2 cos2 (Rω − θpk)[

r2
pk − 2rpk cos (Rω − θpk) + 1

]3

∂2T (ω)
∂θ2

pk

= 2R
r5

pk cos (Rω + θpk)− 2r2
pk

(
r2

pk − 1
) [

1 + sin2 (Rω + θpk)
]
− rpk cos (Rω + θpk)[

r2
pk − 2rpk cos (Rω + θpk) + 1

]3 · · ·

+ 2R
r5

pk cos (Rω − θpk)− 2r2
pk

(
r2

pk − 1
) [

1 + sin2 (Rω − θpk)
]
− rpk cos (Rω − θpk)[

r2
pk − 2rpk cos (Rω − θpk) + 1

]3

593

The Octave function allpassT calculates the phase and partial derivatives of the group delay response of an allpass IIR filter and
is exercised by the test script allpassT_test.m.

594

Appendix J

Gradients of the state variable filter frequency
response

Section 1.9.4 shows results for the gradients of the complex response, H (z), with respect to the matrix components of the
corresponding state variable filter. This section shows results for the gradients of the squared-magnitude, phase and group delay
of a state variable filter. In the following, the components of the state variable filter matrixesA,B, C andD are represented by α,
β, γ and δ or more generally, x. The matrix components may themselves be functions of other variables (the k and c coefficients
of a Schur lattice filter, for example).

J.1 Gradients of the state variable filter complex frequency response

If the components of the the state variable matrixes are functions of a variable x then given dA
dx , dB

dx , dC
dx and dD

dx and defining
R = (eıωI −A)−1, the gradients of the complex frequency response are:

dH

dx
= dC

dx
RB + CR

dA

dx
RB + CR

dB

dx
+ dD

dx
d2H

dxdω
= −ıeıω

[
dC

dx
RRB + CR

dA

dx
RRB + CRR

dA

dx
RB + CRR

dB

dx

]
d2H

dx2 = d2C

dx2 RB + 2dC
dx

R
dA

dx
RB + 2dC

dx
R
dB

dx
+ 2CRdA

dx
R
dA

dx
RB + CR

d2A

dx2 RB + 2CRdA
dx
R
dB

dx
+ CR

d2B

dx2 + d2D

dx2

and

d3H

dx2dω
= −ıeıω

[
d2C

dx2 RRB + 2dC
dx

R
dA

dx
RRB + 2dC

dx
RR

dA

dx
RB + 2dC

dx
RR

dB

dx
+ · · ·

2CRdA
dx
R
dA

dx
RRB + CR

d2A

dx2 RRB + 2CRdA
dx
RR

dA

dx
RB + 2CRdA

dx
RR

dB

dx
+ · · ·

2CRRdA
dx
R
dA

dx
RB + CRR

d2A

dx2 RB + 2CRRdA
dx
R
dB

dx
+ CRR

d2B

dx2

]
The Octave function Abcd2H calculates these gradients under the assumption that the components of the state variable matrixes
A, B, C and D are linear functions of x and d2A

dx2 = d2B
dx2 = d2C

dx2 = d2D
dx2 = 0.

J.2 State variable filter squared-magnitude response

The squared-magnitude response of a state variable filter is:

|H (z)|2 = ℜH (z)2 + ℑH (z)2

The gradients of the squared-magnitude response of the filter with respect to the state variable coefficients, α, β, etc., are:

∂

∂x
|H (z)|2 = 2

[
ℑH (z)ℑ∂H (z)

∂x
+ ℜH (z)ℜ∂H (z)

∂x

]

595

where x represents the components of the state variable matrixes. The diagonal of the Hessian matrix of the squared-magnitude
(that is the second derivatives of the squared-magnitude) is:

∂2 |H (z)|2

∂x2 = 2
[∣∣∣∣∂H (z)

∂x

∣∣∣∣2 + ℑH (z)ℑ∂
2H (z)
∂x2 + ℜH (z)ℜ∂

2H (z)
∂x2

]

where:

∂2H (z)
∂α2 = 2C (zI −A)−1 ∂A

∂α
(zI −A)−1 ∂A

∂α
(zI −A)−1

B + C (zI −A)−1 ∂
2A

∂α2 (zI −A)−1
B

and

∂2H (z)
∂β2 = ∂2H (z)

∂γ2 = ∂2H (z)
∂δ2 = 0

J.3 State variable filter phase response

The phase response, P (z), of the state variable filter is:

P (z) = arctan ℑH (z)
ℜH (z)

The gradients of the phase response of the filter with respect to the state variable coefficients, α, β, etc., are given by:

|H (z)|2 ∂P (z)
∂x

= ℜH (z)ℑ∂H (z)
∂x

−ℑH (z)ℜ∂H (z)
∂x

where x represents the components of the state variable matrixes. The diagonal of the Hessian matrix of the phase (that is the
second derivatives of the phase) is given by:

∂ |H (z)|2

∂x

∂P (z)
∂x

+ |H (z)|2 ∂
2P (z)
∂x2 = ℜH (z)ℑ∂

2H (z)
∂x2 −ℑH (z)ℜ∂

2H (z)
∂x2

J.4 State variable filter group-delay response

The group delay response, T (ω), of the state variable filter is

T (ω) = −∂
∂ω

arctan ℑH (ω)
ℜH (ω)

so that

|H (ω)|2 T (ω) = −
[
ℜH (ω)ℑ∂H (ω)

∂ω
−ℑH (ω)ℜ∂H (ω)

∂ω

]
where

∂H (ω)
∂ω

= −ıeıωC (eıωI −A)−2
B

The gradients of the group delay response with respect to the state variable coefficients, α, β, etc., are given by:

2
[
ℜH (ω)ℜ∂H (ω)

∂α
+ ℑH (ω)ℑ∂H (ω)

∂α

]
T (ω) + |H (ω)|2 ∂T (ω)

∂α
= · · ·

−
[
ℜ∂H (ω)

∂α
ℑ∂H (ω)

∂ω
+ ℜH (ω)ℑ∂

2H (ω)
∂α∂ω

−ℑ∂H (ω)
∂α

ℜ∂H (ω)
∂ω

−ℑH (ω)ℜ∂
2H (ω)
∂α∂ω

]
etc. where

∂2H (ω)
∂α∂ω

= −ıeıωC (eıωI −A)−1
[

(eıωI −A)−1 ∂A

∂α
+ ∂A

∂α
(eıωI −A)−1

]
(eıωI −A)−1

B

596

∂2H (ω)
∂β∂ω

= −ıeıωC (eıωI −A)−2

∂2H (ω)
∂γ∂ω

= −ıeıω (eıωI −A)−2
B

∂2H (ω)
∂δ∂ω

= 0

The diagonal of the Hessian matrix of the group-delay (that is the second derivatives of the group-delay) is given by:

∂2 |H|2

∂x2 T + 2∂ |H|
2

∂x

∂T

∂x
+ |H|2 ∂

2T

∂x2 =−ℜ∂
2H

∂x2 ℑ
∂H

∂ω
−ℜ∂H

∂x
ℑ ∂2H

∂x∂ω
−ℜ∂H

∂x
ℑ ∂2H

∂x∂ω
−ℜHℑ ∂3H

∂x2∂ω
· · ·

+ ℑ∂
2H

∂x2 ℜ
∂H

∂ω
+ ℑ∂H

∂x
ℜ ∂2H

∂x∂ω
+ ℑ∂H

∂x
ℜ ∂2H

∂x∂ω
+ ℑHℜ ∂3H

∂x2∂ω

where x represents the components of the state variable matrixes and:

∂3H (ω)
∂α2∂ω

= −ıeıωC (eıωI −A)−1
[
2∂A
∂α

(eıωI −A)−2 ∂A

∂α
+ · · ·

2 (eıωI −A)−1 ∂A

∂α
(eıωI −A)−1 ∂A

∂α
+ · · ·

2∂A
∂α

(eıωI −A)−1 ∂A

∂α
(eıωI −A)−1 + · · ·

(eıωI −A)−1 ∂
2A

∂α2 + ∂2A

∂α2 (eıωI −A)−1
]

(eıωI −A)−1
B

597

Appendix K

Constrained non-linear optimisation

The following largely follows Ruszczynski [9] with some contributions concerning heuristics from Powell [138] and Nocedal
and Wright [109].

K.1 Newton’s method for a quadratic function

Consider a quadratic approximation, fk (x), to a function f (x) evaluated at a point xk

fk (x) = f
(
xk
)

+∇xf
(
xk
) (
x− xk

)
+ 1

2
(
x− xk

)⊤∇2
xxf

(
xk
) (
x− xk

)
where ∇2

xxf
(
xk
)

is a positive-definite matrixa (the Hessian matrix). At an optimum point ∇xf
k (x) = 0 so, approximating the

gradient with the first two terms of fk (x):

∇xf
(
xk
)

+∇2
xxf

(
xk
) (
x− xk

)
= 0

Accordingly, given a pair
(
xk, f

(
xk
))

, Newton’s method of tangents gives the next approximation to the location of the optimum
point as

xk+1 = xk − τk
[
∇2

xxf
(
xk
)]−1∇xf

(
xk
)

where τk is a stepsize.

K.2 Lagrange multipliers

Consider the problem

minimise f (x)
subject to g (x) = c

where g (x) may represent a set of constraints {gj (x) | j ∈ K}. When a contour of g (x) is tangent to a contour of f (x) the
gradients∇xf (x) and∇xg (x) are parallel at that point. (See Nocedal and Wright [109, p. 309] for a justification). The method
of Lagrange multipliers defines an auxiliary function (or Lagrangian):

L (x, λ) = f (x)− λ (g (x)− c)

and solves

∇x,λL (x, λ) = 0

Note that the solution may be a saddle point of L (x, λ). The coefficients of the vector λ are the Lagrange multipliers.

aQ ∈ Rn×n is positive-definite if x⊤Qx > 0 for all nonzero x ∈ Rn

598

K.3 The dual problem

Define the dual function as:

q (λ) = min
x
L (x, λ)

The dual problem is:

maximise q (λ)
subject to λ ≥ 0

Nocedal and Wright [109, Example 12.12] give an example of the dual problem of a quadratic programming problem:

minimise a⊤x+ 1
2x
⊤Hx

subject to Gx− b ≥ 0

where H is a symmetric positive-definite matrix. The Lagrangian function of the dual problem is:

q (λ) = a⊤x+ 1
2x
⊤Hx− λ⊤ (Gx− b)

Since H is positive definite and the Lagrangian is a strictly convexb quadratic function, the minimum occurs at∇q (λ) = 0:

a+Hx−G⊤λ = 0

Substituting for x:

q (λ) = −1
2
(
G⊤λ− a

)⊤
H−1 (G⊤λ− a)+ b⊤λ

Bertsekas [43, Proposition 3.4.2] gives the following duality theorem:

1. If the primal problem has an optimal solution then the dual problem also has an optimal solution and the corresponding
optimal values are equal

2. In order for x̃ to be an optimal primal solution and λ̃ to be an optimal dual solution, it is necessary and sufficient that x̃ is
primal feasible, λ̃ ≥ 0, λ̃j = 0 over the set of active constraints and

(
x̃, λ̃

)
is a solution of the dual problem.

A primal-dual or interior-point method solves the primal and dual problems simultaneously. At each iteration both sets of
constraints are satisfied.

K.4 Karush-Kuhn-Tucker conditions for constrained optimisation

The Karush-Kuhn-Tucker conditions generalise the method of Lagrange multipliers to handle inequality constraints. Consider
the minimisation problem:

minimise f (x) , x ∈ Rn

subject to gi (x) ≥ 0, i = 1, . . . ,m
and hj (x) = 0, j = 1, . . . , p

where f : Rn 7→ R , gi : Rn 7→ R and hj : Rn 7→ R are continuous differentiable functions. Define the Lagrangian of the
problem as:

L (x, λ, µ) = f (x)−
m∑

i=1
λigi (x)−

p∑
j=1

µjhj (x) ≜ f (x)− ⟨λ, g⟩ − ⟨µ, h⟩

bA function, f (x), is convex if f (αx + (1− α) y) ≤ αf (x) + (1− α) f (y) , ∀α ∈ [0, 1]

599

Define a saddle point of the Lagrangian as:(
x̃, λ̃, µ̃

)
such that L

(
x̃, λ̃, µ̃

)
= max

λ,µ≥0
min

x
L (x, λ, µ)

so that

min
x
L (x, λ, µ) ≤ max

λ,µ≥0
min

x
L (x, λ, µ) ≤ max

λ,µ≥0
L (x, λ, µ)

It can be shown that each such saddle point satisfies the Karush-Kuhn-Tucker conditions:

∇xL
(
x̃, λ̃, µ̃

)
= ∇xf (x̃)− ⟨λ,∇xg (x̃)⟩ − ⟨µ,∇xh (x̃)⟩ = 0

gi (x̃) ≥ 0
hj (x̃) = 0

λ̃i ≥ 0
µ̃j ≥ 0

⟨λ, g (x̃)⟩ = 0

For the cone c C = Rm
+ × Rp, then these conditions can be expressed

∇xL
(
x̃, λ̃, µ̃

)
= 0[

g (x̃)
h (x̃)

]
∈ NC

(
λ̃, µ̃

)
Furthermore, these conditions are necessary and sufficient for x̃ to be a minimiser of f (x). In other words:

x̃ is a minimiser
⇑(

x̃, λ̃, µ̃
)

is a saddle point of L (x, λ, µ)
⇓(

x̃, λ̃, µ̃
)

satisfy Karush-Kuhn-Tucker
⇑

f and g are concave and h is affine

For any point x, the set of inequality constraints, K, can be partitioned into a set of active constraints

A (x) = {i | gi (x) = 0}

and the corresponding set of inactive constraints, for which i /∈ A (x). Following Bertsekas [43, Section 3.3], note that “if x̃ is
a local minimum of the inequality constrained problem, then x̃ is also a local minimum of the identical problem for which the
inactive constraints at x̃ have been discarded. On the other hand, at a local minimum, active inequality constraints can be treated
to a large extent as equalities”.

K.5 Constrained optimisation using Newton’s method

Consider the non-linear optimization problem of Section K.4. Motivated by Newton’s method, at a given point
(
x, λ, µ

)
construct

an approximation to the Karush-Kuhn-Tucker conditions that is linearised at x̄:

∇xL
(
x, λ, µ

)
+∇2

xxL
(
x, λ, µ

)
(x− x) = 0[

g (x) +∇xg (x) (x− x)
h (x) +∇xh (x) (x− x)

]
∈ NC (λ, µ)

These are the necessary conditions of optimality for sequential quadratic programming, shown in Algorithm K.1.

cFrom Ruszczynski [9, p.26], a set K ⊂ Rn is called a cone if for every x ∈ K and all α > 0 has αx ∈ K. From [9, p.28], the set K◦ ≜
{y ∈ Rn : ⟨y, x⟩ ≤ 0 ∀x ∈ K} is called the polar cone of K. From [9, p.37], for a convex closed set X ⊂ Rn and a point x ∈ X , the set NX (x) ≜
[cone (X − x)]◦ is called the normal cone to X at x.

600

Algorithm K.1 The sequential quadratic programming method

At iteration k, given the current approximation of the solution xk and multipliers
(
λk, µk

)
solve the tangent quadratic program-

ming problem:

minimise
〈
∇xf

(
xk
)
, dk
〉

+ 1
2

〈
dk⊤,∇2

xxL
(
xk, λk, µk

)
, dk
〉

subject to g
(
xk
)

+∇xg
(
xk
)
dk ≤ 0

h
(
xk
)

+∇xh
(
xk
)
dk = 0

Denote the solution to this problem by dk and the Lagrange multipliers associated with the constraints by λ̂k and µ̂k. Update the
approximate solution by:

xk+1 = xk + τkdk

λk+1 = λ̂k

µk+1 = µ̂k

and continue. Here τk ∈ (0, 1] is a step-size coefficient.

K.6 Local convergence

For simplicity, τk = 1 and assume there are only inequality constraints (p = 0). Also assume that the objective function f (x)
has a minimum x̃, at which the gradients of active constraints, ∇xgi (x̃), i ∈ A (x̃) = {1 ≤ i ≤ m | gi (x̃) = 0} are linearly
independent. In this case the Lagrange multipliers λ̂ exist and are unique.

Consider the system of non-linear equations:

∇xf (x)−
∑

i∈A(x)

λi∇xgi (x) = 0

gi (x) = 0

These are the necessary conditions of a modification of the original minimisation problem in which the active inequality con-
straints are treated as equalities. The iterates of the sequential programming method are the iterates of Newton’s method for this
system. For the current iterate

(
xk, λk

)
, define the matrices:

Hk = ∇2
xxL

(
xk, λk

)
Bk =

{
∇xgi

(
xk
)}

where i ∈ A
(
xk
)

and the columns of Bk correspond to the gradient vectors. When the above equations are linearised, Newton’s
method takes the form: [

∇xf
(
xk
)
− Bkλ

k+1]+Hkd
k = 0

gi

(
xk
)

+ B⊤k dk = 0

where λk+1 and g
(
xk
)

are the vectors with coordinates λi and gi

(
xk
)
, for i ∈ A

(
xk
)
. This system can be simplified to:

Hkd
k − Bkλ

k+1 = −∇xf
(
xk
)

−B⊤k dk = g
(
xk
)

which can be solved for the direction dk and the multipliers λk+1:

λk+1 = −
(
B⊤k H−1

k Bk

)−1 [
g
(
xk
)
− B⊤k H−1

k ∇xf
(
xk
)]

(K.1)

dk = −H−1
k

[
∇xf

(
xk
)
− Bkλ

k+1] (K.2)

K.7 Quasi-Newton methods

Consider a modified version of the tangent quadratic programming problem

minimise ∇xf
(
xk
)
dk + 1

2d
k⊤Wkd

k

601

subject to g
(
xk
)

+∇xg
(
xk
)
dk ≤ 0

h
(
xk
)

+∇xh
(
xk
)
dk = 0

where the Hessian of the Lagrangian ∇2
xxL

(
xk, λk, µk

)
is replaced by the positive definite matrixWk, guaranteeing that this is

a convex quadratic programming problem. The following subsections describe methods for constructing the matrixWk.

K.7.1 UpdatingWk with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

Typically,W0 = I . For convenience, set δk = τkdk. The update toWk should depend onWk and the difference in gradients of
the Lagrangian

γk = ∇xL
(
xk + δk, λ

k, µk
)
−∇xL

(
xk, λk, µk

)
When there are no constraints it is possible to choose the step-length, τk, so that the scalar product δ⊤k γk is positive. On the other
hand, when there are constraints, it can happen that δ⊤k γk is negative for all non-zero values of τk. In this case the usual methods
for updating Wk would fail to make the update positive definite. Powell [138, p.148] proposes updating Wk as follows. First
replace γk with

ηk = θkγk + (1− θk)Wkδk , 0 ≤ θk ≤ 1

where

θk =
{

1 δ⊤k γk ≥ 0.2δ⊤kWkδk

0.8δ⊤
k Wkδk

δ⊤
k
Wkδk−δ⊤

k
γk

δ⊤k γk < 0.2δ⊤kWkδk
(K.3)

The factor of 0.2 was chosen empirically. Now updateWk with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

Wk+1 =Wk −
Wkδk (Wkδk)⊤

δ⊤kWkδk
+ ηkη

⊤
k

δ⊤k ηk

and updateW−1
k with the Sherman-Morrison formula

W−1
k+1 =W−1

k +
[
1 +

η⊤kW
−1
k ηk

δ⊤k ηk

](
δkδ
⊤
k

δ⊤k ηk

)
−
[
W−1

k ηkδ
⊤
k + δkη

⊤
kW

−1
k

δ⊤k ηk

]
Note that η and δ are column vectors and δη⊤ is a dyadic or Kronecker product also written δ ⊗ η. Nocedal and Wright [109,
Procedure 18.2] refer to Equation K.3 as damped BFGS updating.

K.7.2 A modified Cholesky factorisation of the Hessian

Bertsekas [43, Appendix D] describes implementation of Newton’s method by Cholesky factorisation of an approximation to the
Hessian,∇2

xxL(xk) + ∆k, that is positive definite.

Algorithm K.2 shows the Cholesky factorisation of a positive definite symmetric matrix, W , as LL⊤ where L is lower triangular.
Firstly, define Wi to be the i-th leading principal submatrix of W :

Wi =

w1,1 w1,2 · · · w1,i

w2,1 w2,2 · · · w2,i

...
...

. . .
...

wi,1 wi,2 · · · wi,i

This matrix is positive definite since, for any y ∈ Ri, y ̸= 0

y⊤Wiy =
[
y⊤ 0

]
W

[
y
0

]
> 0

The scalar λii can be seen to be well-defined by setting b = W⊤i−1βi and recalling that Wi is positive definite:

0 <
[
b⊤ −1

]
Wi

[
b
−1

]
= b⊤Wi−1b− 2b⊤βi + wii

602

Algorithm K.2 Cholesky factorisation of an n× n positive-definite symmetric matrix, W .
L1 = √w1,1
W1 = L1L

⊤
1

for i = 2, . . . , n do

Wi =
[
Wi−1 βi

β⊤i wi,i

]
where βi =

 w1,i

...
wi−1,i

Wi = LiL

⊤
i where Li =

[
Li−1 0
l⊤i λii

]
, li = L−1

i−1βi and λi,i =
√
wi,i − l⊤i li

end for
W = LnL

⊤
n

= wii − b⊤βi

= wii − β⊤i W−1
i−1βi

= wii −
(
L−1

i−1βi

)⊤ (
L−1

i−1βi

)
= wii − l⊤i li

Note that matrix inversion of an arbitrary matrix is an O
(
n3) operation whereas matrix inversion of a triangular matrix via

backward or forward substitution is an O
(
n2) operationd.

We wish to add a diagonal correction, ∆k, to the Hessian matrix such that the resulting matrix is positive definite whilst simulta-
neously factoring∇2

xxL
(
xk
)

+ ∆k. Firstly, fix two positive scalars µ1 and µ2, where µ1 < µ2. The first column of the factor L
is given by

l11 =
{√

w11 µ1 < w11√
µ2 otherwise

li1 = wi1

l11
i = 2, . . . , n

Given columns 1, 2, . . . , j − 1 of L the elements of the j-th column are

ljj =
{√

wjj −
∑j−1

m=1 l
2
jm µ1 < wjj −

∑j−1
m=1 l

2
jm

√
µ2 otherwise

lij =
wij −

∑j−1
m=1 ljmlim
ljj

i = j + 1, . . . , n

This scheme can be used in a modified Newton’s method, where at the k-th iteration, we add a diagonal correction, ∆k, to the
Hessian,∇2

xxL
(
xk
)
, and simultaneously obtain a Cholesky factorisation of∇2

xxL
(
xk
)

+ ∆k. The direction vector, dk, is found
by solving the triangular systems

Lky = −∇xf
(
xk
)

L⊤k d
k = y

The next point is found by

xk+1 = xk + τkdk

where τk is a step size. The scalars µ1 and µ2 are selected as follows: at each iteration we find the maximum absolute value of
the Hessian diagonal elements

wk = max element
{
∇2

xxL
(
xk
)}

and set µ1 = r1w
k and µ2 = r2w

k. The scalar r1 is set at some “small” (or zero) value. The scalar r2 is modified at each
iteration: if τk < 0.2 then r2 = 5r2; otherwise if τk > 0.9 then r2 = r2

5 .

dThe LDL⊤ factorisation of a symmetric matrix avoids taking the square-root. See [58, Algorithm 4.1.2].

603

K.7.3 Wright’s modification for degenerate constraints

For the filter design problem, the gradients of upper and lower constraints on the radius and angle of the poles and zeros are not
linearly independent and the resulting Jacobian matrix is degenerate. The singular value decomposition [58, Sections 2.5.3 and
5.5] finds the minimum 2-norm solution of a degenerate matrix equation as follows: if B is a real m× n matrix, then there exist
orthogonal matrices U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n such that

U⊤BV = diag (σ1, . . . , σp) ∈ Rm×n

where [u1, . . . , um] is a column partitioning of U , p = min (m,n) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. From Golub and Van Loan
[58, Section 5.5.4], the pseudo-inverse of B is defined to be B† = V ΣU⊤ where

Σ = diag
(

1
σ1
, · · · , 1

σr
, 0, . . . , 0

)
∈ Rn×m

and rank (B) = r. It is the unique minimal Frobenius norme solution to the problem:

min
X∈Rn×m

∥BX − Im∥F

If rank (B) = n, then B† =
(
B⊤B

)−1
B⊤, while if m = n = rank (B), then B† = B−1. Typically, B† is defined to be the

unique matrix X ∈ Rn×m that satisfies the four Moore-Penrose conditions:

BXB = B

XBX = X

(BX)⊤ = BX

(XB)⊤ = XB

(K.4)

These conditions amount to the requirement that BB† and B†B be orthogonal projections onto range (B) and range
(
B⊤
)

respectivelyf.

Wright [214] points out that the existence of linearly dependent constraint gradients can interfere with the super-linear con-
vergence of the sequential quadratic programming problem (SQP) and provides a stabilised algorithm for which super-linear
convergence is still possible. Given a set of active constraints A (x) ⊂ K at a point x and the complement N (x) = K \ A (x),
Wright defines gA (x) = {gi (x) | i ∈ A (x)}, gN (x) = {gi (x) | i ∈ N (x)}, λA (x) = {λi (x) | i ∈ A (x)}, λN (x) =
{λi (x) | i ∈ N (x)}. Wright considers the usual SQP problem and makes the following assumptions

1. a primal-dual solution point
(
x̃, λ̃

)
exists

2. for at least one of the active constraints, λ̃i > 0 where i ∈ A (x̃)

3. λ̃i = 0 ∀i ∈ N (x̃)

4. there exists a σ > 0 such that w⊤∇xxL
(
x̃, λ̃

)
w ≥ σ∥w∥2 for all λ̃ such that

(
x̃, λ̃

)
satisfies the Karush-Kuhn-Tucker

conditions and all w ∈ null (∇gA (x̃))

5. ∇gA (x̃) d < 0 for some d ∈ Rn

The latter assumption (known as the Mangasarian-Fromovitz constraint qualification) is weaker than the assumption that the
matrix of constraint gradients has full column rank. Wright [214] considers the linearised SQP method described in Section
K.5. He points out that the Lagrange multipliers λA may not be uniquely determined if the Jacobian ∇xgA (x) is rank deficient.
Consequently, the Hessian∇xxL(x, λA) may not be uniquely defined at the next SQP iteration. He proposes a stabilised version
of the SQP algorithm

min
x

max
λA≥0

⟨∇f (x) , x− x⟩ −
〈
λA, g (x̄) +∇⊤x g (x̄) (x− x̄)

〉
+ 1

2
〈
x− x,

[
∇2

xxL
(
x, λA

)]
(x− x)

〉
− 1

2ν∥λA − λ̄A∥
2

where ν is defined as

ν (x, λA) = ∥ (∇xL (x, λA) , gA (x) , ⟨λA, gA (x)⟩) ∥

The optimality conditions for a candidate solution
(
x̃, λ̃A

)
are likewise similar

∇xf (x̄)−∇gA (x̄) λ̃A +∇xxL
(
x̄, λ̄A

)
(x̃− x̄) = 0

eSee Appendix B.1.
fSee Appendix B.3.

604

gA (x̄) +∇⊤x gA (x̄) (x̃− x̄)− ν
(
λ̃A − λ̄A

)
≥ 0

λ̃A ≥ 0〈
λ̃A, gA (x̄) +∇g⊤A (x̄) (x̃− x̄)− ν

(
λ̃A − λ̄A

)〉
= 0

Wright shows that for
(
x̄, λ̄A

)
sufficiently close to a primal-dual solution (x, λA) there is a unique solution

(
x̃, λ̃A

)
for which

∥
(
x̃− x̄, λ̃A − λ̄A

)
∥ = O (ν). This solution satisfies the following linear system[
∇xxL

(
x̄, λ̄A

)
−∇xgA (x̄)

−∇xg
⊤
A (x̄) νI

] [
x− x̄

λA − λ̄A

]
=
[
−
(
∇xf (x̄)−∇xgA (x̄) λ̄A

)
gA (x̄)

]
λN = 0

K.7.4 Bertsekas’ modification to the Hessian

Bertsekas [43, p. 461] describes a modification to the Hessian that can ensure that the Hessian is positive definite and invertible.
From the usual Newton system

Hkd
k − Bkλ

k+1 = −∇xf
(
xk
)

−B⊤k dk = g
(
xk
)

define a new matrix:

H̄k = Hk + ckBkB⊤k

where the scalar, ck, is chosen so that H̄k is positive definite. Bertsekas points out that

dk⊤BkB⊤k dk = ∥g
(
xk
)
∥2

is a constant for equality constraints. Consequently, the modified optimisation problem

minimise ∇xf
(
xk
)
dk + 1

2d
k⊤ (Hk + ckBkB⊤k

)
dk

subject to − B⊤k dk = g
(
xk
)

has a larger minimum value but the location of that minimum is unchanged.

Given the scalar, ck, write:

ckBkB⊤k dk = −ckBkg
(
xk
)

Adding: (
Hk + ckBkB⊤k

)
dk − Bkλ

k+1 = −
[
∇xf

(
xk
)

+ ckBkg
(
xk
)]

As in Section K.6:

λk+1 = −
(
B⊤k
(
Hk + ckBkB⊤k

)−1 Bk

)−1 [
g
(
xk
)
− B⊤k

(
Hk + ckBkB⊤k

)−1 (∇xf
(
xk
)

+ ckBkg
(
xk
))]

dk = −
(
Hk + ckBkB⊤k

)−1 [(∇xf
(
xk
)

+ ckBkg
(
xk
))
− Bkλ

k+1]

K.8 Penalty and barrier methods

From Bertsekas [43, Section 4.2], “The basic idea in penalty methods is to eliminate some or all of the constraints and add to the
cost function a penalty term that prescribes a high cost to infeasible points.” Barrier functions are penalty functions that approach
infinity as the constrained variable approaches the constraint. Clearly a barrier function requires that a feasible initial point is
known.

605

K.8.1 Penalty functions

In the unconstrained case τk is found by a line search that minimises the objective function f (x) along the ray xk + τdk over
τ ≥ 0. Ruszczynski [9, p.329] suggests that when there are constraints on x we use the penalty function

Ψϱ (x) ≜ f (x) + ϱ

[
p∑

i=1
|hi (x)| −

m∑
i=1

min (0, gi (x))
]

and states that a local minimum of the objective function is also a local minimum of Ψϱ (x), provided that the penalty coefficient

ϱ is larger than the “max” norm of the Lagrange multipliers
(
λ̂, µ̂

)
at the solution. Similarly, Powell [138, p.151] suggests using

the penalty function

Ψ (x) ≜ f (x)−
[

m∑
i=1

Ωi min (0, gi (x)) +
p∑

i=1
Υi |hi (x)|

]

and requiring that τk satisfies

Ψ
(
xk + τkdk,Ω,Υ

)
≤ Ψ

(
xk,Ω,Υ

)
Υi and Ωk are defined below. This condition can be fulfilled if the function

Φ
(
τk
)

= Ψ
(
xk + τkdk,Ω,Υ

)
decreases initially when τk is made positive. Powell [138] asserts that this happens ifWk is positive definite and if

Ωi ≥ |λi| i = 1, . . . ,m
Υi ≥ |µi| i = 1, . . . , p

Powell [138, p.151] suggests Ωi = |λi| for the first iteration and subsequently

Ωi = max
(
|λi| ,

1
2
[
Ωi + |λi|

])
where Ωi is the value of Ωi used on the previous iteration. Similarly for Υi. The line-search procedure given by Powell [138,
p.152] is obscure but it appears to be a variation of the “two-slope” test that is also described by Ruszczynski [9, p. 216] and
Bersekas [43, p. 28]. The test assumes that Φ′ (0) < 0. Powell [138, p.152] suggests that the line-search terminate when

Φ (τ̂k) ≤ Φ (0) + 0.1τkΦ′ (0)

Bertsekas [43, p. 405], describes use of a quadratic penalty function with inequality constraints. The inequality constraints are
converted to equality constraints by the addition of slack variables, zi, giving the SQP problem

minimise f (x)
subject to hi (x) = 0

gi (x)− z2
i = 0

The Quadratic Penalty Function method (Bertsekas [43, Section 4.2.1] gives a series of unconstrained minimisations of the form

min
x,z
L̄ck

(
x, z, µk, λk

)
= f (x) +

{
ck

2 ∥h (x) ∥2 −
(
µk
)⊤
h (x)

}
+

m∑
i=1

{
ck

2
∣∣gi (x)− z2

i

∣∣2 − λk
i

(
gi (x)− z2

i

)}
where ck < ck+1 and ck →∞. Minimising the sum with respect to z is equivalent to

Lck

(
x, v, µk, λk

)
= f (x) +

{
ck

2 ∥h (x) ∥ −
(
µk
)⊤
h (x)

}
+ min

vi≥0

m∑
i=1

{
ck

2 |gi (x)− vi|2 − λk
i (gi (x)− vi)

}
If the constrained minimum of the second term is at v̂i = max {0, v̄i} (where v̄i ≥ 0 is the unconstrained minimum at which
λi + ck (gi (x)− v̄i) is zero) then

v̂i = max
{

0, gi (x) + λk
i

ck

}

606

and

gi (x)− v̂i =
{
−λk

i

ck gi (x) > −λk
i

ck

gi (x) gi (x) ≤ −λk
i

ck

= min
(
gi (x) ,−λ

k
i

ck

)
The Lagrangian summation term becomes

m∑
i=1

λk
i min

(
gi (x) ,−λ

k
i

ck

)
+ ck

2

∣∣∣∣min
(
gi (x) ,−λ

k
i

ck

)∣∣∣∣2 =

 1
2ck

∑m
i=1

[(
λk

i + ckgi (x)
)2 −

(
λk

i

)2
]

gi (x) ≤ −λk
i

ck

− 1
2ck

∑m
i=1
(
λk

i

)2
gi (x) > −λk

i

ck

Substituting into the Lagrangian

Lck

(
x, µk, λk

)
= f (x) +

{
ck

2 ∥h (x) ∥ −
(
µk
)⊤
h (x)

}
+ 1

2ck

m∑
i=1

{
min

[
0,
(
λk

i + ckgi (x)
)]2 − λ2

i

}
The penalty term for the inequality constraints is continuously differentiable in x if gi (x) is continuously differentiable. The
optimisation problem is now unconstrained minimisation of Lck with updating of the Lagrange multipliers by

λk+1 = min
(
0, λk + ckg (x)

)
Unfortunately, difficulties arise because the Hessian matrix of Lck is discontinuous at the x for which gi (x) = −λk

i

ck .

An alternative augmented Lagrangian function that does have a continuous Hessian adds an exponential penalty function

ψ (t) = e−t − 1

The constrained optimisation problem becomes unconstrained optimisation of the following Lagrangian (for inequality con-
straints only)

Lck

(
x, λk

)
= f (x) +

m∑
i=1

λk
j

ck
j

ψ
(
ck

j gj (x)
)

with gradient

∇Lck

(
x, λk

)
= ∇f (x)−

m∑
i=1

λk
j g (x) exp

(
−ck

j gj (x)
)

The
{
ck

j

}
are a positive penalty parameter sequence for each j. The λk are updated by

λk+1 = λk exp
(
ckg (x)

)
Two implementation details

• to avoid overflow ψ (t) should be defined as the exponential e−t−1 only for the interval in which the exponential is within
the floating point range

• the penalty parameter for each constraint should depend on the corresponding multiplier by

ck
j = wk

λk
j

where
{
wk
}

is a positive sequence with wk ≤ wk+1

K.8.2 Barrier functions

Bertsekas [43, Section 4.1], describes adding a so-called barrier function,B (x), to the cost function. This function is continuous
and goes to∞ as any one of the constraints approaches 0 from positive values. Clearly, the barrier function is only defined at
iterates, xk, that satisfy the constraints

S = {x ∈ X | gj (x) ≥ 0, j = 1, . . . ,m}

607

The two most common barrier functions are

B (x) = −
m∑

i=1
ln {gi (x)}

B (x) =
m∑

i=0

1
gi (x)

The barrier method consists of finding

xk ∈ arg min
x∈S

{
f (x) + ϵkB (x) , k = 0, 1, . . .

}
where the sequence

{
ϵk
}

is defined by

0 < ϵk+1 < ϵk k = 0, 1, . . . ϵk → 0

K.9 Finding the step size

The coefficient solution space for the IIR filter design problem is highly non-linear and has many local minima. At each iteration
of the SQP method the maximum step-size to the next estimate must maintain the positive semi-definiteness of the Hessian (or
its approximation) but at the same time be large enough that solution approaches a minimum efficiently.

K.9.1 Line search with the Golden-Section

The Golden Section (see Ruszczynski [9, p.213] and Bertsekas [43, Appendix C.3]) is a simple means of generating the sequence
of intervals required for line-search on a convex function. First, given two endpoint points α < δ, construct a sequence of four
points

α < β < γ < δ

with

β = α+ (1− q) (δ − α)
γ = δ − (1− q) (δ − α)

where

q = −1 +
√

5
2

1− q = q2

Note that

β − α
δ − α

= 1− q

γ − α
δ − α

= q

γ − β
δ − β

= 1− q

etc.

At each iteration select a new endpoint based on the function values at each point. The Octave function goldensection.m shows
an implementation.

A quicker search method makes use of the fact that the gradient Φ′ (0) is known and is negative [9, p.215]. First, search for a
point β > 0 such that Φ (β) ≥ Φ (0), then quadratic interpolation gives

τk = −Φ′ (0)β2

2 [Φ (β)− Φ (0)− Φ′ (0)β]

608

Since Φ (β) ≥ Φ (0), we have 0 < τk ≤ β
2 . If we still have Φ (τ) > Φ (0), then we replace β with τk and repeat the above

interpolation. If Φ (τ) < Φ (0), then we have three points, with the best one in the middle, and we can apply a Golden Section
search.

Alternatively, interpolate Φ (x). Given αk < τk < βk such that Φ (αk) > Φ
(
τk
)
< Φ (βk) then a second-order estimate of the

minimum is

γk =
Φ (αk)

[
β2

k −
(
τk
)2
]

+ Φ
(
τk
) [
α2

k − β2
k

]
+ Φ (βk)

[(
τk
)2 − α2

k

]
2 (Φ (αk) [βk − τk] + Φ (τk) [αk − βk] + Φ (βk) [τk − αk])

The initial three points can be found by scanning the values Φ (0) ,Φ (τ0) , . . . or Φ (0) ,Φ (−τ0) , . . . depending on whether
Φ (τo) < Φ (0).

K.9.2 Inexact step-size selection

The previous sub-section describes a brute-force search for the best step-size. Bertsekas [43, p. 28] describes selection rules for
finding a step-size that is neither too large nor too small but “good enough”. This approach usually requires far fewer function
evaluations than an “exact” line search for a problem with a convex, differentiable objective function.

The inexact step-size rules are motivated by the solution to the locally convergent system of equations shown in Equation K.2.
Ignoring the constraints:

Hkd
k = −∇xf

(
xk
)

Since we approximateHk by a positive-definite matrix,Wk:〈
∇xf

(
xk
)
, dk
〉

= −
〈
∇xf

(
xk
)
,W−1

k ∇xf
(
xk
)〉
< 0

and dk is a descent direction.

Bertsekas [43, p. 29], recommends the use of the Armijo rule. Given an initial step size σ > 0 and β ∈ (0, 1), choose τk to be
the largest in

{
σ, σβ, σβ2, . . .

}
so that

f
(
xk + τkdk

)
≤ f

(
xk
)

+ c1τ
k
〈
∇xf

(
xk
)
, dk
〉

(W1)

The Armijo rule reduces the step size geometrically. An implementation of line search using the Armijo rule is shown in
Algorithm K.3.

Algorithm K.3 Line search using the Armijo rule.
β ∈ [0.1, 0.5]
σ ∈

[
10−5, 10−1]

while f
(
xk
)
− f

(
xk + βmdk

)
≥ −c1σβ

m
〈
∇xf

(
xk
)
, dk
〉

do
m = m+ 1

end while
τ = σβm

Kim et al. [151] claim improved efficiency with the following modification to the Armijo rule:

f
(
xk + τkdk

)
≤ f

(
xk
)

+ c1τ
k

[〈
∇xf

(
xk
)
, dk
〉

+ 1
2τ

k
〈
dk,Wkd

k
〉]

(K.5)

To rule out unacceptably short steps, the Wolfe step-size rules add the following to the Armijo rule (or W1):〈
∇xf

(
xk + τkdk

)
, dk
〉
≥ c2

〈
∇xf

(
xk
)
, dk
〉

(W2)

where 0 < c1 < c2 < 1. Common choices for the Newton or quasi-Newton methods are c1 = 10−4 and c2 = 0.9. The second
Wolfe condition may be strengthened to∣∣〈∇xf

(
xk + τkdk

)
, dk
〉∣∣ ≤ ∣∣c2

〈
∇xf

(
xk
)〉
, dk
∣∣ (K.6)

609

Algorithm K.4 Line search using Wolfe conditions.
R = 1, r = 0.5, τ = 1, a = 0, b =∞
while a ̸= b do

if W1 (τ) then
a = τ

else
b = τ

end if
if W1 (τ) ∧W2 (τ) then

b = τ
else

if b =∞ then
τ = max (τ,Ra)

else
τ = max ((1− r) a+ rb , min (τ, ra+ (1− r) b))

end if
end if

end while

This stronger Wolfe condition does not allow the gradient to be too positive, excluding points that are far from the minimum.
Christianson [18] gives Algorithm K.4 for line search using the Wolfe conditions.

The Goldstein conditions for step-size selection are similar to the Wolfe conditions:

f
(
xk + τkdk

)
< f

(
xk
)

+ c1τ
k
〈
∇xf

(
xk
)
, dk
〉

(G1)

f
(
xk + τkdk

)
> f

(
xk
)

+ c2τ
k
〈
∇xf

(
xk
)
, dk
〉

(G2)

where 0 < c1 < c2 < 1. Usually c1 < 0.5 and c2 = 1−c1. Christianson gives Algorithm K.5 for line search using the Goldstein
conditions. The first iteration in Algorithm K.5 must terminate because f (x) is differentiable at xk. The second iteration must

Algorithm K.5 Line search using the Goldstein conditions.
τ = 1, R = 2
while ¬G1 (τ) do

τ = τ
R

end while
while ¬G2 (τ) do

τ = τR
end while

terminate because f (x) is bounded below. Note that the two while loops can be placed in either order, and that at most one of
them will ever be performed.

K.9.3 Lanczos step-size selection

Toh [118] describes estimation of the step-size by the Lanczos iteration for finding the eigenvalues of a matrix. The updated
approximation to the Hessian is expressed as:

Wk+1 =Wk + ρk∆Wk

SinceWk is symmetric and positive-definite, it has a Cholesky factorisationWk = L⊤k Lk. Let

Bk = −L−1
k

⊤∆WkL
−1
k

then the condition thatWk+1 ⪰ 0 is equivalent to I − ρkBk ⪰ 0. In other words

max ρk =
{

1
λ1

λ1 > 0
∞ otherwise

where λ1 is the maximum eigenvalue of Bk and ρk provides an upper bound on the corresponding step-size τkdk. Toh suggests
that the required computation can be reduced by finding λ1 with the Lanczos iteration method. Given a symmetric matrix,
A ∈ RN×N , the Lanczos method generates a sequence of tridiagonal matrices Tk ∈ Rk×k having the property that the extremal
eigenvalues of Tk are progressively better estimates of the extremal eigenvalues of A. Golub and van Loan describe efficient
methods for finding the eigenvalues of a symmetric tridiagonal matrix [58, Section 8.5] and have an extensive discussion of
Lanczos methods [58, Chapter 9].

610

K.10 Initial solution with the Goldfarb-Idnani algorithm

Goldfarb and Idnani [40] observe that the origin in the space of dual variables (ie: Lagrange multipliers) is always a feasible
solution of the dual problem. In Algorithm K.6 I reproduce their dual algorithm for solving the tangent quadratic problem with
linear constraints.

Some explanation of the notation is required. The problem statement is:

minimise f (x) = a⊤x+ 1
2x
⊤Hx

subject to g (x) ≡ G⊤x− b ≥ 0

This is equivalent to the linearised optimisation problem defined in Section K.5. The Goldfarb-Idnani dual algorithm commences
with the unconstrained minimum x = −H−1a and adds constraints to the active constraint set, A, having cardinality q, until
all constraints are satisfied. In the following the set of all constraints is denoted K, A+ denotes A ∪ {p} where p ∈ K \ A
and A− represents the subset of A that contains one fewer element than A. A subproblem P (A) is defined to be the quadratic
programming problem subject only to the subset of the constraints indexed by A ⊂ K. If the solution x of a subproblem P (J)
lies on a linearly independent set of constraints indexed by A ⊆ J then (x,A) is called a solution-pair or S-pair. B, B+ and
B− represent the matrices of constraint gradients corresponding to A, A+ and A−. n+ represents the gradient vector added to
B to form B+. Similarly for n−. Ik denotes the k × k identity matrix and ej represents the jth column of Ik.

When the constraint gradients (columns of B) are linearly independent one can define the operators

B† =
(
B⊤H−1B

)−1
B⊤H−1

E = H−1 (I −BB†)
where B† is the pseudo-inverse or Moore-Penrose generalised inverse of B. E is a reduced inverse Hessian operator for the
quadratic f (x) subject to the active set of constraints. In particular, as in [40], if x̂ is a point in the (n− q) dimensional
manifoldM =

{
x ∈ Rn | n⊤i x = bi, i ∈ A

}
and ∇xf (x̂) = Hx̂ + a is the gradient of f (x) at x̂ then the minimum of f (x)

overM is attained at x̃ = x̂− E∇xf (x̂). For x̃ to be the optimal solution for the subproblem P (A)

∇xf (x̃) = Bλ (x̃)

where the vector of Lagrange multipliers λ (x̃) ≥ 0. Multiplying both sides by B†gives

λ (x̃) ≡ B†∇xf (x̃) ≥ 0

Also multiplying by E gives

E∇f (x̃) = H−1 (I −BB†)Bλ
= H−1 (B −B)λ
= 0

These conditions are necessary and sufficient for x̃ to be the optimal solution to P (A). In addition, the dual algorithm makes
use of a set of, so-called, infeasibility multipliers

r = B†n+

Some properties of B† and E:

Ew = 0⇔ w = Bα

E is positive semidefinite

EWE = E

B†WE = 0
EE+ = E+

611

Algorithm K.6 The Goldfarb-Idnani dual algorithm [40].

0. Find the unconstrained minimum of f (x), then:

Set x← H−1a, f ← 1
2a
⊤x, E ← H−1, A ← ∅, q ← 0

1. Choose the most violated constraint, if any:

Compute gj (x), for all j ∈ K \ A.

If V = {j ∈ K \ A | gj (x) < 0} = ∅ then stop, the current solution x is both feasible and optimal.

Otherwise, choose p ∈ V and set n+ ← np and λ+ ←
(
λ
0

)
.

If q = 0 then set λ+ ← 0.

Set A+ = A ∪ {p}.

2. Check for feasibility and determine a new solution pair:

(a) Determine the step direction:
Compute d = En+ (the step direction in the primal space).
If q > 0 then r = B†n+ (the negative of the step direction in the dual space).

(b) Compute the step length:

i. Partial step length, τ1:
This is the maximum step in dual space without violating dual feasibility.
If r ≤ 0 or q = 0 then set τ1 ←∞.
Otherwise, set

τ1 ← min
rj>0, j=1,...,q

{
λ+

j (x)
rj

}
=
λ+

l (x)
rl

In Step 2c below, element k ∈ K corresponds to the l-th element in A.
ii. Full step length, τ2:

This is the minimum step in primal space such that the p-th constraint becomes feasible.
If |d| = 0 then set τ2 ←∞.
Otherwise, set τ2 ← − gp(x)

d⊤n+ .
iii. Step length, τ :

Set τ ← min (τ1, τ2)
(c) Determine a new solution pair and take the step:

i. No step in primal or dual space:
If τ =∞ then stop. The sub-problem P (A+) and hence the quadratic problem are infeasible.

ii. Step in dual space:

If τ2 =∞, then set λ+ ← λ+ + τ

(
−r
1

)
, and drop constraint k;

i.e. set A ← A \ {k}, q ← q − 1, update E and B†, and go to Step 2a.
iii. Step in primal and dual space:

Set x← x+ τd, f ← f + τd⊤n+ (1
2τ + λ+

q+1
)
, λ+ ← λ+ + τ

(
−r
1

)
.

If τ = τ2 (a full step) then set λ← λ+ and add constraint p;
i.e. set A ← A∪ {p}, q ← q + 1, update E and B† and go to Step 1.

If τ = τ1 (partial step) then drop constraint k;
i.e. set A ← A \ {k}, q ← q − 1, update E and B†, and go to Step 2a.

612

When justifying Algorithm K.6, Goldfarb and Idnani [40, p. 7] first point out that for a given S-pair (x,A) and a violated
constraint p, if the columns of B+ (ie: those of B and n+ = np) are linearly independent, then

gp (x) < 0
gi (x) = 0 ∀i ∈ A

E+∇xf (x) = 0

λ+ (x) ≜
(
B+)†∇xf (x) ≥ 0

Definition 1: A triple (x,A, p) consisting of a point x and a set of indices A+ = A ∪ {p} where p ∈ K \ A is said
to be a V(violated)-triple if the columns of B+ are linearly independent and the above conditions apply.

The point x̂ corresponding to the V-triple (x̂,A, p) is the optimal solution to the subproblem obtained by replacing the constraint
gp (x) ≥ 0 in P (A+) by gp (x) ≥ gp (x̂) i.e. by a parallel constraint which passes through x̂. Let x∗ be the point on the manifold
M+ =

{
x ∈ Rn | n⊤i x = bi, i ∈ A+} at which f(x) is minimized. The following lemma shows how to move to such a point

from a point x corresponding to a V-triple (x,A, p).

Lemma 1: Let (x,A, p) be a V-triple and consider points of the form x̃ = x+ τd where d = En+. Then

E+∇xf (x̃) = 0 (K.7)
gi (x̃) = 0 ∀i ∈ A (K.8)

λ+ (x̃) ≜
(
B+)†∇xf (x̃) = λ+ (x) + τ

[
−r
1

]
(K.9)

where r = B†n+and gp (x̃) = gp (x) + τd⊤n+.

Proof:The lemma follows from the properties of the V-triple (x,A, p) and

∇xf (x̃) = ∇xf (x) + τHd (K.10)

where

Hd = HEn+

=
(
I −BB†

)
n+

= n+ −Br

=
[
B n+] [−r

1

]
= B+

[
−r
1

]
Recalling that EB = H−1 (B −BB ∗B) = 0, the results follow from multiplying Equation K.10 on the left by E+ and
B+.

It follows from this lemma that the point x̃ = x + τ2d, where τ2 = − gp(x)
d⊤n+ , minimises the quadratic function f (x) overM+

(since then gp (x̃) = 0). If λ+ (x̃) ≥ 0 as well, then x̃ is an optimal solution to P (A+) and (x̃,A+) is an S-pair. If not,
then Equation K.9 implies that there is a smallest value τ1 of τ , τ1 < τ2, such that some component of λ+ (x̃ (τ)) < 0 for
τ > τ1. If the constraint, say k ∈ A, corresponding to this component is dropped from the active set, then (x̃ (τ1) ,A−, p), where
A− = A \ {k}, is again a V-triple. These remarks are formalised by the following two theorems.

613

Theorem 1: Given a V-triple (x,A, p) if x̃ is defined as in Lemma 1 with τ = min {τ1, τ2} where

τ1 = min
{

min
rj>0 , 1≤j≤q

{
λ+

j (x)
r+

j (x)

}
,∞

}

τ2 = −gp (x)
d⊤n+

then

gP (x̃) ≥ gp (x)

f (x̃)− f (x) = τd⊤n+
(

1
2τ + λ+

q+1 (x)
)
≥ 0

Moreover, if τ = τ1 = λ+
l

(x)
rl

, then (x̃,A \ {k} , p) is a V-triple, where element k ∈ K corresponds to the l-th element in A.
Alternatively, if τ = τ2, then (x̃,A ∪ {p}) is an S-pair.

Proof: Since (x,A, p) is a V-triple,

d⊤n+ = n+TEn+ = n+TEHEn+ = d⊤Hd > 0

and τ ≥ 0. Hence, from Lemma 1, gP (x̃) ≥ gp (x). Also, from Taylor’s theorem

f (x̃)− f (x) = τd⊤∇xf (x) + 1
2τ

2d⊤Hd

Since E+∇xf (x) = 0 implies that∇xf (x) = B+λ+ (x), it follows that E∇xf (x) = En+λ+
q+1 (x) and

d⊤∇xf (x) = n+TE∇xf (x) = d⊤n+λ+
q+1 (x) ≥ 0

The result follows by substitution. Moreover, as long as τ > 0, f (x̃) > f (x). From the definition of τ and Lemma 1 it is
evident that E+∇xf (x̃) = 0, gi (x̃) = 0, i ∈ A and λ+ (x̃) ≥ 0. If τ = τ2, then gp (x̃) = 0 and (x,A ∪ {p}) is an S-pair.
If τ = τ1 < τ2, then λ+

l (x̃) = 0 and gp (x̃) < 0. Since E+∇xf (x̃) = 0 and λ+
l (x̃) = 0 we can write

∇xf (x̃) = B+λ+ (x̃)

=
∑

i∈A∪{p}\{k}

λ+
j(i)ni

where i is the j (i)-th index inA+ = A∪{p}. As the set of normals {ni | i ∈ A ∪ {p} \ {k}} is clearly linearly independent
(x̃,A \ {k} , p) is a V-triple.

It follows from the above theorem that starting from a V-triple (x,A, p) one can obtain an S-pair
(
x̃,Ã ∪ {p}

)
with Ã ⊆ A and

f (x̃) > f (x) after at most q partial steps and one full step.

If n+ is a linear combination of the columns of B at the start of Step 2, then (x,A, p) is not a V-triple. In this case, either the
subproblem P (A ∪ {p}) is infeasible or a constraint can be dropped from the active set A so that (x,A−, p) is a V-triple. In the
former case, the original quadratic problem must also be feasible, while in the latter case, one may proceed according to Theorem
1 to obtain a new S-pair with a higher function value.

614

Theorem 2: Let (x,A) be an S-pair and p be an index of a constraint in K \ A such that n+ ≜ np = Br and gp (x) < 0.
If r ≤ 0, then P (A ∪ {p}) is infeasible; otherwise the k-th component can be dropped from the active set, where k is
determined by

λl (x)
rl

= min
rj>0 , j=1,...,q

{
λj (x)
rj

}
, l = j (k)

to give A− = A \ {k} and the V-triple (x,A−, p).

Proof: If there is a feasible solution x̃ = x+ d satisfying the constraints A∪ {p}, it is necessary that n+T d = r⊤B⊤d > 0
and B⊤d ≥ 0 since gi (x) = 0 for all i ∈ A. But if r ≤ 0, the two requirements in the theorem cannot be simultaneously
satisfied; hence in this case P (A ∪ {p}) is infeasible. If a component of r is positive, it follows that rl > 0 and that

n+ = nkrl +
∑

i∈A−

rj(i)ni

so

nk = 1
rl

[
−
∑

i∈A−

rj(i)ni + n+

]

Since (x,A) is an S-pair

∇xf (x) =
∑

i∈A−

λj(i)ni + λlnk

=
∑

i∈A−

(
λj(i) −

λl

rl
rj(i)

)
ni + λl

rl
n+

If we define Â = A− ∪ {p}, then it is clear that B̂ has full column rank, Ê∇xf (x) = 0 and

λ̂ (x) = B̂†∇xf (x)

=
{
λj(i) − λl

rl
rj(i) ≥ 0 i ∈ A−

λl

rl
≥ 0

and hence that (x,A−, p) is a V-triple.

Goldfarb and Idnani [40, Section 4] base their implementation on the Cholesky factorisation

H = LL⊤

of the positive definite symmetric Hessian matrix H and the QR factorisation

C = Q

[
R
0

]
= [Q1 | Q2]

[
R
0

]
of the (n× q) matrix

C = L−1B

where L is an (n× n) lower triangular matrix, R is a (q × q) upper triangular matrix and Q = [Q1 | Q2] is a (n× n) orthogonal
matrix partitioned so that Q1 has q columns. By substitution,

B† =
(
B⊤L−1⊤L−1B

)−1
B⊤L−1⊤L−1

=
(
C⊤C

)−1
C⊤L−1

= R−1R−1⊤C⊤L−1

= R−1Q⊤1 L
−1

= R−1J⊤1

and

E = L−1⊤L−1 − L−1⊤C
(
C⊤C

)−1
C⊤L−1

615

= L−1⊤L−1 − L−1⊤CR−1R−1⊤C⊤L−1

= L−1⊤QQ⊤L−1 − L−1⊤Q1Q
⊤
1 L
−1

= L−1⊤Q2Q
⊤
2 L
−1

= J2J
⊤
2

where

C⊤C =
[
R⊤ 0

]
Q⊤Q

[
R
0

]
= R⊤R

and

CR−1 =
[
Q1 Q2

] [R
0

]
R−1

= Q1

and

J =
[
J1 J2

]
=
[
L−1⊤Q1 L−1⊤Q2

]
= L−1⊤Q

In the dual algorithm the vectors d = En+ and r = B†n+ are required. Compute the intermediate vector

v = J⊤n+

=
[
J⊤1
J⊤2

]
n+

=
[
v1
v2

]
from which it follows that

d = J2v2

and

r = R−1v1

Goldfarb and Idnani describe an efficient method for updating the factors J and R when a constraint is added or deleted.

616

K.11 Implementation examples

The archive distributed with this document contains Octave functions for the line-search and non-linear optimisation techniques
described above.

The Octave file sqp_common.m contains the function to be optimised, constraints, gradients and the Hessian function:

minimise f (x) = x4
1 + x4

2 + x4
3 + x1x2 + x1x3 + x2x3 + x1 + x2 + x3 + 5

subject to g (x) =
[
x2 − 1;−x1 −

√
2;−x3 − 0.5

]
≥ 0

linesearch_test.m implements unconstrained quasi-Newton optimisation of this function with step size found by line search with
the Armijo, Goldstein, golden-section or quadratic-interpolation methods. Sample output of linesearch_test.m is:

Testing nosearch linesearch:
At x = [-5.74793e-01 3.34409e-01 -5.74793e-01]
f(x) = 4.361595, 0.017513 secs
LINESEARCH nosearch 92 iterations 47 f(x) calls
LINESEARCH nosearch f(x)= 4.361595 x=[-0.574793 0.334409 -0.574793]

Testing armijo linesearch:
At x = [-5.74793e-01 3.34409e-01 -5.74793e-01]
f(x) = 4.361595, 0.017187 secs
LINESEARCH armijo 84 iterations 86 f(x) calls
LINESEARCH armijo f(x)= 4.361595 x=[-0.574793 0.334409 -0.574793]

Testing armijo_kim linesearch:
At x = [-5.74793e-01 3.34409e-01 -5.74793e-01]
f(x) = 4.361595, 0.017748 secs
LINESEARCH armijo_kim 84 iterations 86 f(x) calls
LINESEARCH armijo_kim f(x)= 4.361595 x=[-0.574793 0.334409 -0.574793]

Testing goldstein linesearch:
At x = [-5.74793e-01 3.34408e-01 -5.74792e-01]
f(x) = 4.361595, 0.022373 secs
LINESEARCH goldstein 94 iterations 157 f(x) calls
LINESEARCH goldstein f(x)= 4.361595 x=[-0.574793 0.334408 -0.574792]

Testing goldensection linesearch:
At x = [-5.74878e-01 3.34439e-01 -5.74804e-01]
f(x) = 4.361595, 0.074829 secs
LINESEARCH goldensection 94 iterations 916 f(x) calls
LINESEARCH goldensection f(x)= 4.361595 x=[-0.574878 0.334439 -0.574804]

Testing quadratic linesearch:
At x = [-5.74868e-01 3.34438e-01 -5.74777e-01]
f(x) = 4.361595, 0.021284 secs
LINESEARCH quadratic 104 iterations 105 f(x) calls
LINESEARCH quadratic f(x)= 4.361595 x=[-0.574868 0.334438 -0.574777]

sqp_gi_test.m tests the Goldfarb-Idnani algorithm implemented in goldfarb_idnani.m. Sample output is:

Initial x0 = [30.000000 -20.000000 10.000000]
Active constraints are []
Step 1: Trying constraint 2 at g(2) = [-31.414214]
Step 2a: step direction in primal space d = [-0.000093 0.000000 0.000000]
Step 2b)ii): full step length t2 = 339273.473761
Step 2b)iii): selecting step length t = 339273.473761
Step 2c)iii): Step in primal and dual space.
Next x = [-1.414214 -19.993461 10.026173]
f(x) =169707.209457
Adding constraint 2
Active constraints are [2]
Step 1: Trying constraint 1 at g(1) = [-20.993461]
Step 2a: step direction in primal space d = [-0.000000 0.000208 -0.000000]

617

Step 2a: step direction in dual space r = [0.000208]
Step 2b)i): partial step length t1 = 1629334390.615776
Step 2b)ii): full step length t2 = 100768.594465
Step 2b)iii): selecting step length t = 100768.594465
Step 2c)iii): Step in primal and dual space.
Next x = [-1.414214 1.000000 10.008679]
f(x) =10048.793782
Adding constraint 1
Active constraints are [2 1]
Step 1: Trying constraint 3 at g(3) = [-10.508679]
Step 2a: step direction in primal space d = [-0.000000 -0.000000 -0.000833]
Step 2a: step direction in dual space r = [-0.000831 0.000830]
Step 2b)i): partial step length t1 = 121345621.364403
Step 2b)ii): full step length t2 = 12610.414214
Step 2b)iii): selecting step length t = 12610.414214
Step 2c)iii): Step in primal and dual space.
Next x = [-1.414214 1.000000 -0.500000]
f(x) =7.941180
Adding constraint 3
Active constraints are [2 1 3]
All constraints satisfied. Feasible solution found.
x=[-1.414214 1.000000 -0.500000] fx=7.941180 4 iterations

The script sqp_bfgs_test.m tests constrained quasi-Newton optimisation with combinations of Hessian initialisation, Hessian
update and linesearch type. Note that the goldensection linesearch requires many more function calls than the other types.
Sample output filtered for “SQP” is:

SQP init hessian linesearch x feasible iter fiter liter
SQP GI exact nosearch [-1.414214 1.000000 -0.527104] 1 3 9 0
SQP GI exact quadratic [-1.414214 1.000000 -0.526902] 1 8 22 8
SQP GI exact armijo [-1.414214 1.000000 -0.527104] 1 3 12 3
SQP GI exact armijo_kim [-1.414214 1.000000 -0.527104] 1 3 12 3
SQP GI exact goldstein [-1.414214 1.000000 -0.527104] 1 3 15 6
SQP GI exact goldensection [-1.414214 1.000000 -0.526902] 1 8 62 48
SQP GI bfgs nosearch [-1.414214 1.000000 -0.527057] 1 6 12 0
SQP GI bfgs quadratic [-1.414214 1.000000 -0.526930] 1 11 28 11
SQP GI bfgs armijo [-1.414214 1.000000 -0.527057] 1 6 18 6
SQP GI bfgs armijo_kim [-1.414214 1.000000 -0.527057] 1 6 18 6
SQP GI bfgs goldstein [-1.414214 1.000000 -0.527369] 1 5 29 18
SQP GI bfgs goldensection [-1.414214 1.000000 -0.526930] 1 11 83 66
SQP GI diagonal nosearch [-1.414214 1.000000 -0.527100] 1 4 10 0
SQP GI diagonal quadratic [-1.414214 1.000000 -0.526902] 1 8 22 8
SQP GI diagonal armijo [-1.414214 1.000000 -0.527100] 1 4 14 4
SQP GI diagonal armijo_kim [-1.414214 1.000000 -0.527100] 1 4 14 4
SQP GI diagonal goldstein [-1.414214 1.000000 -0.527100] 1 4 18 8
SQP GI diagonal goldensection [-1.414214 1.000000 -0.526902] 1 8 62 48
SQP GI eye nosearch [-1.414214 1.000000 -0.527057] 1 6 12 0
SQP GI eye quadratic [-1.414214 1.000000 -0.526930] 1 11 28 11
SQP GI eye armijo [-1.414214 1.000000 -0.527057] 1 6 18 6
SQP GI eye armijo_kim [-1.414214 1.000000 -0.527057] 1 6 18 6
SQP GI eye goldstein [-1.414214 1.000000 -0.527369] 1 5 29 18
SQP GI eye goldensection [-1.414214 1.000000 -0.526930] 1 11 83 66
SQP eye exact nosearch [-1.414214 1.000000 -0.527127] 1 4 6 0
SQP eye exact quadratic [-1.414192 0.999986 -0.527111] 1 19 40 19
SQP eye exact armijo [-1.414214 1.000000 -0.527104] 1 6 27 19
SQP eye exact armijo_kim [-1.414214 1.000000 -0.527104] 1 6 27 19
SQP eye exact goldstein [-1.414214 1.000000 -0.527104] 1 6 33 25
SQP eye exact goldensection [-1.414192 0.999986 -0.527111] 1 19 296 275
SQP eye bfgs nosearch [-1.414214 1.000000 -0.527108] 1 6 8 0
SQP eye bfgs quadratic [-1.414185 0.999973 -0.527072] 1 33 68 33
SQP eye bfgs armijo [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP eye bfgs armijo_kim [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP eye bfgs goldstein [-1.414214 1.000000 -0.527084] 1 9 55 44
SQP eye bfgs goldensection [-1.414194 0.999995 -0.527054] 1 33 681 646
SQP eye diagonal nosearch [-1.414214 1.000000 -0.527100] 1 6 8 0
SQP eye diagonal quadratic [-1.414180 0.999986 -0.527180] 1 18 38 18
SQP eye diagonal armijo [-1.414214 1.000000 -0.527100] 1 7 29 20
SQP eye diagonal armijo_kim [-1.414214 1.000000 -0.527100] 1 7 29 20

618

SQP eye diagonal goldstein [-1.414214 1.000000 -0.527100] 1 7 36 27
SQP eye diagonal goldensection [-1.414180 0.999986 -0.527180] 1 18 289 269
SQP eye eye nosearch [-1.414214 1.000000 -0.527108] 1 6 8 0
SQP eye eye quadratic [-1.414185 0.999973 -0.527072] 1 33 68 33
SQP eye eye armijo [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP eye eye armijo_kim [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP eye eye goldstein [-1.414214 1.000000 -0.527084] 1 9 55 44
SQP eye eye goldensection [-1.414194 0.999995 -0.527054] 1 33 681 646
SQP none exact nosearch [-1.414214 1.000000 -0.527104] 1 4 6 0
SQP none exact quadratic [-1.414191 0.999985 -0.527110] 1 17 36 17
SQP none exact armijo [-1.414214 1.000000 -0.527104] 1 4 12 6
SQP none exact armijo_kim [-1.414214 1.000000 -0.527104] 1 4 12 6
SQP none exact goldstein [-1.414214 1.000000 -0.527104] 1 4 16 10
SQP none exact goldensection [-1.414191 0.999985 -0.527110] 1 17 243 224
SQP none bfgs nosearch [-1.414214 1.000000 -0.527073] 1 8 10 0
SQP none bfgs quadratic [-1.414213 1.000000 -0.526831] 1 25 52 25
SQP none bfgs armijo [-1.414214 1.000000 -0.527073] 1 8 20 10
SQP none bfgs armijo_kim [-1.414214 1.000000 -0.527073] 1 8 20 10
SQP none bfgs goldstein [-1.414214 1.000000 -0.527228] 1 7 38 29
SQP none bfgs goldensection [-1.414213 1.000000 -0.526831] 1 25 319 292
SQP none diagonal nosearch [-1.414214 1.000000 -0.527100] 1 5 7 0
SQP none diagonal quadratic [-1.414178 0.999985 -0.527182] 1 16 34 16
SQP none diagonal armijo [-1.414214 1.000000 -0.527100] 1 5 13 6
SQP none diagonal armijo_kim [-1.414214 1.000000 -0.527100] 1 5 13 6
SQP none diagonal goldstein [-1.414214 1.000000 -0.527100] 1 5 18 11
SQP none diagonal goldensection [-1.414178 0.999985 -0.527182] 1 16 236 218
SQP none eye nosearch [-1.414214 1.000000 -0.527108] 1 6 8 0
SQP none eye quadratic [-1.414185 0.999973 -0.527072] 1 33 68 33
SQP none eye armijo [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP none eye armijo_kim [-1.414214 1.000000 -0.527095] 1 9 44 33
SQP none eye goldstein [-1.414214 1.000000 -0.527084] 1 9 55 44
SQP none eye goldensection [-1.414194 0.999995 -0.527054] 1 33 681 646

619

Appendix L

Fourier transform of the Gaussian function

See NIST Digital Library of Mathematical Functions [55, Sections 7.2.1 and 1.14.1]

L.1 Preliminary results

The Gaussian function is e−t2
.

L.1.1 Integral of the Gaussian function

Poisson introduced this method of integrating the Gaussian function:[ˆ ∞
−∞

e−t2
dt

]2
=
ˆ ∞
−∞

ˆ ∞
−∞

e−x2−y2
dxdy

=
ˆ 2π

0

ˆ ∞
0

e−r2
rdrdθ

= 2π
ˆ ∞

0
e−r2

rdr

= π

ˆ ∞
0

e−sds

= π
[
−e−s

]∞
0

= π

So:
ˆ ∞

0
e−t2

dt =
√
π

2

L.1.2 Fourier transform of the derivative of a function

If g (t) is absolutely integrable, bounded and differentiable on (−∞,∞) then the Fourier transform, F , of g (t) is:

G (ω) = Fg (t) = 1√
2π

ˆ ∞
−∞

g (t) eıωtdt

and the inverse Fourier transform is:

g (t) = F−1G (ω) = 1√
2π

ˆ ∞
−∞

G (ω) e−ıωtdω

620

The Fourier transform of dg(t)
dt is:

F dg (t)
dt

= 1√
2π

ˆ ∞
−∞

dg (t)
dt

eıωtdt

= 1√
2π

{[
g (t) eıωt

]∞
−∞ − ıω

ˆ ∞
−∞

g (t) eıωtdt

}
= −ıωFg (t)

Similarly:

F−1 dG (ω)
dω

= 1√
2π

ˆ ∞
−∞

dG (ω)
dω

e−ıωtdω

= 1√
2π

{[
G (ω) e−ıωt

]∞
−∞ + ıt

ˆ ∞
−∞

G (ω) e−ıωtdt

}
= ıtF−1G (ω)

L.2 Derivation of the Fourier transform of the Gaussian function in the frequency
domain

The Gaussian function in the frequency domain is:

G (ω) = e−(ω
α)2

Differentiating both sides:

dG (ω)
dω

= −2ω
α2G (ω)

Taking the Fourier transform of both sides:

ıtg (t) = − 2ı
α2

dg (t)
dt

Rearranging and integrating both sides:

ˆ t

0
−τα

2

2 dτ =
ˆ t

0

dg(τ)
dτ

g (τ) dτ

ln g (t)− ln g (0) = −
(
tα

2

)2

g (t) = g (0) e−(tα
2)2

where:

g (0) = 1√
2π

ˆ ∞
−∞

e−(ω
α)2

dω

= 2α√
2π

ˆ ∞
0

e−ω2
dω

= α√
2

621

Appendix M

Design of IIR digital filter transfer functions

This chapter reviews methods of constructing IIR digital filter transfer functions. The first section reviews the analogue-to-digital
transformation of s-plane Butterworth filters to the z-plane. The subsequent sections review methods of designing equi-ripple
amplitude response IIR filters.

M.1 Design of discrete time filters with the bilinear transform

Various methods can be used to transform an analog filter prototype response to the discrete time domain. The “bi-linear”
transform is:

H (z) = Ĥ

(
1− z−1

1 + z−1

)

The bi-linear transform has the following properties:

• the s-plane ıω axis maps to the z-plane unit circle z = eıΩT , where T is the sampling interval, and the s-plane left-half
plane maps to the z-plane unit disc, |z| ≤ 1.

• if the analog response is stable, the transformed response is also stable

• the zero frequency response is the same in both domains

The bilinear transform, H (z) of the analog frequency response, Ĥ (s) is

H
(
eıΩT

)
= Ĥ

(
ı tan ΩT

2

)
The design frequencies of the analog prototype filter on the s-plane ıω axis must be “pre-warped” to the z-plane unit circle by the
mapping tan ΩT

2 → ω. In other words, the discrete-time filter behaves at frequency Ω in the same way that the continuous-time
filter behaves at frequency ω = tan ΩT

2 . For example, if the desired cut-off frequency in the z-domain is ΩcT = π
2 , then we

choose the cutoff frequency of the s-plane prototype filter to be:

ωc = tan ΩcT

2 = tan π4 = 1

In this work I have assumed that the sampling interval, T , is 1. Alternatively, one can choose that the Nyquist frequency
corresponds to 1 so that the sampling frequency is 2. The Octave signal toolbox filter design functions use the latter convention.

Filter design using analog prototypes proceeds as follows:

• the critical frequencies in the z-plane are determined

• the critical frequencies are mapped to the s-plane and used to design the s-plane prototype

• the bi-linear transform is used to convert that prototype to the z-plane

622

M.1.1 Design of Butterworth IIR filters

The Butterworth filter transfer function is described in many textbooks (for example, Roberts and Mullis [193, Chapter 6]). I
have included it here to justify the implementation in butter2pq.m.

Continuous Time Second Order Butterworth Filter Prototypes

In the continuous time s-plane a low-pass Butterworth filter has, by definition, a squared magnitude frequency response of:∣∣∣Ĥ (ω)
∣∣∣2 = 1

1 + ω2n

The response with a cutoff angular frequency of ωc is found by the s-plane transformation s → s
ωc

. The high-pass response is
found by the s-plane transformation s→ 1

s .

The 2n poles of the Butterworth squared magnitude response are evenly spaced around the unit circle in the s-plane. For stability,
the filter realization as a cascade of second order sections uses the poles in the left-hand half plane, λk:

λk = ωce
ıθk

θk = π

2

(
1 + (2k − 1)

n

)
, 1 ≤ k ≤ n

For each conjugate pole pair the corresponding low-pass filter second-order section with unity DC gain has transfer functiona:

Ĥk (s) = λkλ
∗
k

(s− λk) (s− λ∗k)

= λkλ
∗
k

s2 − (λk + λ∗k) s+ λkλ∗k

= ω2
c

s2 − 2ωc cos θks+ ω2
c

If n is odd, there is a single real pole at s = −ωc, k = n+1
2 , and the corresponding low-pass first-order section is:

Ĥk (s) = ωc

s+ ωc

The Butterworth high-pass filter with cut-off frequency ωc is found with the s-plane transformation s
ωc
→ ωc

s . The second order
high-pass sections are:

Ĥk (s) = s2

s2 − 2ωc cos θks+ ω2
c

and, if n is odd, the first order high-pass section is:

Ĥk (s) = s

ωc + s

Design of second order Butterworth digital filters with the bilinear transform

For the Butterworth first order low-pass section:

Hn+1
2

(z) =
ωc

(
1 + z−1)

(ωc + 1) + (ω2 − 1) z−1

= d+ qz−1

1 + pz−1

where

d = ωc

ωc + 1
a∗ denotes complex conjugate transpose

623

q = 2ωc

(ωc + 1)2

p = ωc − 1
ωc + 1

For the Butterworth second order low-pass section:

Hk (z) =
g
[
1 + z−1]2

a0 + a1z−1 + a2z−2

= d0 + q1z
−1 + q2z

−2

1 + p1z−1 + p2z−2

where:

g = ω2
c

a0 = 1− 2ωc cos θk + ω2
c

a1 = 2
(
ω2

c − 1
)

a2 = 1 + 2ωc cos θk + ω2
c

d0 = g

a0

p1 = a1

a0

p2 = a2

a0

q1 = d0 (2− p1)
q2 = d0 (1− p2)

Similarly, for the first order high-pass section:

Hn+1
2

(z) =
(
1− z−1)

(ωc + 1) + (ωc − 1) z−1

= d

wc
− qz−1

1 + pz−1

and for the Butterworth second order high-pass section:

Hk (z) =
[
1− z−1]2

a0 + a1z−1 + a2z−2

= t0 + t1z
−1 + t2z

−2

1 + p1z−1 + p2z−2

where

t0 = d0

g

t1 = −d0

g
(2 + p1)

t2 = q2

g

624

M.2 Low passband sensitivity IIR filters

Vaidyanathan et al. [179, 176] describe the synthesis of IIR digital filters as the parallel connection of two all-pass filters. The
resulting filter has low coefficient sensitivity if the all-pass filter implementation is structurally loss-less (ie: the all-pass transfer
function is preserved when the coefficients are truncated).

M.2.1 Structural Boundedness

Consider the N -th order IIR filter

G (z) = P (z)
D (z) = p0 + p1z

−1 + · · ·+ pNz
−N

1 + d1z−1 + · · ·+ dNz−N

where the coefficients pi and di are real. We wish to design a structure with multiplier coefficients m0,m1, · · · such that the
sensitivity of |G (eıω)|with respect to eachmi is very small in the pass-band. If |G (eıω)| ≤ 1 for all ω regardless of the values of
the multipliers (so long as they are within a certain range) then the implementation is called structurally bounded or structurally
passive and G (z) is called bounded real. If |G (eıω)| = 1 for certain frequencies ωk in the passband, then at those frequencies,
when an mi is perturbed the value of |G (eıω)| can only decrease. In other words the first-order sensitivity is zero at ωk

∂ |G (eıωk)|
∂mi

∣∣∣∣∣
mi=mi0

= 0 ∀i, ∀k

Now consider a stable all-pass function, A1 (z)

A1 (z) = am + am−1z
−1 + · · ·+ z−m

1 + a1z−1 + · · ·+ amz−m

|A1 (eıω)| = 1

where ak are real. A number of well-known structures exist for which the mirror images of the denominator and numerator
coefficients are preserved in spite of multiplier quantization. Such implementations are called structurally lossless.

Now consider a parallel connection of two stable all-pass filters A1 (z) and A2 (z) with

A2 (z) = bn + bn−1z
−1 + · · ·+ z−n

1 + b1z−1 + · · ·+ bnz−n

and

G (z) = 1
2 [A1 (z) +A2 (z)]

Since A1 (z) and A2 (z) are all-pass functions:

A1 (z) = z−n1
D̂1 (z)
D1 (z)

A2 (z) = z−n2
D̂2 (z)
D2 (z)

where n1 and n2 are non-negative, D̂1 (z) denotes the mirror image of D1 (z) and

G (z) = 1
2

[
z−n1D2 (z) D̂1 (z) + z−n2D1 (z) D̂2 (z)

D1 (z)D2 (z)

]
If A1 (z) and A2 (z) are minimal and if D1 (z) and D2 (z) have no common factors then there is no pole-zero cancellation and
G (z) has order N = n+m.

On the unit circle

G (eıω) = 1
2

[
eıθ1(ω) + eıθ2(ω)

]
where θ1 (ω) and θ2 (ω) are real-valued functions of ω. Thus,

|G (eıω)| = 1
2

∣∣∣1 + eı[θ2(ω)−θ1(ω)]
∣∣∣

and if A1 (z) ̸= A2 (z) then G (z) cannot be all-pass. Also, if A1 (z) and A2 (z) are implemented so that they remain all-pass
in spite of parameter quantisation, then |G (eıω)| ≤ 1 for all ω. Accordingly, the structural lossless-ness of A1 (z) and A2 (z)
induces structural bounded-ness in G (z).

625

M.2.2 Filter realisation as the sum of all-pass functions

Consider a typical N -th order bounded real transfer function G (z) = P (z) /D (z) where P (z) is symmetric, i.e.: pk = pN−k.
Now consider another transfer function H (z) where

H (z) = Q (z)
D (z)

= q0 + q1z
−1 + · · ·+ qNz

−N

1 + d1z + · · ·+ dNz−N

and H (z) is complementary to G (z)

|H (eıω)|2 = 1− |G (eıω)|2

In terms of the z-variable

P̃ (z)P (z) + Q̃ (z)Q (z) = D̃ (z)D (z)

where P̃ (z) = P
(
z−1) etc.

Computation of the spectral factor Q (z) is simplified by the anti-symmetric nature of its coefficients.

Q2 (z) = P 2 (z)− z−ND
(
z−1)D (z)

D (z) and P (z) are known so the right hand side can be written

R (z) =
2N∑

n=0
rnz
−n

Then the coefficients of Q (z) are related to rn by

rn =
n∑

k=0
qkqn−k

and the qk can be computed recursively

q0 =
√
r0

q1 = r1

2q0

qn =
rn −

∑n−1
k=1 qkqn−k

2q0
, 2 ≤ n ≤ N

The specral factor, Q (z) is calculated by Octave function spectralfactor.

Assume G (z) is such that Q (z) is anti-symmetric i.e.: qi = −qN−i. So

P̃ (z) ≜ P
(
z−1) = zNP (z)

Q̃ (z) ≜ Q
(
z−1) = −zNQ (z)

and

[P (z) +Q (z)] [P (z)−Q (z)] = z−ND (z)D
(
z−1)

[P (z) +Q (z)]
[
P
(
z−1)+Q

(
z−1)] = D (z)D

(
z−1)

Moreover

P
(
z−1)+Q

(
z−1) = zN [P (z)−Q (z)]

Hence the zeros of P (z) +Q (z) are the reciprocals of the zeros of P (z)−Q (z). Since G (z) is stable, none of its poles are on
the unit circle and

P (z) +Q (z) ̸= 0, |z| = 1

626

Let z1, z2, . . . , zr be the zeros of P (z) +Q (z) inside the unit circle and let zr+1, zr+2, . . . , zN be those outside. Then

D (z) =
r∏

k=1

(
1− z−1zk

) N∏
k=r+1

(
1− z−1z−1

k

)
and

[P (z) +Q (z)] [P (z)−Q (z)] =
[

r∏
k=1

(
1− z−1zk

) N∏
k=r+1

(
1− z−1z−1

k

)] [r∏
k=1

(
z−1 − zk

) N∏
k=r+1

(
z−1 − z−1

k

)]

From which

P (z) +Q (z) = α

[
r∏

k=1

(
1− z−1zk

) N∏
k=r+1

(
z−1 − z−1

k

)]

P (z)−Q (z) = 1
α

[
r∏

k=1

(
z−1 − zk

) N∏
k=r+1

(
1− z−1z−1

k

)]

where α is a real constant. This leads to the equations

G (z) +H (z) = P (z) +Q (z)
D (z) = α

N∏
k=r+1

(
z−1 − z−1

k

1− z−1z−1
k

)

G (z)−H (z) = P (z)−Q (z)
D (z) = 1

α

r∏
k=1

(
z−1 − zk

1− z−1zk

)
Thus

G (z) +H (z) = αA1 (z)

G (z)−H (z) = 1
α
A2 (z)

where A1 (z) and A2 (z) are stable all-pass functions of order N − r and r respectively

A1 (z) =
N∏

k=r+1

(
z−1 − z−1

k

1− z−1z−1
k

)

A2 (z) =
r∏

k=1

(
z−1 − zk

1− z−1zk

)
The complementarity condition requires α2 = 1 so, finally

G (z) = 1
2 [A1 (z) +A2 (z)]

H (z) = 1
2 [A1 (z)−A2 (z)]

and G (z) is implemented as the parallel combination of two all-pass functions.

This low-sensitivity realisation is summarised in Algorithm M.1.

The classical Butterworth, Chebyshev and Cauer low-pass digital filters of odd order satisfy the following conditions and can be
implemented as the combination of two stable all-pass functions

1. N is odd

2. ∂k|G(eıω)|
∂ωk

∣∣∣
ω=0

= 0 for k = 1, 2, · · · , n0 where n0 is some odd integer

(In other words, |G (eıω)| has odd-order tangency at zero frequency).

3. |G (1)| = 1

4. There are (N − n0) /2 frequencies in the range 0 < ω < π where |G (eıω)| = 1

Other filter pass-bands are obtained by frequency transformation.

The Octave script vaidyanathan_allpass_example_test.m implements the example transfer function shown in [179, Section V].

627

Algorithm M.1 Filter realisation as the sum of all-pass functions.
Let G (z) = P (z) /D (z) be a bounded real function of order N and let P (z) be symmetric i.e.: pi = pN−i.
In addition, let G (z) be such that an anti-symmetric polynomial Q (z) (i.e.: qi = −qN−i) exists such that

P̃ (z)P (z) + Q̃ (z)Q (z) = D̃ (z)D (z)

G (z) can be implemented as the combination of two stable all-pass functions A1 (z) and A2 (z)

G (z) = 1
2 [A1 (z) +A2 (z)]

H (z) = 1
2 [A1 (z)−A2 (z)]

Furthermore, H (z) is also bounded real and is doubly complementary to G (z).

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Spectral factors of an elliptic filter : N=13, fc=0.05

G
H

Figure M.1: 13th order elliptic filter, complementary filter and summed transfer functions.

M.2.3 A note on the numerical calculation of the spectral factor

The Octave implementation of the calculation of the spectral factor is in the Octave function file spectralfactor.m. The file
spectralfactor.cc shows a C++ version of spectralfactor using the MPFR abitrary precision floating point library [119, 68, 1]. The
mantissa precision is set to 256 bits. The Octave script spectralfactor_test.m illustrates calculation of the spectral factor for a 13th
order elliptic filter with cut-off frequency 0.05fS , pass-band ripple 0.0005dB and stop-band ripple 40dB using spectralfactor.oct.
Figures M.1 and M.2 show the transfer functions of the elliptic filter, the spectral factor complementary filter and the summed
transfer function. The summed response ripple is satisfactory for order 13 but fails catastrophically for order 15. I suspect that
this is due to roundoff error in the original calculation of the elliptic filter coefficients that is visible in the transition band detailed
view. The prototype elliptic filter response appears to be not structurally bounded.

M.2.4 Examples of parallel all-pass filter synthesis

3rd order Butterworth low-pass filter

The Octave script butt3NSPA_test.m shows synthesis as a parallel combination of two all-pass filters of the 3rd order Butterworth
filter used in the example of Part I. Annotated results of the script follow.

628

0.046 0.048 0.05 0.052 0.054
-3

-2

-1

0

1

2

3

Frequency

A
m

pl
itu

de
(d

B
)

Spectral factors of an elliptic filter : N=13, fc=0.05

G
H

|G + H|

Figure M.2: 13th order elliptic filter, complementary filter and summed transfer functions transition band detail.

The numerator and denominator polynomials, N (z) and D (z) are:

n = 0.0028982 0.0086946 0.0086946 0.0028982
d = 1.00000 -2.37409 1.92936 -0.53208

The spectral factor Q (z) is:

q = 0.72944 -2.18832 2.18832 -0.72944

The sum N (z) +Q (z) has roots:

z = 1.12486 + 0.31652i
1.12486 - 0.31652i
0.72654 + 0.00000i

The polynomials for the all-pass components are:

A1 = 0.73234 -1.64755 1.00000
A2 = -0.72654 1.00000

After quantising to three 10-bit signed-digits the coefficients for the normalised-scaled lattice implementation are:

A1s10f = [-488, 376]/512;
A1s11f = [158, 352]/512;
A1s20f = [-488, 376]/512;
A1s00f = [158, 352]/512;
A1s02f = [488, -376]/512;
A1s22f = [158, 352]/512;

and

629

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure M.3: Simulated amplitude response of the 3rd order Butterworth filter synthesised as the parallel combination of two
all-pass filters implemented as normalised-scaled lattices with 10-bit 3-signed-digit coefficients.

A2s10f = [-368]/512;
A2s11f = [352]/512;
A2s20f = [-368]/512;
A2s00f = [352]/512;
A2s02f = [368]/512;
A2s22f = [352]/512;

The noise gains of each part with three signed-digit coefficients are:

A1ngapABCDf = 3.1899
A2ngapABCDf = 0.95500

The estimated and measured round-off noise variances at the combined all-pass output are:

est_varA1yapd = 0.3492
varA1yapd = 0.3451
est_varA2yapd = 0.1629
varA2yapd = 0.1632
est_varyapd = 0.2530
varyapd = 0.2597

The standard deviations of the internal state delay storage elements are:

A1stdxf = 133.51 130.68
A2stdxf = 128.10

The amplitude response found from the cross-correlation of the input and output is shown in Figure M.3.

630

6th order Butterworth band-pass

The Octave script butt6NSPABP_test.m shows synthesis of a 6th order band-pass Butterworth filter as a parallel combination of
two all-pass filters. Annotated results of the script follow.

The prototype filter has cutoff frequency:

fc = 0.25000

The numerator and denominator polynomials, N (z) and D (z) are:

n = 0.16667 0.50000 0.50000 0.16667
d = 1.0000e+00 -3.0531e-16 3.3333e-01 -1.8504e-17

The spectral factor Q (z) is:

q = 0.16667 -0.50000 0.50000 -0.16667

The sum N (z) +Q (z) has roots

z = 0.00000 + 1.73205i
0.00000 - 1.73205i
0.00000 + 0.00000i

The polynomials for the all-pass components of the prototype filter are:

Aap1 = 3.3333e-01 0.0000e+00 1.0000e+00
Aap2 = 0.0000e-00 1.0000e+00

The frequency transformation polynomial for a band-pass filter with band edges 0.2fS and 0.25fS is

p = 1.00000 -0.27346 0.72654

The all-pass polynomials of the parallel components of the band-pass filter are

A1BP = 1.0000e+00 -6.7309e-01 2.3655e+00 -7.8886e-01 1.3655e+00

and

A2BP = 1.0000e+00 -3.7638e-01 1.3764e+00

After truncating to 10-bit 3-signed-digits the coefficients for the normalised-scaled lattice implementation are:

A1s10f = [-84, 488, -76, 376]/512;
A1s11f = [505, 158, 506, 352]/512;
A1s20f = [-84, 488, -76, 376]/512;
A1s00f = [505, 158, 506, 352]/512;
A1s02f = [84, -488, 76, -376]/512;
A1s22f = [505, 158, 506, 352]/512;

and

631

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

A
m

pl
itu

de
(d

B
)

Frequency

Figure M.4: Simulated amplitude response of the 6th order Butterworth band-pass filter synthesised as the parallel combination
of two all-pass filters implemented as normalised-scaled lattices with 10-bit 3-signed-digit coefficients.

A2s10f = [-81, 368]/512;
A2s11f = [506, 352]/512;
A2s20f = [-81, 368]/512;
A2s00f = [506, 352]/512;
A2s02f = [81, -368]/512;
A2s22f = [506, 352]/512;

The noise gains of each part are:

A1ngapABCDf = 7.5062e+00
A2ngapABCDf = 2.8995e+00

The estimated and measured round-off noise variances at the combined all-pass output are:

est_varA1yapd = 7.088e-01
varA1yapd = 6.891e-01
est_varA2yapd = 3.250e-01
varA2yapd = 3.305e-01
est_varyapd = 3.835e-01
varyapd = 3.889e-01

The standard deviations of the internal state delay storage elements are:

A1stdxf = 128.73 128.70 129.30 129.40
A2stdxf = 126.75 126.58

The amplitude response found from the cross-correlation of the input and output is shown in Figure M.4.

632

20th order elliptic multi-band-pass

The Octave script ellip20OneMPAMB_test.m shows synthesis of a 20th order multi-band-pass elliptic filter as the difference of
two parallel all-pass filters. Annotated results of the script follow.

The prototype filter is a 5-th elliptic low-pass filter with cutoff frequency fc = 0.25, pass-band ripple 0.5dB and stop-band
attenuation 40dB.

The low-pass to multi-band-pass transformation defines the two pass-bands 0.05 to 0.125 and 0.175 to 0.225:

phi = [0.050, 0.125, 0.175, 0.225];

The multi-band-pass numerator and denominator polynomials are:

B = [0.0222367857, -0.2062046057, 0.9783850127, -3.1191432836, ...
7.4158462608, -13.8280323127, 20.6788224219, -24.7690078630, ...

22.8635811740, -13.8497964246, 0.0000000000, 13.8497964246, ...
-22.8635811740, 24.7690078630, -20.6788224219, 13.8280323127, ...
-7.4158462608, 3.1191432836, -0.9783850127, 0.2062046057, ...
-0.0222367857]';

A = [1.0000000000, -11.2077820036, 64.3387049867, -249.2399219984, ...
726.5512969095, -1687.3317871425, 3229.9733333599, -5207.7948314400, ...

7172.1667231069, -8511.5831269587, 8746.6271597328, -7794.7450109950, ...
6014.3654584308, -3998.0802090981, 2269.4138776384, -1084.5000718524, ...
426.9002692337, -133.7555362622, 31.4942313827, -4.9945132742, ...

0.4044742430]';

The numerator polynomial is “sanitised” so that all zeros lie on the z-plane unit circle.

The multi-band-pass polynomials have even order. They are converted to odd order by adding a zero and a pole at z = 1. The
resulting spectral factor is, after removing the zero at z = 1:

Qp = [0.6363715249, -7.4932195256, 45.1251257188, -183.1987446896, ...
559.2678154123, -1359.4624016594, 2722.6407116398, -4591.0679953962, ...

6610.6987412724, -8200.3940342418, 8806.4979978881, -8200.3940342418, ...
6610.6987412724, -4591.0679953962, 2722.6407116398, -1359.4624016594, ...
559.2678154123, -183.1987446896, 45.1251257188, -7.4932195256, ...

0.6363715249]';

The sum B (z) +Qp (z) has roots

Z =
0.25704 + 1.05045i
0.25704 - 1.05045i
0.78300 + 0.71880i
0.78300 - 0.71880i
0.98935 + 0.36462i
0.98935 - 0.36462i
0.45133 + 0.91101i
0.45133 - 0.91101i
0.45317 + 0.88790i
0.45317 - 0.88790i
0.94176 + 0.30369i
0.94176 - 0.30369i
0.69726 + 0.70078i
0.69726 - 0.70078i
0.14957 + 0.96734i
0.14957 - 0.96734i
0.37041 + 0.86443i
0.37041 - 0.86443i
0.75232 + 0.44289i
0.75232 - 0.44289i

633

The numerator polynomials for the all-pass components of the multi-band-pass filter are:

A1 = [0.6586083192, -3.2676475618, 8.5811981987, -14.8737326645, ...
18.4195756513, -16.5611469571, 10.6144228565, -4.4787800562, ...
1.0000000000];

A2 = [0.6141347472, -4.5364405578, 17.3103358916, -44.2279424697, ...
83.5847646214, -122.4497241139, 142.2741939507, -132.0273923796, ...
97.2453884831, -55.6152780216, 23.5865625104, -6.7290019601, ...
1.0000000000];

The 8-bit 4-signed-digit coefficients of the two one-multiplier lattice implementations are:

k1sd = [-80, 110, -102, 111, ...
-92, 94, -72, 84]/128;

epsilon1 = [-1, -1, 1, 1, ...
1, 1, 1, 1];

and

k2sd = [-69, 118, -109, 112, ...
-106, 111, -57, 114, ...
-82, 95, -83, 79]/128;

epsilon2 = [1, 1, 1, 1, ...
1, 1, 1, 1, ...
1, -1, 1, 1];

The noise gains of each all-pass filter with signed-digit coefficients are (with exact state scaling):

A1ng = 15.000
A2ng = 23.0000

The estimated and simulated round-off noise variances at the combined all-pass output are (again with exact state scaling):

est_varysd = 0.9583
varyapsd = 0.9602

Figure M.5 shows the response with floating-point and signed-digit coefficients and the simulated amplitude response, found
from the cross-correlation of the input and output, with signed-digit coefficients.

634

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

simulated(s-d)

calculated(s-d)
exact

Figure M.5: Simulated amplitude response of the 20th order elliptic multi-band-pass filter synthesised as the parallel combination
of two all-pass filters implemented as one-multiplier lattices with 8-bit 4-signed-digit coefficients.

635

M.3 Design of Elliptic IIR filters with a reduced number of multipliers

Lutovac and Milić [123, 140] describe the design of minimum Q-factor elliptic filters having a reduced number of multipliers.
These filters are based on the continuous time minimal-Q elliptic filter design of Rabrenović and Lutovac [45, 44]. The minimal-Q
factor elliptic filters have reduced component sensitivity at the expense of increased filter order or reduced selectivity.

M.3.1 Elliptic filter design with the Landen transformation

In this section I follow the tutorial paper by Orchard and Willson [77]. Elliptic filters are an application of the Jacobian elliptic
functions and elliptic integrals (reviewed in Appendix D). The original purpose of the elliptic functions was to invert the integral
that finds the arc length of an ellipse. For example, the elliptic function w = sn u is defined by the incomplete elliptic integral:

u =
ˆ w

0

dt√
(1− t2) (1− κ2t2)

(M.1)

For elliptic filter design, the modulus, κ, is real and 0 ≤ k ≤ 1. The modular angle, θ, is defined by κ = sin θ and the
complementary modulus is κ′ = cos θ. The elliptic functions are doubly-periodic functions on the complex plane with quarter-
periods K and K ′, where:

K =
ˆ 1

0

dt√
(1− t2) (1− κ2t2)

and similarly for K ′. The elliptic functions are a generalisation of the circular and hyperbolic trigonometric functions. For κ = 0
and K = π

2 , Equation M.1 is the arcsin function. For κ = 1 and K =∞, Equation M.1 is the arctanh function.

The magnitude-squared response of an n-th order continuous time elliptic low-pass filter is:

|H (ω)|2 = 1
1 + ϵ2R2

n (ω, ωa)

where Rn (ω, ωa) is an n-th order elliptic rational function, ϵ is the pass-band ripple factor and ωa = 1
κ is the stop-band edge

frequency. Both ωa and the frequency ω are normalised to ωp, the pass-band edge frequency. In the pass-bandRn varies between
0 and 1 so that in the pass-band |H (ω)|2 varies between 1

1+ϵ2 and 1. In the stop-band |H (ω)|2 varies between 0 and 1
1+ϵ2L2

n

where Ln = Rn (ωa) is called the discrimination factor.

Orchard and Willson show how to derive a continuous time elliptic filter with filter order n, pass-band ripple αp and stop-band
ripple αa from the s-plane poles and zeros of an initial Chebyshev Type 1 filter. They comment that:

The fact that the degree n must be an integer means that the smallest value of n that meets the specification will
normally provide some margin in performance that should be distributed amongst the quantities αp, αa and κ. How
best to do this requires some engineering judgement . . .

The Landen transformation relates the elliptic functions, ns (uG, γ) and ns (uK, κ), for which the quarter-periods have 2G′

G =
K′

K [77, Equation 8]:

ns (uG, γ) = 1
1 + κ

[
ns (uK, κ) + κ

ns (uK, κ)

]
Orchard and Willson [77, Section IV] derive a recurrence relation for the modulus, κ, that appears in successive Landen trans-
formations:

κn+1 =
[

κn

1 +
√

1− κ2
n

]2

This sequence, κn, tends rapidly to zero and the value of the elliptic function is considered to be equal to that of the the corre-
sponding circular function value. In this case, ns (z, κ) → cosec z as κ → 0. The required elliptic function value at the original
modulus, κ0, is found by reversing the recurrence:

κn =
2√κn+1

1 + κn+1

636

so that:

ns (aKn, κn) = 1
1 + κn+1

[
ns (aKn+1, κn+1) + κn+1

ns (aKn+1, κn+1)

]

The normalized n-th order Chebyshev Type 1 filter with pass-band peak-to-peak ripple αp = 10 log10
(
1 + ε2) dB is defined by

the parametric equations for the squared-magnitude of the filter attenuationb:

A (s)A (−s) = 1 + ε2 cos2 nuπ

2
Ω = cos uπ2

Orchard and Willson generalise the Chebyshev filter by changing the cosine function into the appropriate elliptic function equiv-
alent. The resulting parametric equations are:

A (s)A (−s) = 1 + ε2 cd2 (nuG, γ)
Ω = cd (uK, κ)

nK ′

K
= G′

G

The stop-band loss is αa = 10 log10

(
1 + ε2

γ2

)
dB. The following path in the complex u-plane maps the u parameter from the

complex plane to the Ω frequency axis with the desired amplitude response:

• Pass band: u = 1 to u = 0 maps to Ω = 0 to Ω = 1, cd (nuG, γ) varies between 1 and −1

• Transition band: u = 0 to u = ıK′

K maps to Ω = 1 to Ω = 1
κ

• Stop band: u = ıK′

K to u = 1 + ıK′

K maps to Ω = 1
κ to Ω =∞, cd (nuG, γ) has minimums at 1

γ and maximums at − 1
γ

The cd elliptic function is used because it has a zero at the start of the path, at u = 1, and a pole at the end, at u = 1 + ıK′

K .

Orchard and Willson show a Matlab file, ellipap1.m [77, Figure 7], that, given the filter order and pass-band and stop-band
ripples, calculates the gain, poles and zeros of a continuous time elliptic filter by the Landen transformation of the poles and
zeros of a Type 1 Chebyshev filter with the same pass-band and stop-band attenuation specifications.

M.3.2 Design of elliptic filters with minimal-Q

Rabrenović and Lutovac [45, 44] derive the properties of a continuous time elliptic filter with poles having minimal-Q. The poles
of the filter lie on a circle with radius

√
ωa and the ripples in the pass-band and stop-band squared-magnitude response are equal:

1− 1
1 + ϵ2minQ

= 1
1 + ϵ2minQL

2
n

so that the for the minimal-Q elliptic filter:

ϵminQ = 1√
Ln

Lutovac and Milić [140] describe the design of an odd order, n, discrete-time elliptic filter implemented as the sum of an odd
and an even order all-pass filter in which the all-pass filter components are expressed as products of second-order all-pass lattice
sections:

bm + am (1 + bm) z−1 + z−2

1 + am (1 + bm) z−1 + bmz−2

with m > 1, and, for the odd-order filter, a first-order section:

a1 + z−1

1 + a1z−1

bOrchard prefers the convention that A (s) represents the filter attenuation, i.e.: the ratio of input to output.

637

For the second-order sections, with the poles at zm = rme
±ıθm :

am = −2rm cos θm

1 + r2
m

bm = r2
m

where m = 2, . . . , n+1
2 . For the first-order section:

a1 = −r1

Following the notation of Lutovac and Milić [140], suppose that the digital filter specification has pass-band and stop-band
frequencies Fp and Fa and corresponding pass-band ripple, Ap, and stop-band attenuation, Aa, given in dB. Assume that the
digital filter is found by transformation of a prototype continuous time minimal-Q elliptic filter with a normalised pass band edge
frequency of ω = 1.

The pass-band and stop-band attenuations of the filter are αp ≤ Ap and αa ≥ Aa with:

αp = 10 log10

(
1 + 1

Ln

)
and:

αa = 10 log10 (1 + Ln)

The 3dB frequency is given by:

tan2 πf3dB = tan πfp tan πfa

The s-plane poles of the continuous time prototype are distributed around the circle |s| = √ωa. The bilinear transform

s = 2
T

z − 1
z + 1

where

T = 2
√
ωa

tan πf3dB
= 2 tan πfp

maps that circle onto a circle in the z-plane orthogonal to the unit circle and centred on the real axis of the z-plane at z = x0
with the s-plane point ı

√
ωa mapped to the z-plane point z3dB = eı2πf3dB so that:

x0 = 1
cos 2πf3dB

= 1− tan2 πf3dB

1 + tan2 πf3dB

For m = 1, the first order section has:

a1 = −x0

(
1−

√
1− 1

x2
0

)

For m > 1, the second-order all-pass filter sections have, as shown in [140, Figure 4]:

r2
m + x2

0 − 2rmx0 cos θm = x2
0 − 1

so that:

2rm cos θm = 1 + r2
m

x0

and:

am = a = − 1
x0

The range of permitted values of a is:

−1− tan2 πFp

1 + tan2 πFp
< a < −1− tan2 πFa

1 + tan2 πFa

638

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Minimal-Q elliptic filter cd2(nuG, γ)

cd
2 (

n
u
G

,γ
)

Ω(u)
0 2 4 6 8

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

Figure M.6: Values of Ω and cd2 (nuG, γ) plotted as the complex parameter u varies.

The minimal-Q elliptic filter is implemented with a reduced number of multipliers by choosing a to be a signed-digit number.
Lutovac and Milić [140, Appendix A] show that the poles can be selected to alternate between the two all-pass branches with
increasing angle or radius.

The Octave file ellipMinQ_test.m designs a discrete-time minimal-Q elliptic filter implemented as the sum of parallel all-pass
filters. The filter order is n = 9, pass-band edge is Fp = 0.1, pass-band ripple specification is 0.1dB, stop-band edge is Fa =
0.125, and the stop-band ripple specification is 40dB. The second order lattice constant, a, was set to − 3

4 with corresponding
f3dB = 0.115027. Setting fa = Fa gives a corresponding fp = 0.105715. The continuous-time s-plane stop-band edge
angular frequency is ωa = 1.201010 with elliptic filter moduluses κ = 0.832632 and γ = 3.1329e − 05. The calculation of
the continuous-time s-plane pole and zero locations follows Orchard and Willson [77, Fig.6]. The resulting pass-band ripple is
αp = 0.0001361dB and the stop-band ripple is αa = 45.04dB. Figure M.6 shows the values of Ω and cd2 (nuG, γ) plotted as the
complex parameter u varies. Figure M.7 shows the amplitude response of the continuous-time s-plane filter when calculated with
the transfer function derived from the s-plane gain, poles and zeros. Figure M.8 shows the pole-zero plot of the corresponding
discrete-time z-plane filter. Figure M.9 shows the amplitude response of the discrete-time z-plane filter. The lattice coefficients
are:

{a1, a, b2, b3, b4, b5} = [−0.451416,−0.75, 0.350740, 0.619208, 0.822345, 0.949033]

The following 8-bit, 3-signed-digit lattice coefficients were found by brute-force search: [−58,−96, 46, 79, 104, 121]. The
maximum stop-band response of the signed-digit coefficient filter is −39.12dB at 0.1304. Figure M.10 shows the amplitude
response of the corresponding filter.

639

0 2 4 6 8
-0.0002

-0.00015

-0.0001

-5e-05

0

Minimal-Q elliptic filter s-plane response

A
m

pl
itu

de
(d

B
)

Ω
0 2 4 6 8

-80

-60

-40

-20

0

Figure M.7: Amplitude response of the continuous-time s-plane filter.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Minimal-Q elliptic filter poles and zeros

Figure M.8: Pole-zero plot of the discrete-time z-plane filter.

640

0 0.1 0.2 0.3 0.4 0.5
-0.0008

-0.0006

-0.0004

-0.0002

0

Minimal-Q elliptic filter z-plane response

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-46

-44

-42

-40

-38

Figure M.9: Amplitude response of the discrete-time z-plane filter.

0 0.1 0.2 0.3 0.4 0.5
-0.0008

-0.0006

-0.0004

-0.0002

0

Minimal-Q elliptic filter z-plane response (8-bit, 3-signed-digit lattice coefficients)

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-46

-44

-42

-40

-38

Figure M.10: Amplitude response of the discrete-time z-plane filter with 8-bit, 3-signed-digit coefficients.

641

M.4 Saramäki’s method for the design of IIR filters with zeros on the unit circle

Firstly, define the transfer function of an IIR filter:

H (z) = Kzn−m

∏m
k=1 (z − ak)∏n
k=1 (z − bk)

The zeros, ak, and poles, bk, are real or conjugate pairs. When n > m (m > n),H (z) has n−m zeros (m−n poles) at the origin.
A stable filter has |bk| < 1. Saramäki [234] describes a procedure for designing an IIR filter with either equi-ripple pass-band and
stop-band amplitude response. The algorithm transforms the frequency response so that the pass-band (stop-band) is equi-ripple
and the amplitude response in the stop-band (pass-band) is optimised. He claims that the algorithm has improved numerical
performance. Also, Saramäki finds that for n ≥ m, his procedure produces better narrow-band filters than the corresponding
elliptic filter. Conversely, when n < m, his algorithm produces better wide-band filters.

Write

H (z)H
(

1
z

)
= E

∏m
k=1

(
z + 1

z

) (
ak − 1

ak

)
∏n

k=1
(
z + 1

z

) (
bk − 1

bk

)

Saramäki’s procedure maps z + 1
z to v + 1

v so that for n ≥ m (n < m) the pass-band (stop-band) on the unit circle in the
z-plane is mapped to the entire upper unit circle on the v-plane. An equi-ripple pass-band (stop-band) response is obtained by
construction. The remaining problem is, for n ≥ m (n < m), to find adjustable zeros (poles) so that the resulting H (z) has
n−m zeros (m− n poles) at the origin and the squared-magnitude function is equiripple in the stop-band (pass-band).

The all-pass function

F (v) =
r∏

k=1

(
1− vkv

v − vk

)

is, on the unit circle, v = eıΩ:

F
(
eıΩ) = eıf(Ω)

where:

f (Ω) =
r∑

k=

{
Ω− 2 arctan

[
sin Ω−ℑvk

cos Ω−ℜvk

]}
Now define:

G

(
v + 1

v

)
= 1

2

[
F (v) + 1

F (v)

]
so that, on the unit circle, v = eıΩ:

G

(
v + 1

v

)
= cos f (Ω)

This function has r + 1 alternating extrema, ±1, on v = eıΩ, 0 ≤ Ω ≤ π. Its value is +1 at v = 1 and (−1)r at v = −1.

Saramäki now introduces a mapping from z = eıω , ω1 ≤ ω ≤ ω2, to v = eıΩ, 0 ≤ Ω ≤ π:

v + 1
v

= C

(
z + 1

z

)
+D

where:

C = 2
cosω1 − cosω2

D = −2 (cosω1 + cosω2)
cosω1 − cosω2

642

M.4.1 Optimisation of a low-pass filter with denominator order higher

When n ≥ m set ω1 = 0 and ω2 = ωp. The resulting transformation maps the pass-band z = eıω , 0 ≤ ω ≤ ωp, to the upper-unit
circle v = eıΩ, 0 ≤ Ω ≤ π, and the stop-band, ωs ≤ ω ≤ π, to the negative real axis part [ζ1, ζ2]. Solving the resulting quadratic
equations for ζ1 and ζ2 gives:

ζ1 = −1
2

[
−2C cosωs −D −

√
(−2C cosωs −D)2 − 4

]
ζ2 = −1

2

[
2C −D −

√
(2C −D)2 − 4

]

The transformed magnitude-squared function is constructed asc:

Ĥ (v) Ĥ
(

1
v

)
= 1

1 + ∆p

1−∆p

[
1
2 + (−1)n 1

4

[
F (v) + 1

F (v)

]]
where

F (v) =
n∏

k=1

(
1− αkv

v − αk

)

and 1−∆p = (1− δp)2, δp = 1− 10
−dBap

20 . By design, Ĥ (v) Ĥ
(1

v

)
has n+ 1 alternating extrema 1 and 1−∆p in v = eıΩ,

0 ≤ Ω ≤ π. We want to find αk such that, in the z-plane, H (z)H
(1

z

)
has m + 1 alternating extrema, ∆s and 0, on z = eıω ,

ωs ≤ ω ≤ π, and H (z) has n−m zeros at the origin. The z-to-v-plane transformation maps z = 0 to v = 0 so set αk = 0 for
k = m+ 1, . . . , n. In addition, since H (z)H

(1
z

)
has ⌊m

2 ⌋ minima, 0, on z = eıω , ωs < ω < π, Ĥ (v) Ĥ
(1

v

)
has ⌊m

2 ⌋ double
zeros in the transformed stop-band [ζ1, ζ2]. For m odd, H (z) has a zero at z = −1 which is transformed to v = ζ2. Thus, the
F (v) for the optimal H (z)H

(1
z

)
is:

F (α, v) = v−(n−m)
(

1− ζ2v

v − ζ2

)q ⌊m
2 ⌋∏

k=1

(
1− αkv

v − αk

)2

where q = 0 for m even and q = 1 for m odd, ζ1 < αk < ζ2 and α =
[
α1, . . . , α⌊m

2 ⌋

]
. The gradient of F (α, v) with respect

to αk is:

∂F (α, v)
∂αk

= 2
[

1− v2

(1− αkv) (v − αk)

]
F (α, v)

By construction, (−1)n
F (α, v) > 0. The optimisation problem is to find α and the scalar, Λ, such that at the ⌊m

2 ⌋+ 1 minima,
vl:

log [(−1)n
F (α, vl)] = Λ

Saramäki suggests a Remez-exchange type procedure for solving these non-linear equations. At each iteration, after linearising:

log [(−1)n
F (α, vl)] + ∇αF (α, vl)

F (α, vl)
∆α = Λ + ∆Λ

The initial α are evenly spaced in (ζ1, ζ2) and Λ = 0. The angles, ωk, of the ⌊m
2 ⌋ complex conjugate zero pairs, z = e±ıωk , of

H (z) are found from

αk + 1
αk

= 2C cosωk +D

The poles, bk, of H (z) are found by transforming the n poles, βk, of Ĥ (v) Ĥ
(1

v

)
that are the solutions of:

1 + ∆p

1−∆p

[
1
2 + (−1)n 1

4

[
F (α, v) + 1

F (α, v)

]]
= 0

Re-arranging gives:

F (α, v) = − (−1)n

2−∆p

∆p
+

√(
2−∆p

∆p

)2
− 1

cHere I follow Surma-aho and Saramäki [113, Appendix] rather than Saramäki [234, Eqn.16]

643

0 0.1 0.2 0.3 0.4 0.5
-0.002

-0.0015

-0.001

-0.0005

0

Saramäki n>=m filter response

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-90

-85

-80

-75

-70

Figure M.11: Amplitude response of an IIR filter with n = 11 and m = 6, designed with the procedure of Saramäki.

If the stop-band ripple, ∆s, is specified instead of the pass-band ripple, then the corresponding pass-band ripple, ∆p, is found
from the stop-band equi-ripple maximum, λ = (−1)n

F (α, vl):

∆p = 1
1 + ∆s

1−∆s

[1
2 + 1

4
[
λ+ 1

λ

]]
The scaling constant, K, is found from the condition |H (eıωp)|2 = 1−∆p.

The Octave function saramakiFAvLogNewton implements Saramäki’s procedure for n ≥ m.

The Octave script saramakiFAvLogNewton_test.m designs an IIR filter with pass-band edge frequency, fp = 0.1, stop-band edge
frequency, fs = 0.125, stop-band ripple, dBas = 75, denominator order, n = 11, and numerator order, m = 6. The resulting
pass-band peak-to-peak ripple is 0.001713dB. Figure M.11 shows the amplitude response of the filter. Figure M.12 shows the
pole-zero plot of the filter. The numerator and denominator polynomials are, respectively:

n = [0.0007007904, -0.0026270912, 0.0053563235, -0.0065837022, ...
0.0053563235, -0.0026270912, 0.0007007904];

d = [1.0000000000, -8.0831929697, 30.7252473784, -72.2304919614, ...
116.3931977738, -134.7455529109, 114.2001366939, -70.7856326917, ...
31.4234826049, -9.5100073662, 1.7653436058, -0.1522538136];

644

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Saramäki n>=m filter

Figure M.12: Pole-zero plot of an IIR filter with n = 11 and m = 6, designed with the procedure of Saramäki.

M.4.2 Optimisation of a low-pass filter with denominator order lower

When n < m set ω1 = ωs and ω2 = π. The resulting transformation maps the stop-band z = eıω , ωs ≤ ω ≤ π, to the upper-unit
circle v = eıΩ, 0 ≤ Ω ≤ π, and the pass-band, 0 ≤ ω ≤ ωp, to the positive real axis part [ζ1, ζ2]. Solving the resulting quadratic
equations for ζ1 and ζ2 gives:

ζ1 = 1
2

[
2C +D −

√
(2C +D)2 − 4

]
ζ2 = 1

2

[
2C cosωp +D −

√
(2C cosωp +D)2 − 4

]

The transformed magnitude-squared function, Ĥ (v) Ĥ
(1

v

)
, having m+ 1 alternating extrema ∆s and 0 on v = eıΩ, 0 ≤ Ω ≤ π

is constructed as:

Ĥ (v) Ĥ
(

1
v

)
= ∆s

[
1
2 + 1

4

(
F (v) + 1

F (v)

)]
where:

F (v) =
m∏

k=1

1− βkv

v − βk

is an all-pass function with |βk| < 1 for k = 1, . . . ,m, and βk = 0 for k = m+ 1, . . . , n. The poles of F (v) are poles of Ĥ (v)
and the zeros of F (v) + 1 are the zeros of Ĥ (v).

Rewrite F (v) as:

F (β, v) = v−(m−n)
(

1−Rv
v −R

)q ⌊n
2 ⌋∏

k=1

1 + skv + rkv
2

v2 + skv + rk

where q = 0 for n even and q = 1 for n odd. For n odd, the parameter vector is β =
[
s1, r1, . . . , s⌊n

2 ⌋, r⌊
n
2 ⌋, R

]
where R is a

real pole lying on the real axis in [−1, ζ1]. By construction, F (β, v) > 0 in the pass-band.

645

The gradients of F (β, v) with respect to the coefficients, β, are:

∂F (β, v)
∂sk

=
(1− rk) v

(
v2 − 1

)
(1 + skv + rkv2) (v2 + skv + rk)F (β, v)

∂F (β, v)
∂rk

=
(
v2 − 1

) (
v2 + skv + 1

)
(1 + skv + rkv2) (v2 + skv + rk)F (β, v)

∂F (β, v)
∂R

= 1− v2

(v −R) (1−Rv)F (β, v)

If ∆p is specified, then the optimisation problem is to find the stop band attenuation, ∆s, and F (β, v) such that Ĥ (v) Ĥ
(1

v

)
has n+ 1 alternating extrema 1 and 1−∆p on (ζ1, ζ2). Saramäki points out that, if ∆s ≪ 1, then, in the pass-band:

Ĥ (v) Ĥ
(

1
v

)
≈ ∆s

4 F (β, v)

If γ = 4
∆s

, then, in the pass-band, the Newton-Raphson update, [∆β,∆γ], is the solution of:

F (β, v) +∇βF (β, v) ∆β = (γ + ∆γ)
(

1− ∆p

2 ±
∆p

2

)

Saramäki suggests that the initial values of β and ∆s be found by transforming the n+ 1 frequencies of the pass-band extremal
points of an order n Chebyshev Type 1 filter from the z-plane to the v-plane and then solving the corresponding n+ 1 non-linear
polynomial equations for Ĥ (v) Ĥ

(1
v

)
in the unknowns e0, . . . , en−1 and ∆s, with en = 1:

F (v) = v−(m−n)
∑n

k=0 en−kv
k∑n

k=0 ekvk

The Octave function saramakiFBvNewton implements Saramäki’s procedure for n < m. The function initialises F (β, v) and
∆s with a polynomial fitted to the n + 1 frequencies of the pass-band extremal points. This method is simple but not robust.
The Octave script saramakiFBvNewton_test.m designs an IIR filter with pass-band edge frequency, fp = 0.2, stop-band edge
frequency, fs = 0.35, pass-band ripple, dBap = 0.1, denominator order, n = 6, and numerator order, m = 9. The resulting
stop-band suppression is 127.29dB. Figure M.13 shows the amplitude response of the filter. Figure M.14 shows the pole-zero
plot of the filter. The numerator and denominator polynomials are, respectively:

n = [0.0018065090, 0.0127354024, 0.0426992728, 0.0888119517, ...
0.1258701526, 0.1258701526, 0.0888119517, 0.0426992728, ...
0.0127354024, 0.0018065090];

d = [1.0000000000, -1.9501129639, 2.9114995274, -2.5231419690, ...
1.5889529275, -0.5970515169, 0.1199588261];

646

0 0.1 0.2 0.3 0.4 0.5

-0.1

-0.05

0

0.05

Saramäki n<m filter response

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-140

-135

-130

-125

-120

Figure M.13: Amplitude response of an IIR filter with n = 6 and m = 9, designed with the procedure of Saramäki.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Saramäki n<m filter

Figure M.14: Pole-zero of an IIR filter with n = 6 and m = 9, designed with the procedure of Saramäki.

647

M.4.3 Surma-aho and Saramäki method of unconstrained optimisation of an initial IIR filter

The method of Tarczynski et al. finds the polynomial transfer function of an initial filter. Surma-aho and Saramäki [113] describe
an algorithm for finding an initial filter with approximately flat group delay in terms of the gain-pole-zero descriptiond of the
cascade-form transfer function, reproduced here as Algorithm M.2. The cascade form filter is decomposed into a minimum-phase
filter and an all-pass equaliser.

Algorithm M.2 Surma-aho and Saramäki method for finding an initial IIR filter in gain-pole-zero form [113, pp. 958-959].
Step 1: Determine the minimum order of an elliptic filter to meet the given amplitude criteria. Denote the minimum order by
nmin and set k = 1. Then, design an elliptic filter transfer function Hk

min (z) such that it satisfies:
Condition 1:

∣∣Hk
min (eıω)

∣∣ oscillates in the stopband [ωs, π] between δs and 0 achieving these values at nmin + 1 points such
that the value at ω = ωs is δs. Here, δs is the specified stopband ripple.
Condition 2:

∣∣Hk
min (eıω)

∣∣ oscillates in the interval
[
0,Ωk

p

] (
Ωk

p ≥ ωp

)
between 1 and 1− δk

p achieving these values at nmin + 1
points such that the value at ω = Ωk

p is 1 − δk
p . For Candidate I, δk

p = δp, with δp being the specified passband ripple, whereas
the passband region

[
0,Ωk

p

]
is the widest possible to still meet the given stopband requirements. For Candidate II, Ωk

p = ωp with
ωp being the specified passband edge, whereas δk

p is the smallest passband ripple to still meet the given stopband criteria.
Step 2: Cascade Hk

min (eıω) with a stable all-pass equalizer with a transfer function Hk
all (eıω) of order nall. Determine the

adjustable parameters of Hk
all (z) and ψk such that the maximum deviation of arg

[
Hk

all (z)Hk
min (z)

]
from the average slope

ϕave (ω) = ψkω is minimized in the specified passband region, [0, ωp]. Let the poles of the all-pass filter be located at z =
zk

1 , z
k
2 , . . . , z

k
nall

.
Step 3: Set k = k + 1. Then, design a minimum-phase filter transfer function Hk

min (z) of order nmin + nall such that it has
nall fixed zeros at z = zk−1

1 , zk−1
2 , . . . , zk−1

nall
and it satisfies Condition 1 of Step 1 with the same number of extremal points, that

is, nmin + 1, and Condition 2 of Step 1 with nmin + nall + 1 extremal points, instead of nmin + 1 points.
Step 4: Like in Step 2, cascade Hk

min (z) with a stable all-pass filter transfer function Hk
all (z) of order nall and determine its

adjustable parameters and ψk such that the maximum of
∣∣arg

[
Hk

all (z)Hk
min (z)

]
− ψkω

∣∣ is minimized in [0, ωp]. Let the poles
of the all-pass filter be located at z = zk

1 , z
k
2 , . . . , z

k
nall

.
Step 5: If

∣∣zk
l − z

k−1
l

∣∣ ≤ ϵ for l = 1, 2, . . . , nall (ϵ is a small positive number), then stop. In this case, the zeros of the
minimum-phase filter being located inside the unit circle and the poles of the all-pass equalizer coincide, reducing the overall
order of H (z) = Hk

all (z)Hk
min (z) from nmin + 2nall to nmin + nall. This filter is the desired initial filter with approximately

linear-phase characteristics. Otherwise, go to Step 3.

Saramäki [235] and Vaidyanathan and Mitra [176] describe the conditions under which a filter transfer function can be imple-
mented as the sum of two all-pass filters. Surma-aho and Saramäki modify their algorithm to design a filter composed of two
parallel allpass filters, H (z) = 1

2 [A (z) +B (z)], where the all-pass filter orders differ by 1 and the numerator polynomial of
H (z) is a symmetric, even-length FIR filter. Step 3 of Algorithm M.2 is modified so that:

the minimum-phase filter is now of order nmin + 2nall and it possesses double zeros at z = zk
1 , z

k
2 , . . . , z

k
nall

.
Consequently, Condition 2 of Step 1 should be satisfied with nmin + 2nall + 1 extremal points. In the case of Step
5, the algorithm is terminated when the double zeros of the minimum-phase filter being located inside the unit circle
and the poles of the all-pass phase equaliser coincide. This reduces the overall order of H (z) = Hk

all (z)Hk
min (z)

from nmin + 3nall to nmin + 2nall. The third modification in the low-pass case is that nmin should be an odd
number.

Surma-aho and Saramäki [113, Appendix] describe an implementation of Steps 1 and 3 of Algorithm M.2 that is similar to that
described above in Section M.4.1, based on Saramäki [234].

Algorithm M.2 is intialised with a minimum-phase filter of order nmin cascaded with an all-pass phase equaliser of order nall.
The squared-magnitude function is constructed with:

F (α, v) =
(

1− ξ2v

v − ξ2

)q

×
⌊nmin

2 ⌋∏
k=1

(
1−Rkv

v −Rk

)2
×

nall∏
k=1

(
1− vΓk

v − Γk

)p

where n = m = nmin + p× nall, q = 0 if nmin is even, q = 1 if nmin is odd, p = 2 if the filter is to be realised as the parallel
sum of two all-pass filters and p = 1 otherwise. The v-plane poles, Γk, are fixed and correspond to the z-plane poles of the
all-pass filter. As above, optimising the stop-band peaks results in a new minimum-phase filter with order nmin + p× nall. This
filter is then equalised with a new all-pass filter of order nall. The procedure is repeated until the poles of the all-pass filter are
cancelled by corresponding zeros of the minimum-phase filter. The resulting filter has order nmin + p× nall and approximately
linear phase in the pass-band.

dAlthough, unfortunately, the algorithm requires root-finding of intermediate polynomials.

648

Low-pass filter example of the Surma-aho and Saramäki method

The Octave script surmaaho_lowpass_test.m designs a low-pass filter with approximately flat pass-band delay. The filter speci-
fication is:

tol=1e-06 % Tolerance on coefficient update vector
nf=1000 % Frequency points across the band
nmin=7 % Minimum-phase filter order
nall=4 % All-pass phase equaliser filter order
fap=0.1 % Pass band amplitude response edge
dBap=0.100000 % Pass band amplitude response ripple
fas=0.125 % Stop band amplitude response edge
dBas=60.000000 % Stop band amplitude response ripple
fpp=0.08 % Initial pass band phase response edge
fpw=0.105 % Wider pass band phase response edge
tp=25 % Nominal pass band group delay
rho=0.968750 % Constraint on allpass pole radius

The gain-zero-pole coefficients are:

Ux=1,Vx=1,Mx=10,Qx=10,Rx=1
x = [0.0011676867, ...

-1.0000000000, ...
0.8292402380, ...
1.0000000000, 1.0000000000, 1.0000000000, 1.2132533887, ...
1.2955253023, ...
0.7950661045, 0.8940993950, 1.2939773298, 0.3403350177, ...
0.1022103062, ...
0.8307487201, 0.8522658190, 0.8566164877, 0.9130582446, ...
0.9737984530, ...
0.1658364238, 0.4787379723, 0.3290091013, 0.6074256121, ...
0.6535665939]';

Figure M.15 shows the response of the filter. Figure M.16 shows the pole-zero plot of the filter.

649

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.015

-0.01

-0.005

0

A
m

pl
itu

de
(d

B
)

Surma-aho-and-Saramäki combined filter response

0 0.1 0.2 0.3 0.4 0.5
-70

-65

-60

-55

-50

0 0.1 0.2 0.3 0.4 0.5

-0.05

0

0.05

Ph
as

e
er

ro
r(

ra
d.

/π
)

Frequency

Figure M.15: Response of a low-pass IIR filter with nmin = 7 and nall = 4, designed with the procedure of Surma-aho and
Saramäki.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Surma-aho-and-Saramäki combined filter

Figure M.16: Pole-zero plot of a low-pass IIR filter with nmin = 7 and nall = 4, designed with the procedure of Surma-aho
and Saramäki.

650

Parallel all-pass low-pass filter example of the Surma-aho and Saramäki method

The Octave script surmaaho_parallel_allpass_lowpass_test.m designs a low-pass filter with approximately flat pass-band delay,
implemented as the sum of two all-pass filters. The filter specification is:

tol=1e-06 % Tolerance on coefficient update vector
nf=2000 % Frequency points across the band
nmin=7 % Minimum-phase filter order
nall=4 % All-pass phase equaliser filter order
fap=0.1 % Pass band amplitude response edge
dBap=0.100000 % Pass band amplitude response ripple
fas=0.125 % Stop band amplitude response edge
dBas=40.000000 % Stop band amplitude response ripple
fpp=0.08 % Initial pass band phase response edge
fpw=0.105 % Wider pass band phase response edge
tp=20 % Nominal pass band group delay
rho=0.968750 % Constraint on allpass pole radius

The combined gain-zero-pole coefficients are:

Ux=1,Vx=1,Mx=14,Qx=14,Rx=1
x = [0.0058222631, ...

-1.0000000000, ...
0.7359976359, ...
0.7374611692, 0.7830853230, 1.0000000000, 1.0000000000, ...
1.0000000000, 1.2770000542, 1.3560035996, ...
0.1197954841, 0.4101589301, 0.7934970298, 0.8762250189, ...
1.2220444984, 0.4101589301, 0.1197954841, ...
0.7287526515, 0.7669920494, 0.7748861071, 0.7909231674, ...
0.7953147511, 0.8897749259, 0.9687752445, ...
0.2165873655, 0.1168506815, 0.6178959041, 0.3839260889, ...
0.4347709628, 0.7064801515, 0.7162074985]';

The all-pass filter pole coefficients are:

% All-pass single-vector representation
Va1=0,Qa1=8,Ra1=1
a1 = [0.7669920485, 0.7748861074, 0.7909231683, 0.9687752451, ...

0.1168506831, 0.6178959041, 0.3839260909, 0.7162074987]';

% All-pass single-vector representation
Va2=1,Qa2=6,Ra2=1
a2 = [0.7359976401, ...

0.7287526518, 0.7953147496, 0.8897749256, ...
0.2165873617, 0.4347709611, 0.7064801511]';

Figure M.17 shows the response of the filter. There are nmin+ 2× nall + 1 = 16 pass-band extrema. Figure M.18 shows the
pole-zero plot of the filter. Figures M.19 and M.20 show the pole-zero plots of the all-pass filters.

651

0 0.1 0.2 0.3 0.4 0.5
-8e-06

-6e-06

-4e-06

-2e-06

0

A
m

pl
itu

de
(d

B
)

Surma-aho-and-Saramäki combined parallel all-pass filter response

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

Ph
as

e
er

ro
r(

ra
d.

/π
)

Frequency

Figure M.17: Response of a parallel all-pass low-pass IIR filter with nmin = 7 and nall = 4, designed with the procedure of
Surma-aho and Saramäki.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Surma-aho-and-Saramäki combined parallel all-pass filter

Figure M.18: Pole-zero plot of a parallel all-pass low-pass IIR filter with nmin = 7 and nall = 4, designed with the procedure
of Surma-aho and Saramäki.

652

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Surma-aho-and-Saramäki A1 all-pass filter

Figure M.19: Pole-zero plot of the A1 all-pass low-pass IIR filter designed with the procedure of Surma-aho and Saramäki.

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Surma-aho-and-Saramäki A2 all-pass filter

Figure M.20: Pole-zero plot of the A2 all-pass low-pass IIR filter designed with the procedure of Surma-aho and Saramäki.

653

M.5 Johansson and Saramäki design of all-pass complementary IIR filters

Johansson and Saramäki [80, Figure 1] describe a class of all-pass complementary IIR filters “realised as a tapped, cascaded
interconnection of identical all-pass sub-filters”. A pair of all-pass complementary filters has:

H (z) +HC (z) = Hap (z)

where Hap (z) is all-pass. A pair of magnitude complementary filters has:

|H (z) |+ |HC (z) | = 1

The transfer function of the filter is:

H (z) =
M∑

k=0
ck [A0 (z)]k [A1 (z)]M−k

where A0 (z) and A1 (z) are stable all-pass filters, M is even and ck = cM−k for k = 0, . . . ,M . The all-pass complementary
transfer function is:

HC (z) = [A0 (z)A1 (z)]
M
2 −H (z)

The filter design starts with a pair of all-pass complementary linear-phase FIR filters:

F (v) =
M∑

k=0
ckv

M−k

FC (v) = v
M
2 − F (v)

where:

v−1 = A0 (z)
A1 (z)

is an all-pass frequency transformation. On the unit circle, z = eωT and v = eΩT , where T is the sampling interval. If ϕ0 (ωT)
is the phase response of A0 (z) and ϕ1 (ωT) is the phase response of A1 (z), then:

ΩT = ϕ1 (ωT)− ϕ0 (ωT)

and the zero-phase response of F (v) is:

FR (ΩT) = cM
2

+ 2
M
2 −1∑
k=0

ck cos
[(

M

2 − k
)

ΩT
]

The gradients of FR with respect to the coefficients are:

∂FR (ΩT)
∂ck

=
{

2 cos
[(

M
2 − k

)
ΩT
]

k = 0, . . . , M
2 − 1

1 k = M
2

∂FR (ΩT)
∂a0

= 2∂ϕ0 (ωT)
∂a0

M
2 −1∑
k=0

ck

(
M

2 − k
)

sin
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]

∂FR (ΩT)
∂a1

= −2∂ϕ1 (ωT)
∂a1

M
2 −1∑
k=0

ck

(
M

2 − k
)

sin
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]

where a0 and a1 represent the coefficients of the all-pass filters A0 and A1, respectively.

The diagonal of the Hessian of FR with respect to the coefficients is:

∂2FR (ΩT)
∂c2

k

= 0

654

∂2FR (ΩT)
∂a2

0
= 2∂

2ϕ0 (ωT)
∂a2

0

M
2 −1∑
k=0

ck

(
M

2 − k
)

sin
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]
· · ·

− 2
[
∂ϕ0 (ωT)
∂a0

]2 M
2 −1∑
k=0

ck

(
M

2 − k
)2

cos
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]

∂2FR (ΩT)
∂a2

1
=− 2∂

2ϕ1 (ωT)
∂a2

1

M
2 −1∑
k=0

ck

(
M

2 − k
)

sin
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]
· · ·

− 2
[
∂ϕ1 (ωT)
∂a1

]2 M
2 −1∑
k=0

ck

(
M

2 − k
)2

cos
[(

M

2 − k
)

(ϕ1 (ωT)− ϕ0 (ωT))
]

As an example, Johansson and Saramäki [80, Figure 2] design a band-stop filter with M = 6, lower pass-band edge, ωaplT =
0.3π, lower stop-band edge, ωaslT = 0.4π, upper stop-band edge ωasuT = 0.5π and upper pass-band edge, ωapuT = 0.6π. The
all-pass transformation phase varies in the range [0,ΩpT] across the lower pass-band, in the range [π − ΩpT, π + ΩpT] across
the stop band and in the range [2π − ΩpT, 2π] across the upper pass-band, where ΩpT = 0.038489. The specified amplitude
peak ripple in each band of the filter is δp = δs = 0.00001. The amplitude response of the prototype FIR filter is designed to
have pass-band and stop-band widths that correspond to the pass-band peak-to-peak phase and stop-band peak-to-peak phase,
respectively, of the all-pass transformation. In other words, the amplitude response of the prototype FIR filter is:

1− δp ≤ |FR (ΩT)| ≤ 1 + δp, ΩT ∈ [0,ΩpT]
|FR (ΩT)| ≤ δs, ΩT ∈ [π − ΩpT, π]

and the phase response of the all-pass transformation is such that:

−ΩpT ≤ ΩT ≤ ΩpT, ωT ∈ [0, ωaplT]
π − ΩpT ≤ ΩT ≤ π + ΩpT, ωT ∈ [ωaslT, ωasuT]

2π − ΩpT ≤ ΩT ≤ 2π + ΩpT, ωT ∈ [ωapuT, π]

Johansson and Saramäki recommend designing the all-pass transformation with the prototype IIR filter:

G (z) = A0 (z) +A1 (z)
2

having magnitude response:

|G (ωT)| =
∣∣∣∣cos ϕ1 (ωT)− ϕ0 (ωT)

2

∣∣∣∣
and

1−∆p ≤ |G (ωT)| ≤ 1 + ∆p, ωT ∈ [0, ωaplT] ∪ [ωapuT, π]
|G (ωT)| ≤ ∆s, ωT ∈ [ωasuT, ωaslT]

where ∆p = 1− cos ΩpT
2 and ∆s = cos π−ΩpT

2 .

To design a magnitude complementary pair of filters, FR (ΩT) must vary between 1− δp and 1 in the pass-band and between 0
and δs in the stop-band. This is achieved by first designing an equi-ripple zero-phase FIR filter, ER (ΩT), with pass-band ripple,
dp, and stop-band ripple, ds, given by:

dp =
δp

2

1− δp

2 −
δs

2

ds =
δs

2

1− δp

2 −
δs

2

so that:

FR (ΩT) = ER (ΩT) + ds

1 + dp + ds

The Octave script johansson_cascade_allpass_bandstop_test.m designs a pair of band-stop and band-pass filters. The band-pass
filter is both all-pass and magnitude complementary to the band-stop filter. The band-stop filter specification is:

655

0 0.005 0.01 0.015
-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

Johansson-and-Saramäki FIR pass-band and stop-band responses

A
m

pl
itu

de
(d

B
)

0.485 0.49 0.495 0.5
-150

-140

-130

-120

-110

-100

A
m

pl
itu

de
(d

B
)

Frequency

Figure M.21: Pass-band and stop-band responses of the Johansson and Saramäki prototype FIR filter.

tol=1e-08 % Tolerance on coefficient update vector
ctol=1e-08 % Tolerance on constraints
nf=5000 % Frequency points across the band
M=6 % Prototype FIR filter order
Fap=0.016 % Prototype FIR pass-band amplitude response edge
delta_p=0.000005 % FIR pass-band amplitude response ripple
delta_s=0.000005 % FIR stop-band amplitude response ripple
fapl=0.15 % Pass-band amplitude response lower edge
fasl=0.2 % Stop-band amplitude response lower edge
fasu=0.25 % Stop-band amplitude response upper edge
fapu=0.3 % Pass-band amplitude response upper edge

The script designs the prototype FIR filter with the directFIRsymmetric_slb and directFIRsymmetric_socp_mmse functions. Fig-
ure M.21 shows the response of the prototype FIR filter. The prototype FIR filter coefficients are:

f1 = [-0.0314881200, -0.0000085599, 0.2814857078, 0.5000169443, ...
0.2814857078, -0.0000085599, -0.0314881200]';

The script designs the prototype IIR filter as the low-pass to band-stop transformation of a parallel all-pass elliptic filter found
with the ellip function from the Octave-Forge signal package. Figure M.22 shows the response of the prototype IIR filter. The
prototype IIR filter parallel all-pass polynomial coefficients are:

bsA0 = [1.0000000000, -0.5650807120, 1.6504676367, -0.4790677580, ...
0.7284677906];

bsA1 = [1.0000000000, -0.2594846657, 0.6383217013];

Figure M.23 shows the pass-band and stop-band zero-phase response of the band-stop filter. Figure M.24 shows the responses of
the complementary filters. Figure M.25 shows the pass-band and stop-band responses of the complementary filters.

656

0 0.1 0.2 0.3 0.4 0.5
-30

-25

-20

-15

-10

-5

0

Frequency

A
m

pl
itu

de
(d

B
)

Johansson-and-Saramäki parallel all-pass band-stop IIR response

Figure M.22: Response of the Johansson and Saramäki prototype IIR filter.

0 0.1 0.2 0.3 0.4 0.5
-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

Johansson-and-Saramäki band-stop zero-phase response

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-110

-109

-108

-107

-106

-105

Figure M.23: Pass-band and stop-band zero-phase response of the Johansson and Saramäki band-stop IIR filter.

657

0 0.1 0.2 0.3 0.4 0.5
-120

-100

-80

-60

-40

-20

0

Johansson-and-Saramäki band-stop complementary responses

A
m

pl
itu

de
(d

B
)

Frequency

Figure M.24: Responses of the Johansson and Saramäki band-stop complementary IIR filters.

0 0.1 0.2 0.3 0.4 0.5
-5e-05

-4e-05

-3e-05

-2e-05

-1e-05

0

Johansson-and-Saramäki band-stop complementary responses

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-110

-109

-108

-107

-106

-105

A
m

pl
itu

de
(d

B
)

Frequency

Figure M.25: Pass-band and stop-band responses of the Johansson and Saramäki band-stop complementary IIR filters.

658

0 0.1 0.2 0.3 0.4 0.5
-0.0001

0

0.0001

0.0002

0.0003

0.0004

Johansson-and-Saramäki cascade all-pass band-stop response after branch-and-bound search (nbits=16)

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-120

-110

-100

-90

-80

A
m

pl
itu

de
(d

B
)

Frequency

exact
s-d

s-d(BandB)

Figure M.26: Responses of the Johansson and Saramäki band-stop filter with 3-signed-digit, 16-bit coefficients designed with
the branch-and-bound algorithm.

The Octave script branch_bound_johanssonOneMlattice_bandstop_16_bits_test.m designs a band-stop filter having 3-signed-
digit 16-bit coefficients with the branch-and-bound algorithm (see Chapter 14). The all-pass filters are implemented as Schur
one-multiplier lattice filters.

The initial band-stop filter is that designed by the Octave script johansson_cascade_allpass_bandstop_test.m. The band-stop
filter specification is:

nbits=16 % Coefficient bits
ndigits=3 % Coefficient signed-digits
nf=5000 % Frequency points across the band
fapl=0.15 % Amplitude pass band lower edge
fasl=0.2 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
fapu=0.3 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
Was=1 % Amplitude stop band weight

The resulting band-stop filter 3-signed-digit, 16-bit coefficients are:

f_min = [-1032, 0, 9224, 16384, ...
9224, 0, -1032]'/32768;

k0_min = [-5632, 29696, -4736, 24064]'/32768;

k1_min = [-5184, 20992]'/32768;

Figure M.26 shows the pass-band and stop-band responses of the filter.

659

0 0.1 0.2 0.3 0.4 0.5
0.999

0.9992

0.9994

0.9996

0.9998

1

Johansson one-multiplier lattice band-stop filter SOCP PCLS response : fapl=0.15,fasl=0.2,fasu=0.25,fapu=0.3

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

2e-07

4e-07

6e-07

8e-07

1e-06

Figure M.27: Responses of the Johansson and Saramäki band-stop filter with PCLS constraints.

The Octave script johanssonOneMlattice_socp_slb_bandstop_test.m designs a band-stop filter with PCLS constraints. The all-
pass filters are implemented as Schur one-multiplier lattice filters. The initial band-stop filter is that designed by the Octave script
johansson_cascade_allpass_bandstop_test.m. The band-stop filter specification is:

tol=1e-07 % Tolerance on coef. update
ctol=2e-08 % Tolerance on constraints
nf=2000 % Frequency points across the band
rho=0.992188 % Constraint on allpass coefficients
fapl=0.15 % Amplitude pass band lower edge
fasl=0.2 % Amplitude stop band lower edge
fasu=0.25 % Amplitude stop band upper edge
fapu=0.3 % Amplitude pass band upper edge
delta_p=0.001 % Amplitude pass band peak ripple
delta_s=1e-06 % Amplitude stop band peak ripple
Wap=1 % Amplitude pass band weight
Was=10 % Amplitude stop band weight

The resulting band-stop filter coefficients are:

f = [-0.0290844866, 0.0045420742, 0.2790841989, 0.4909162740, ...
0.2790841989, 0.0045420742, -0.0290844866]';

k0 = [-0.1871473030, 0.8123348300, -0.1351134955, 0.6385521164]';

k1 = [-0.1587800398, 0.4753385732]';

Figure M.27 shows the pass-band and stop-band responses of the filter.

660

Appendix N

Design of FIR digital filter transfer functions

This chapter reviews methods of designing FIR digital filter transfer functions. FIR filters are described by a transfer function
polynomial in z−1:

H (z) =
N∑

n=0
hnz

−n

This is called the direct-form implementation of the FIR filter. An even-order, N = 2M , symmetric FIR filter is assumed to have
M+1 distinct coefficients and odd length, 2M+1, with h2M−n = hn. The direct-form implementation of a symmetric FIR filter
requires approximately half the number of multipliers used by the non-symmetric direct-form implementation. A symmetric FIR
filter has a linear phase response or, equivalently, a constant group delay response. The transposed-direct-form FIR filter is an
alternative FIR filter implementation that uses Horner’s Rule to evaluate the filter polynomial:

h (z) =
(
. . .
((
hNz

−1 + hN−1
)
z−1 + hN−2

)
z−1 + . . .+ h1

)
z−1 + h0

The transposed-direct-form pipelines the arithmetic operations but cannot make use of a symmetry in the filter polynomial.

N.1 Low passband sensitivity FIR lattice filters

N.1.1 Lattice decomposition of an FIR digital filter

Vaidyanathan [175] describes the design of low passband sensitivity FIR digital filters based on the lattice decomposition of a
bounded-real FIR filter, H (z), such that |H (eıω)| ≤ 1, and the bounded-real complementary filter, G (z), with |H (eıω)|2 +
|G (eıω)|2 = 1. Assume that Hm+1 (z) and Gm+1 (z) are complementary FIR filter transfer function polynomials of order
m+ 1:

Hm+1 (z) =
m+1∑
n=0

hm+1,nz
−n (N.1)

Gm+1 (z) =
m+1∑
n=0

gm+1,nz
−n (N.2)

and write H̃m+1 (z) = H⊤m+1
(
z−1), where ⊤ denotes transpose.

Am+1 (z) = [Hm+1 (z) Gm+1 (z)]⊤ represents the corresponding all-pass filter:

Ãm+1 (z)Am+1 (z) = 1

or

H̃m+1 (z)Hm+1 (z) + G̃m+1 (z)Gm+1 (z) = 1 (N.3)

After expanding Equation N.3 with Equations N.1 and N.2, the term in zm+1 is, by inspection:

hm+1,m+1hm+1,0 + gm+1,m+1gm+1,0 = 0 (N.4)

661

If hm+1,m+1 = 0 then either gm+1,m+1 = 0, in which case the current order reduction step is not necessary, or gm+1,0 = 0 in
which case:

Hm (z) = Hm+1 (z)
Gm (z) = zGm+1 (z)

For the general case, Vaidyanathan derives the following order reduction of Am+1 (z) to Am (z):[
Hm (z)
Gm (z)

]
=
[

km+1 k̂m+1
−k̂m+1z km+1z

] [
Hm+1 (z)
Gm+1 (z)

]
where [175, Equations 13 and 14]:

km+1 = −gm+1,m+1√
h2

m+1,m+1 + g2
m+1,m+1

, k̂m+1 = hm+1,m+1√
h2

m+1,m+1 + g2
m+1,m+1

(N.5)

or [175, Equation 23]:

km+1 = hm+1,0√
h2

m+1,0 + g2
m+1,0

, k̂m+1 = gm+1,0√
h2

m+1,0 + g2
m+1,0

(N.6)

The final order reduction step is: [
1
0

]
=
[

k0 k̂0
−k̂0z k0z

] [
H0 (z)
G0 (z)

]

The m+ 1’th lattice filter section is related to the m’th section by:

Am+1 (z) = τm+1 (z)Am (z)

where

τm+1 (z) =
[
km+1 −k̂m+1z

−1

k̂m+1 km+1z
−1

]
Am (z) also represents an allpass filter since τ̃m+1 (z) τm+1 (z) = I and:

I = Ãm+1 (z)Am+1 (z)
= Ãm (z) τ̃m+1 (z) τm+1 (z)Am (z)
= Ãm (z)Am (z)

The Octave function complementaryFIRdecomp.m implements FIR lattice decomposition with filter order reduction by Equa-
tion N.6. (I found that Equation N.6 has better numerical performance than Equation N.5).

N.1.2 Finite-wordlength properties of the lattice FIR filter

Section N.1.3 shows that transfer function of the complementary FIR lattice is the result of N orthogonal transformations:[
HN GN

]⊤ = τN · · · τ1
[
H0 G0

]⊤
where the τm are orthogonal matrixes:

τm (z) =
[
km −k̂mz

−1

k̂m kmz
−1

]

Vaidyanathan [175][Section VII] shows that this determines the finite-wordlength properties of the lattice FIR filter:

662

Figure N.1: Structure of the complementary FIR lattice filter (see Vaidyanathan [175, Figure 3]).

1. The noise gain from the inputs to the combined complementary outputs of the filter is N

2. The multiplier inputs are scaled since if H2
0 +G2

0 = 1 then H2
m +G2

m = 1. (Section 3.3.3 describes state scaling).

3. The coefficient sensitivities to km are:

∂

∂km

[
HN GN

]⊤ = τN · · · τm+1

[
1 0
0 z−1

]
τm−1 · · · τ1

[
H0 G0

]⊤
so the coefficient sensitivities of the FIR lattice are bounded:∣∣∣∣∂HN

∂km

∣∣∣∣2 +
∣∣∣∣∂GN

∂km

∣∣∣∣2 = 1

N.1.3 State variable description of the complementary FIR lattice filter

Figure N.1 (see Figure 3 of Vaidyanathan [175]) shows the complementary FIR lattice structure.

For convenience, call x′n the input to state xn of the n-th section, ŷn the lower output of the n-th section and yn the upper
output of the n-th section. Construction of the state variable description of the complementary FIR lattice is summarised in
Algorithm N.1.

Algorithm N.1 Construction of a state variable description of the complementary FIR lattice filter.

ŷ0 = k̂0u
y0 = k0u
for n = 1, . . . , N do

x′n = ŷn−1
ŷn = k̂nyn−1 + knxn

yn = knyn−1 − k̂nxn

end for
y = yN

As shown in Section 1.12.2, the state variable description can be expressed as a series of matrix multiplications linking the input
and state outputs to the output and the next state inputs.

ŷ0
y0
x1
x2
...
xN

=

0 · · · · · · 0 k̂0
0 · · · · · · 0 k0
1 · · · · · · 0 0
...

. . .
...

...
. . .

...
0 · · · 1 0

x1
x2
x3
...
xN

u

x′1
ŷ1
y1
x2
...
xN

=

1 0 0 0 · · · 0
0 k̂1 k1 0 · · · 0
0 k1 −k̂1 0 · · · 0
0 0 0 1 · · · 0
...

. . .
...

0 · · · · · · 1

ŷ0
y0
x1
x2
...
xN

663

x′1
x′2
ŷ2
y2
x3
...
xN

=

1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 k̂2 k2 0 · · · 0
0 0 k2 −k̂2 0 · · · 0
0 0 0 0 1 · · · 0
...

. . .
...

0 · · · · · · 1

x′1
ŷ1
y1
x2
x3
...
xN

x′1
...

x′N−1
ŷN−1
yN−1
xN

=

1 · · · · · · 0
...

. . .
...

0 · · · 1 0 0 0
0 · · · 0 k̂N−1 kN−1 0
0 · · · 0 kN−1 −k̂N−1 0
0 · · · 0 0 0 1

x′1
...

x′N−2
ŷN−2
yN−2
xN−1
xN

x′1
...
x′N
ŷN

yN

 =

1 · · · · · · 0
...

. . .
...

0 · · · 1 0 0
0 · · · 0 k̂N kN

0 · · · 0 kN −k̂N

x′1
...

ŷN−1
yN−1
xN

The Octave function complementaryFIRlattice2Abcd returns the state variable description of a complementary FIR lattice filter.
The Octave script complementaryFIRlattice2Abcd_symbolic_test.m creates a symbolic state variable description of the comple-
mentary FIR lattice filter.

N.1.4 Design of the complementary FIR digital filter

The previous sections of this chapter assume that the complementary FIR filter is known. This section shows two methods for
finding that filter. The first, Orchard and Willson’s Newton-Raphson solution [78], is simpler and more accurate than the cepstral
method of Mian and Nainer [65].

Orchard and Willson’s Newton-Raphson solution

If an orderN FIR filterH (z) is bounded-real then |H (eıω)| ≤ 1. The magnitude-squared complementary filter 1−H∗ (z)H (z),
where ∗means complex conjugate transpose, is linear-phase and has double zeros on the unit-circle when |H (eıω)| = 1. Orchard
and Willson [78] find the minimum-phase spectral factor of the magnitude-squared complementary filter by a Newton-Raphson
solution of the non-linear system of equations linking the coefficients of the two filters. They demonstrate that the Newton-
Raphson recursion converges linearly when the linear phase filter being factored has zeros on the unit circle. Orchard and
Willson show a MATLAB (ie: Octave) implementation, minphase.m, in Appendix A of the reference.

Orchard and Willson justify their method with the following example. Firstly, they define a short linear phase FIR filter:

H (z) = z−3 [h0 + h1
(
z + z−1)+ h2

(
z2 + z−2)+ h3

(
z3 + z−3)]

H (z) is assumed to be the product of a minimum phase factor:

F1 (z) = a0 + a1z
−1 + a2z

−2 + a3z
−3

and the corresponding maximum phase factor:

F2 (z) = z−3F1
(
z−1)

= a3 + a2z
−1 + a1z

−2 + a0z
−3

Equating the coefficients of terms on either side of the equality sign in H (z) = F1 (z)F2 (z) gives the system of non-linear
equations:

h0 = a2
0 + a2

1 + a2
2 + a2

3

664

h1 = a0a1 + a1a2 + a2a3

h2 = a1a3 + a0a2

h3 = a0a3

The Newton-Raphson method solves a system of equations f (a) = 0 by successive approximations:

f (ak) + J (ak) [ak+1 − ak] = 0

or:

ak+1 = ak − J−1 (ak) f (ak)

where J (a) is the Jacobian matrix of f (a).

In this case:

f (a) =

h0 − a2

0 − a2
1 − a2

2 − a2
3

h1 − a0a1 − a1a2 − a2a3
h2 − a1a3 − a0a2
h3 − a0a3

J (a) = −

2a0 2a1 2a2 2a3
a1 a2 + a0 a3 + a1 a2
a2 a3 a0 a1
a3 0 0 a0

= −

a0 a1 a2 a3
a1 a2 a3 0
a2 a3 0 0
a3 0 0 0

−

a0 a1 a2 a3
0 a0 a1 a2
0 0 a0 a1
0 0 0 a0

The function minphase.m solves for the coefficient update, dk+1 = ak+1−ak, by matrix left division. The C++ file minphase.cc
implements the minphase algorithm as an oct-file using the Eigen [73] C++ template library with long double matrix elements.

I experimented with the Octave-Forge optim package leasqr function, an implementation of Levenberg-Marquardt non-linear
optimisation. I found that leasqr needed to be initialised with the minphase solution and did not improve that solution by more
than a few machine epsilon.

Mian and Nainer’s cepstral method

Mian and Nainer [65] describe finding the minimum-phase spectral factor of the magnitude-squared complementary response by
calculating the cepstrum of that response along a z-plane contour slightly off the unit circle. This contour reduces aliasing of the
cepstrum due to the response zeros that lie on the unit circle. See Appendix A for a review of the complex variables theory used
in this section.

Properties of the cepstrum Firstly, recall that the z-transform of a real sequence, x, is

X (z) =
∞∑

n=−∞
x (n) z−n

and that the inverse z-transform is

x (n) = 1
2πı

‰
C

X (z) zn−1dz

where the contour, C, is centred on the origin and lies within the region of convergence. Cauchy’s integral lemma is

‰
C

zndz =
{

2πı n = −1
0 n ̸= −1, integral

The complex cepstrum is the inverse z-transform of X̂ (z) = logX (z) = log |X (z)|+ ı argX (z) on the unit circle:

x̂ (n) = 1
2πı

‰
C

logX (z) zn−1dz

665

The real cepstrum is the inverse z-transform of log |X (z)| on the unit circle.

For example, suppose X (z) = K
(
1− az−1) (1− bz), where |a| , |b| < 1. By Cauchy’s integral lemma and the definition of

the z-transform, K = X (0) = x (0). The complex cepstrum is:

x̂ (n) = 1
2πı

‰
C

[
logK + log

(
1− az−1)+ log (1− bz)

]
zn−1dz

Applying Cauchy’s integral lemma and the series expansion log (1 + z) =
∑∞

k=1 (−1)k+1 zk

k , where |z| < 1:

x̂ (n) =

−an

n , n > 0
logK, n = 0
bn

n , n < 0

This example demonstrates the motivation for using the cepstrum to find a minimum-phase spectral factor: if x is minimum-phase
then the cepstrum, x̂, is causal. Similarly, if x is maximum-phase then the cepstrum is anti-causal.

The complex cepstrum is related to the original sequence, x, by a recursion. In the z-domain:

d

dz
X̂ (z) = 1

X (z)
d

dz
X (z)[

−z d
dz
X̂ (z)

]
X (z) = −z d

dz
X (z)

So, in the time domain:

nx̂ (n) ⋆ x (n) = nx (n)

In other words:

x (n) =
{
ex̂(0) n = 0∑∞

k=−∞
k
n x̂ (n)x (n− k) n ̸= 0

(N.7)

Using the cepstrum to find the minimum-phase spectral factor Given a bounded-real transfer function H (z) of order N ,
the z-transform of the magnitude-squared complementary filter is:

F (z) = 1− |H (z)|2 = 1−H∗ (z)H (z)

where ∗means complex conjugate transpose. By construction, F (z) is real, even, 0 ≤ F (eıω) ≤ 1 and any zeros of F (z) on the
unit circle are double zeros. If F (z) has zeros on the unit circle, then F̂ (z) = logF (z) is not defined at those zeros. However
we can make use of the z-transform

X (αz) =
∞∑

n=−∞
α−nx (n) z−n

to calculate the cepstrum over a contour that is slightly outside the unit circle. In this case, F (αz) is real and even so that, by
construction, the cepstrum, f̂α (n), is real and even. Therefore the causal part of the cepstrum is

ĥα (n) =

f̂α(n)

2 n = 0
f̂α (n) n > 0
0 n < 0

and the impulse response of the minimum-phase spectral factor is h (n) = αnhα (n) where hα (n) is found from the recursion
given above in Equation N.7. Unfortunately this method fails if F (αz) is not positive.

A simple example Here is Octave code for a simple example recovering the minimum-phase spectral factor from a magnitude-
squared filter with double zeros on the unit circlea:

aNote that the Octave convention is that the polynomial [a b c] corresponds to the z-transform a + bz−1 + cz−2 so the zero-phase squared-magnitude
response calculated by freqz must be scaled by a denominator polynomial z−N .

666

% Construct a minimum phase example with zeros on the unit circle
a1=[1 -1 0.5];a2=[1 -0.5];a3=[1 0 0.81];a4=[1 -1];a5=[1 -sqrt(2) 1];
a=conv(conv(conv(conv(a1,a2),a3),a4),a5);
% Construct the squared-magnitude filter for a contour of |z|=alpha
Na=length(a)-1;
alpha=1.05;
aalpha=a.*(alpha.^[0:-1:-Na]);
asq=conv(fliplr(aalpha),aalpha);
% The zero-phase squared-magnitude frequency response is real, positive and even
Hasq=freqz(asq,[zeros(1,Na) 1],4096,"whole");
Hasq=real(Hasq);
% The cepstrum is real and even
hhatasq=ifft(log(Hasq));
hhatasq=real(hhatasq(:)');
% Use the causal part of the cepstrum
ha=zeros(1,Na+1);
ha(1)=exp(hhatasq(1)/2);
for n=2:(Na+1)
ha(n)=sum([1:(n-1)].*hhatasq(2:n).*fliplr(ha(1:(n-1))))/(n-1);

endfor
% Recover the original minimum-phase impulse response
h=ha.*(alpha.^[0:Na]);

Sturm’s example of minimum phase spectral factorisation by semi-definite programming

Sturm [227, Equation 13, Section 3.2] claims that the solution to the following semi-definite programming problem is a minimum
phase spectral factorisation, xk, of an autocovariance sequence, rk:

minimise
m∑

l=1
(m− l)xl,l

subject to
m−k∑
l=1

xl,l+k = rk k = 0, . . . ,m− 1

X ≻ 0

where X is a symmetric matrix with elements xk,l. Unfortunately, Sturm’s reference justifying this statement is not accessible
but the associated website states that similar work is described by Dumitrescu et al. [22] and Dumitrescu [20].

Sturm contributed a spectral factorisation example to the 7’th DIMACS challenge [37]. It is reproduced as the Octave script
sedumi_minphase_test.m which solves the following problem:

minimise
n∑

l=1
rlyl

subject to Toeplitz
[
y1,

1
2y2, . . . ,

1
2yn

]
− diag [n− 1, . . . , 1, 0] ⪰ 0

I have reversed the sign of the term in [n− 1, . . . , 1, 0] so that the zeros of the complementary filter are inside the unit-circle.

Tuqan and Vaidyanathan’s semi-definite programming solution

Tuqan and Vaidyanathan [102] propose a state-space approach to solving the optimisation problem:

maximise
ˆ π

−π

|H (eıω)|2W (eıω)

subject to
1
M

M−1∑
k=0
|H
(
eı(ω−2πk)/M

)
|2 = |H (eıω)|2|↓M

H (ω) is an order N FIR filter, known as the compaction filter, and W (ω) is a weighting function. M is the decimation factor
applied to the output of the filterH (z). H (z) is to be used in an orthonormal filter-bank withHk (eıω)Hl (eıω) = δk−l. Assume
that the input to the filter is a zero-mean Gaussian noise sequence, xn, with power spectrum Sxx (eıω), autocorrelation sequence,

667

rn, that the output sequence is yn and that F (z) = H (z)H
(
z−1). Setting W (ω) = Sxx (ω), the objective function is the

variance of the output sequence:

σ2
y = r0 + 2

N∑
n=1

fnrn

and the constraints are:

fMn = δn

F (ω) = 1 + 2
N∑

n=1
fn cosωn ≥ 0 ∀ω

Suppose D (z) is implemented as a direct form FIR filter with the state space representation:

Ad =
[

0 I
0 0

]
Bd =

[
0 0 · · · 1

]⊤
Cd =

[
fN · · · f1

]
Dd = 1

2

The discrete time positive real lemma, a corollary of the Kalman-Yakubovitch-Popov lemma, states that D (z) is positive real
if-and-only-if there exists a real, symmetric, positive definite matrix, Pd, and real matrixes Wd and Ld such that:

Pd −A⊤d PdAd = L⊤d Ld

Cd −A⊤d PdBd = L⊤d Wd

Dd +D⊤d −B⊤d PdBd = W⊤d Wd

By substitution [102, Theorem 1] H (z) = Wd +Ld

(
zI −A−1

d

)
Bd is seen to be a spectral factor of F (z). The minimum phase

solution, Hmin (z), is that for which Pdmin is the minimum element of the convex set of symmetric positive definite matrixes
satisfying the LMI. Tuqan and Vaidyanathan show [102, Theorem 3] that, if Dd +D⊤d −B⊤d PdBd ̸= 0, then Pdmin

is the unique
solution of the following algebraic Riccati equation:

Pd = A⊤d PdAd +
(
C⊤d −A⊤d PdBd

) (
Dd +D⊤d −B⊤d PdBd

)−1 (
C⊤d −A⊤d PdBd

)⊤
or:

Pd = A⊤1 PdA1 +A⊤1 PdBd

(
R−B⊤d PdBd

)−1
B⊤d PdA1 + C⊤d R

−1Cd

A1 = Ad −BdR
−1Cd

R = Dd +D⊤d ≻ 0

In this case, the autocorrelation function, {Dd, Cd}, of the complementary filter is known in advance and the initial semi-definite
programming solution for Pd and Cd is not required. In addition, the filter is known to be SISO so that, for the minimum phase
solution, Hmin (z):

Wd =
(
Dd +D⊤d −B⊤d PdminBd

) 1
2

Ld = W−1
d

(
Cd −B⊤d PdminAd

)

668

N.1.5 Example: the minium-phase complementary filter of an FIR bandpass filter

The Octave script minphase_test.m compares the use of Orchard and Willson’s Newton-Raphson method with the cepstral method
of Mian and Nainer. The script uses both methods to find the minimum-phase complementary filter for an FIR bandpass filter
designed with the Octave remez function. The filter specification is:

tol=1e-06 % tolerance on results
N=31 % filter order
fasl=0.05 % Stop band amplitude response lower edge
fapl=0.1 % Pass band amplitude response lower edge
fapu=0.2 % Pass band amplitude response upper edge
fasu=0.25 % Stop band amplitude response upper edge
Wasl=2 % Stop band amplitude response lower weight
Wap=1 % Pass band amplitude response weight
Wasu=2 % Stop band amplitude response upper weight

The combined response of the bandpass filter and the complementary filter found by the Newton-Raphson method is allpass to
within an order of magnitude of the machine precision (eps = 2.2204e− 16). The bandpass and complementary filters are:

brz = [-0.005108333779, 0.003660671781, -0.012383396144, -0.006947750356, ...
0.021448945190, 0.042973631538, 0.025415530577, -0.008724449666, ...

-0.004783022289, 0.027072600200, 0.000746818465, -0.110359730794, ...
-0.181875048113, -0.073706903519, 0.156538506093, 0.277521749504, ...
0.156538506093, -0.073706903519, -0.181875048113, -0.110359730794, ...
0.000746818465, 0.027072600200, -0.004783022289, -0.008724449666, ...
0.025415530577, 0.042973631538, 0.021448945190, -0.006947750356, ...

-0.012383396144, 0.003660671781, -0.005108333779]';

brzc = [0.702278455158, -0.284747150190, 0.195991006199, 0.310333248307, ...
0.135915839465, -0.007622203880, 0.013539408392, 0.068315146105, ...
0.019358425439, -0.088556180208, -0.123568391645, -0.052846068256, ...
0.035521731841, 0.060100581877, 0.029846895503, 0.000251446156, ...

-0.003826320303, 0.001544785942, -0.000527786189, -0.006517762705, ...
-0.006982385693, -0.002252609052, 0.001415579659, 0.001682492398, ...
0.000733967870, 0.000312597850, 0.000190007105, -0.000036513338, ...

-0.000173379619, 0.000038188995, -0.000037157731]';

The reflection coefficients of the bandpass and complementary filters are:

k = [0.999973545923, 0.999997439113, 0.999892198494, 0.999912068377, ...
0.999560459113, 0.996590306134, 0.997582105159, 0.999848632328, ...
0.997255806727, 0.999503325334, 0.999993493602, 0.993567986529, ...
0.962834847250, 0.987076261596, 0.964636965455, 0.863342901944, ...
0.964636965455, 0.987076261596, 0.962834847250, 0.993567986529, ...
0.999993493602, 0.999503325334, 0.997255806727, 0.999848632328, ...
0.997582105159, 0.996590306134, 0.999560459113, 0.999912068377, ...
0.999892198494, 0.999997439113, -0.007273751039]';

khat = [0.007273751039, -0.002263132143, 0.014683030694, 0.013261052526, ...
-0.029646055025, -0.082509161431, -0.069497794685, 0.017398633019, ...
0.074032803197, 0.031513531157, -0.003607319586, 0.113237167684, ...
0.270090830870, 0.160251220882, -0.263582102727, -0.504617710413, ...

-0.263582102727, 0.160251220882, 0.270090830870, 0.113237167684, ...
-0.003607319586, 0.031513531157, 0.074032803197, 0.017398633019, ...
-0.069497794685, -0.082509161431, -0.029646055025, 0.013261052526, ...
0.014683030694, -0.002263132143, 0.999973545923]';

Figure N.2 shows the simulated FIR lattice bandpass and complementary filter amplitude responses. Figure N.3 shows the zeros
of the complementary filter.

669

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0
A

m
pl

itu
de

(d
B

)

Frequency

Figure N.2: Simulated amplitude responses of the FIR lattice band-pass filter and the minimum-phase complementary filter found
with the Newton-Raphson method of Orchard and Willson [78].

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Minimum phase complementary filter zeros

Figure N.3: Zeros of the complementary filter found with the Newton-Raphson method of Orchard and Willson [78].

670

0 0.1 0.2 0.3 0.4 0.5
-1e-10

-5e-11

0

5e-11

1e-10

Frequency

A
m

pl
itu

de
(d

B
)

Figure N.4: Combined amplitude responses of the FIR band-pass filter and the minimum-phase complementary filter found with
the cepstral method of Mian and Nainer [65].

Unfortunately, in the case of the cepstral method, F (αz) with α ≈ 1.15 is real and even but not positive. Fortuitously, when
using α = 1 with a long FFT the sampling grid did not include the filter zeros. Response aliasing due to the discontinuities
in logF (αz) gave a result that was less accurate than that obtained with minphase.m but was still acceptable. The combined
amplitude response found with the cepstral method is shown in Figure N.4.

The Octave script directFIRnonsymmetric_sdp_minimum_phase_test.m finds the complementary filter by following the semi-
definite programming method of Sturm [227, Section 3.2]. Figure N.5 shows the resulting combined response.

The Octave script tuqanFIRnonsymmetric_dare_minimum_phase_test.m attempts to find the complementary filter by following
the Riccati equation method of Tuqan and Vaidyanathan [102, Equation 38]. The Riccati equation is solved with the dare function
from the Octave-Forge control toolbox [162]. Figure N.6 shows the resulting complementary filter response.

671

0 0.1 0.2 0.3 0.4 0.5
-1e-05

-8e-06

-6e-06

-4e-06

-2e-06

0

2e-06

Frequency

A
m

pl
itu

de
(d

B
)

Combined filter response

Figure N.5: Combined amplitude responses of the FIR band-pass filter and the complementary filter found with the semi-definite
programming method of Sturm [227, Section 3.2].

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Complementary filter response

Figure N.6: Response of the complementary FIR filter found with the Riccati equation method of Tuqan and Vaidyanathan [102,
Equation 38].

672

N.1.6 Estimating the MA coefficients of a filtered noise sequence

This Section follows the description by Dumitrescu et al [22] of the estimation of the MA (or FIR) coefficients of a filtered noise
sequence. It is intended to provide some justification for Sturm’s spectral factorisation example shown in Section N.1.4.

Autocovariance of a noise sequence

Suppose we have N samples, x̂l of a real valued stationary random time series, xl:

x̂l =
{
xl 1 ≤ l ≤ N
0 otherwise

An estimate of the autocovarianceb of x̂l isc:

r̂k = 1
N

N∑
l=1

x̂lx̂l+|k|

=
{

1
N

∑N−|k|
l=1 xlxl+|k| |k| < N

0 otherwise

The expectation, or mean, of this estimate is:

E {r̂k} = 1
N

N−|k|∑
l=1
E
{
xlxl+|k|

}
=
{

(N − |k|) rk |k| < N

0 otherwise

where rk is the autocovariance function of xl. This definition of the estimator of the autocovariance, r̂k, is biased because
E {r̂k} ≠ rk. An unbiased estimator is:

řk = 1
N − |k|

N−|k|∑
l=1

xlxl+|k| |k| < N

Autocovariance of the response of an FIR filter to white noise

Given an FIR filter transfer function, H (z) =
∑n

k=0 hkz
−k, with yk =

∑n
l=0 hlek−l where ek is zero mean, unit variance,

white Gaussian noise, then the autocovariance sequence of yk is [22, Equation 2 II]:

rk = E {ymym−k}

= E
{

n∑
l=0

hlem−l

n∑
p=0

hpem−k−p

}

= E
{

n∑
l=0

n∑
p=0

hlhpem−lem−k−p

}

=
n∑

l=0

n−k∑
p=−k

hlhp+kE {em−lem−p}

=
n−k∑
l=0

hlhl+k

bcovariance and correlation are similar concepts. correlation is unit-less and varies between −1 and 1.
cNote that for 0 ≤ k < N :

r̂−k =
1
N

N∑
l=1

x̂lx̂l−k =
1
N

N−k∑
l=1−k

x̂l+kx̂l =
1
N

N−k∑
l=1

xl+kxl

673

=
n∑

l=k

hlhl−k

= h⊤Akh

= traceAkhh
⊤

for k = 0, . . . , n, r−k = rk, rk = 0 for |k| > n, h = [h0, h1, . . . , hn] and Ak denotes the matrix with unit entries on the kth
diagonal.

Spectral factorisation of the autocovariance sequence

The following constraints on the polynomial R (z) =
∑n

k=−n rkz
−k are equivalent [22, Section II]:

• R (z) has a spectral factorisation R (z) = H (z)H (−z)

• the positiveness of R (eıω) is equivalent to the real positiveness of

R+ (eıω) = ℜ
{
r0

2 +
n∑

k=1
rke
−ıkω

}
≥ 0

• the positive real condition on a polynomial

R+ (z) = r0

2 +
n∑

k=1
rkz
−k

is defined, for the trace parameterisation, as rk = traceAkQ where Q is an (n+ 1) × (n+ 1) positive semi-definite
matrix.

Dumitrescu et al. remark that, since Q is positive semidefinite, it may be expressed as Q = GG⊤ where G ∈ R(n+1)×ν ,
ν = rankQ and G (z) represents an infinite family of SIMO spectral factors of R (z).

Primal formulation of the covariance estimation problem

Dumitrescu et al. [22] show algorithms for estimating the MA (or FIR) parameters of a noisy sequence. In this Section I follow
Dumitrescu et al.’s treatment of the, so-called, trace parameterisationd. Dumitrescu et al. begin by defining a positive real
sequence rk:

r0 +
n∑

k=1
rk cos kω ≥ 0

for all ω ∈ [0, π] and rk ∈ R. Given N samples of the filter output y1, . . . , yN , the covariance estimates

r̂k = 1
N

N∑
l=k+1

ylyl−k

have variance-covariances [180, Section II] E {[r̂k − rk] [r̂l − rl]}, which can be approximated by [238, Equation B.48]:

Ŵkl ≈
1
N2

n∑
m=−n

(N − |m|) [r̂mr̂m+k−l + r̂m−lr̂m+k] (N.8)

where k, l = 0, 1, . . . and N ≫ n.

Dumitrescu et al. [22, Section III] define the (n+ nγ + 1) × (n+ nγ + 1) matrix Ŵ with entries Ŵkl and the vectors r̂ =
[r̂0, . . . , r̂n] and γ̂ =

[
r̂n+1, . . . , r̂n+nγ

]
. Following Stoica et al. [180, Equation 7], they propose the weighted least squares

fitting criterion:

f = 1
2

[
r̂ − r
γ̂

]⊤
Ŵ−1

[
r̂ − r
γ̂

]
dThe main purpose of their paper is to show that the trace parameterisation is equivalent to a Kalman-Yakubovich-Popov lemma parameterisation. In addition

they describe the primal and dual solutions for each parameterisation.

674

and suggest that nγ =
√
N . If Ŵ is partitioned as

Ŵ =
[
Ŵ11 Ŵ12
Ŵ⊤12 Ŵ22

]
where Ŵ11 is (n+ 1)× (n+ 1), then the fitting criterion becomes:

f = 1
2 (r − r̃)⊤ Γ−1 (r − r̃) + const.

where

r̃ = r̂ − Ŵ12Ŵ
−1
22 γ̂

Γ = Ŵ11 − Ŵ12Ŵ
−1
22 Ŵ

⊤
12

In the trace parameterisation, the problem of estimating the covariances becomes [22, Equation 17]:

minimise
1
2 (r − r̃)⊤ Γ−1 (r − r̃)

subject to rk = traceAkQ, k = 0, . . . , n
Q ≻ 0

(N.9)

Dual formulation of the covariance estimation problem

The Lagrangian of the primal problem is

L (r,Q, µ,X) = f (r)− traceXQ+
n∑

k=0
µk (traceAkQ− rk)

= f (r) + trace
[
−X +

(
n∑

k=0
µkAk

)
Q

]
− µ⊤r

= f (r) + 1
2 trace

[
−2X +

(
n∑

k=0
µk

(
Ak +A⊤k

))
Q

]
− µ⊤r

where the positive semidefinite symmetric matrix, X , is the Lagrange multiplier for the linear matrix inequality Q ⪰ 0. Differ-
entiating the Lagrangian with respect to r:

∂L (r,Q, µ,X)
∂r

= Γ−1 (r − r̃)− µ

so that the solution to the primal problem is r⋆ = r̃ + Γµ. The terms of the Lagrangian in r are bounded from below by

f (r⋆) = 1
2µ
⊤Γµ− µ⊤ (Γµ+ r̃)

= −1
2µ
⊤Γµ− µ⊤r̃

The Lagrangian is affine in the elements of Q so that the dual function is defined to be

g (X,µ) = inf
r,Q

L (r,Q, µ,X)

=
{
− 1

2µ
⊤Γµ− µ⊤r̃ if X = 1

2
∑n

k=0 µk

(
Ak +A⊤k

)
−∞ otherwise

If Γ has the Cholesky decomposition Γ = G⊤G, then

1
2µ
⊤Γµ+ µ⊤r̃ = 1

2
(
Gµ+G−⊤r̃

)⊤ (
Gµ+G−⊤r̃

)
− 1

2 r̃
⊤Γ−1r̃

The dual problem is [22, Equations 24 and 47]:

minimise η

subject to ∥Gµ+G−⊤r̃∥ ≤ η

X (µ) = Toeplitz
[
µ0,

1
2µ1, . . . ,

1
2µn

]
⪰ 0

(N.10)

675

The sign of the objective is reversed to get a minimisation problem.

Dumitrescu et al. refer to an approach for fast solutions of SDP problems with Toeplitz LMIs [259]. Dumitrescu et al. sug-
gest spectral factorisation of r⋆ by solving a Ricatti equation. This appears to refer to the method proposed by Tuqan and
Vaidyanathan [102, Theorem 3]. Also see Sayed and Kailath [6, Section 5].

Dumitrescu et al. [22, Theorem 2 and Section IV] show that the primal solution pair {r⋆, Q⋆} and the dual solution µ⋆ have the
following strong duality properties

1
2 (r̃ − r⋆)⊤ Γ−1 (r̃ − r⋆) = −1

2µ
⋆⊤Γµ⋆ − µ⋆⊤r̃

r⋆ = Γµ⋆ + r̃

X (µ⋆)Q⋆ = 0
µ⋆⊤r⋆ = 0

(N.11)

Dumitrescu et al. note that the FIR parameter vector, h⋆, is an eigenvector of X (µ⋆), corresponding to the eigenvalue 0.

An example

The Octave script dumitrescu_MA_estimation_test.m attempts to implement the, so-called, CFD solution of Dumitrescu et al. [22,
Equation 47] described above. The specifications of the original filter and estimation procedure are:

n=20 % Filter order
ne=20 % Filter order for estimation
N=2000 % Number of filtered noise samples
Rz=0.980000 % Radius of filter zeros

Figures N.7 and N.8 show the amplitude responses and zeros, respectively, of the original FIR filter and the estimated filter found
by the CFD semi-definite programming method. The minimum-phase filter was calculated with the method of Orchard and
Willson shown previously in Section N.1.4. I found that:

• for zero radiuses Rz = 0.9, r̃ is positive and r⋆ = r̃

• for zero radiuses Rz = 0.98:

– r̃ is not positive

– the limits on l in Equation N.8 are widened to l = ± (n+ nγ) so that Ŵkl is positive-definite and SOCP estimation
is possible

• for zero radiuses Rz = 0.99 r⋆ has zeros very close to the unit-circle and minphase fails

676

0 0.1 0.2 0.3 0.4 0.5
-10

-5

0

5

10

15

20

25

Frequency

A
m

pl
itu

de
(d

B
)

MA estimator amplitude response : n=20, N=2000, Rz=0.98

h
h*

Figure N.7: Amplitude responses of the example FIR filter and the estimated filter found with Dumitrescu et al.’s CFD semi-
definite programming method.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

MA estimator zeros : n=20, N=2000, Rz=0.98

Figure N.8: Zeros of the example FIR filter and the estimated filter found with Dumitrescu et al.’s CFD semi-definite program-
ming method.

677

N.1.7 Design of a complementary FIR lattice band-pass Hilbert filter

The Octave script complementaryFIRlattice_socp_slb_bandpass_test.m designs a PCLS optimised FIR lattice Hilbert band-pass
filter with order 16. The filter specification is:

tol=1e-06 % Tolerance on coef. update
ctol=1e-06 % Tolerance on constraints
nplot=1000 % Frequency points across the band
% length(k0)=17 % Num. FIR lattice coefficients
% sum(k0~=0)=17 % Num. non-zero FIR lattice coef.s
fsl=0.05 % Lower stop band upper edge
fpl=0.1 % Pass band lower edge
fpu=0.2 % Pass band upper edge
fsu=0.25 % Upper stop band lower edge
dBap=3 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
dBas=20 % Amplitude stop band peak-to-peak ripple
Wasl=100 % Ampl. lower stop band weight
Wasu=100 % Ampl. upper stop band weight
tp=5 % Pass band group delay
tpr=1 % Delay pass band peak-to-peak ripple
Wtp=0.1 % Delay pass band weight
pp=1.50 % Pass band phase(rad., adjusted for tp)
ppr=0.02 % Phase pass band peak-to-peak ripple(rad.)
Wpp=1 % Phase pass band weight

The initial filter is the band-pass filter designed by the Octave script iir_sqp_slb_fir_17_bandpass_test.m in gain-pole-zero form.
The corresponding initial minimum-phase FIR lattice filters were calculated by the Octave function complementaryFIRlattice.

Figure N.9 shows the zeros of the initial FIR lattice band-pass and complementary filters.

The PCLS optimised filter lattice coefficients are:

k2 = [0.9843749874, 0.9843631757, 0.9843749817, 0.9843749784, ...
0.9843459673, 0.9843565255, 0.9843634536, 0.9843597582, ...
0.9843749877, 0.9616092363, 0.9783249999, 0.9843523724, ...
0.8651000625, 0.9391119994, 0.9843712626, 0.9843749891, ...
0.1431375890]';

and:

khat2 = [-0.0468090807, -0.0110912967, 0.0396599506, 0.0865990302, ...
0.0779802534, 0.0419015455, 0.0369863558, 0.0160168973, ...

-0.1702565288, -0.4765225330, -0.4461363574, 0.1095851999, ...
0.6318802295, 0.5215848417, 0.0125879124, -0.2158720481, ...
0.9843107114]';

The corresponding direct-form FIR band-pass Hilbert filter coefficients are:

Nh2 = [0.0905516677, 0.0672322349, -0.0672208470, -0.2162026920, ...
-0.2047022993, -0.0057471919, 0.1918350844, 0.2011736015, ...
0.0531978852, -0.0805104663, -0.0901114106, -0.0324363626, ...
0.0009615960, -0.0060123426, -0.0150377967, -0.0165811069, ...
0.0296104160];

Figure N.10 shows the amplitude, phase and delay responses of the PCLS optimised FIR lattice band-pass Hilbert filter. The
phase response shown is adjusted for the nominal delay. The FIR lattice band-pass Hilbert filter was simulated with a uniformly
distributed random noise input. The standard-deviations of the 16 states are:

std(xxk2) = [0.0468090807, 0.0474151868, 0.0605190223, 0.1024072269, ...
0.1248541675, 0.1287002224, 0.1307390077, 0.1292894901, ...
0.1974856625, 0.4528922760, 0.5518254813, 0.5742691440, ...
0.7041656788, 0.6000123683, 0.5877751127, 0.5358053828];

Figure N.11 shows the zeros of the PCLS optimised FIR lattice band-pass Hilbert filter and the complementary filter. The FIR
lattice filters need not be minimum-phase.

678

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) Zeros of the initial FIR lattice band-pass filter.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Zeros of the initial FIR lattice band-pass complementary filter.

Figure N.9: Zeros of the initial band-pass FIR lattice filter and the complementary filter.

679

0 0.1 0.2 0.3 0.4 0.5
-30
-25
-20
-15
-10

-5
0

fsl=0.05,fpl=0.1,fpu=0.2,fsu=0.25,dBap=3,dBas=20,tp=5,tpr=1,pp=1.5,ppr=0.02

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5

1.49
1.5

1.51

Ph
as

e(
ra

d.
/π

)

Figure N.10: Response of the PCLS optimised FIR lattice band-pass Hilbert filter. The phase response shown is adjusted for the
nominal delay.

680

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

(a) Zeros of the PCLS optimised FIR lattice band-pass Hilbert filter.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b) Zeros of the PCLS optimised FIR lattice complementary filter.

Figure N.11: Zeros of the PCLS optimised FIR lattice band-pass Hilbert filter and the complementary filter.

681

N.2 Design of FIR digital filters with unconstrained optimisation of the piece-wise
mean-squared error of the response

An FIR filter with zero-phase amplitude response A (ω), piece-wise constant desired amplitudes, Ak, and weights, Wk, over
frequency regions Ωk ⊂ [0, π], has piece-wise mean-squared-error:

E2
k = 1

π

ˆ
Ωk

Wk [A (ω)−Ak]2 dω

If h is a vector containing the FIR filter impulse response, then the weighted sum of the piece-wise mean-squared-errors, E2, is
a quadratic form:

E2 = h⊤Qh + 2qh + c (N.12)

In this section I give examples of the optimisation of E2 without constraints on the response of the FIR filter. The examples show
optimisation with the Octave qp function. In each case qp objective function is the mean-squared-error quadratic form shown in
Equation N.12 and there are no qp constraints. I consider symmetric and non-symmetric FIR filters and usually assume that the
filters are even-order and odd-length.

N.2.1 Zero-phase transfer functions of symmetric FIR filters

Zero-phase transfer functions of even-order symmetric FIR filters

The transfer function of an even order, N = 2M , odd length, 2M + 1, symmetric FIR filter is:

H (z) =
2M∑
n=0

hnz
−n

=
M−1∑
n=0

hnz
−n + hMz−M +

2M∑
n=M+1

hnz
−n

= z−M

{
hM +

M−1∑
n=0

hn

[
zM−n + z−M+n

]}
where hn = hN−n. The zero-phase amplitude response is:

A (ω) = hM +
M−1∑
n=0

2hn cos [(M − n)ω]

Zero-phase transfer functions of odd-order symmetric FIR filters

The transfer function of an odd-order, even-length, N = 2M − 1, symmetric FIR filter is:

H (z) =
2M−1∑
n=0

hnz
−n

=
M−1∑
n=0

hnz
−n +

2M−1∑
n=M

hnz
−n

=
M−1∑
n=0

hn

[
z−n + zn−(2M−1)

]
= z−M+ 1

2

M−1∑
n=0

hn

[
z−n+M− 1

2 + zn−M+ 1
2

]
where hn = hN−1−n and N = 2M − 1. The zero-phase amplitude response is:

A (ω) = 2
M−1∑
n=0

hn cos
[(
M − 1

2 − n
)
ω

]

682

Zero-phase transfer functions of anti-symmetric FIR Hilbert filters

The frequency response of an ideal Hilbert transform filter is [169, pp.790-792]:

H (ω) =
{
−ı 0 < ω < π

ı −π < ω < 0

The corresponding impulse response is:

ĥk = 1
2π

ˆ 0

−π

ıeıωkdω − 1
2π

ˆ π

0
ıeıωkdω

=

2
πk

sin 2πk

2 k ̸= 0

0 k = 0

Clearly ĥk = −ĥ−k and ĥ2k = 0.

If the FIR Hilbert filter is truncated to even order 4M − 2 and odd length 4M − 1, then there are M distinct coefficients, the
group-delay of the filter is 2M − 1 samples and the z-transform of the filter is:

H (z) = z−2M+1
2M−1∑

k=−2M+1
ĥkz
−k

= z−2M+1
2M−1∑

k=1
ĥk

[
z−k − zk

]
= z−2M+1

M∑
k=1

ĥ2k−1
[
z−2k+1 − z2k−1]

= z−2M+1
M−1∑
k=0

ĥ2k+1
[
z2k+1 − z−2k−1]

= z−2M+1
M−1∑
k=0

h2M−2k−2
[
z2k+1 − z−2k−1]

where hk = ĥ−2M+1+k, h2M−1+k = ĥk and ĥ2k+1 = −ĥ−2k−1 = −h2M−2k−2. The zero-phase amplitude response of the
even order FIR Hilbert filter is:

A (ω) = 2
M−1∑
k=0

h2M−2k−2 sin (2k + 1)ω

= 2
M−1∑
k=0

h2k sin (2M − 2k − 1)ω

(N.13)

Similarly, the distinct coefficients of an odd order 2M − 1, even length 2M , FIR Hilbert filter are ĥk with k = 1
2 ,

3
2 , . . . ,M −

1
2 :

H (z) = z−M+ 1
2

M− 1
2∑

k=−M+ 1
2

ĥkz
−k

= z−M+ 1
2

M− 1
2∑

k= 1
2

ĥk

[
z−k − zk

]

= z−M+ 1
2

M−1∑
k=0

ĥk+ 1
2

[
z−k− 1

2 − zk+ 1
2

]
= z−M+ 1

2

M−1∑
k=0

hM−1−k

[
zk+ 1

2 − z−k− 1
2

]

683

where hk = ĥ−M+ 1
2 +k and hM−1−k = −ĥk+ 1

2
. The zero-phase amplitude response is:

A (ω) = 2
M−1∑
k=0

hM−1−k sin (2k + 1) ω2

= 2
M−1∑
k=0

hk sin (2M − 2k − 1) ω2

(N.14)

Note that, in practice, the odd order hk is interpolated with zeros and Equation N.14 and Equation N.13 are effectively identical.

N.2.2 Piece-wise mean-squared-error of the response of an FIR filter

Piece-wise mean-squared-error of the response of a symmetric FIR filter

If impulse response of a symmetric FIR filter is h = [h0, . . . , hM]⊤ then:

ˆ
A (ω) dω = hMω + 2

M−1∑
n=0

hn
sin (M − n)ω

M − n

and:
ˆ
A (ω)2

dω =h2
Mω − 4hM

M−1∑
n=0

hn
sin (M − n)ω

M − n
. . .

+ 2
M−1∑
n=0

M−1∑
m=0

hnhm
sin (2M −m− n)ω

2M −m− n + 2
M−1∑
n=0

h2
nω + 2

M−1∑
n=0

M−1∑
m=0,m ̸=n

hnhm
sin (n−m)ω

n−m

Similarly, the gradient of the mean-squared error with respect to the coefficients is:

∂E
∂hn

= 2
π

ˆ
Ωk

Wk [A (ω)−Ak] ∂A (ω)
∂hn

dω

which can be expressed in the form 2q + 2Qh. The components of q and Q are found with:

ˆ
∂A (ω)
∂hn

dω =

2sin (M − n)ω
M − n

n = 0, . . . ,M − 1

ω n = M

and:

ˆ
A (ω) ∂A (ω)

∂hn
dω =

2

M∑
m=0

hm
sin (2M −m− n)ω

2M −m− n + 2hnω + 2
M−1∑

m=0,m ̸=n

hm
sin (n−m)ω

n−m
n = 0, . . . ,M − 1

hMω + 2
M−1∑
m=0

hm
sin (M −m)ω

M −m
n = M

since, for n = 0, . . . ,M − 1:

ˆ
A (ω) cos (M − n)ω dω =

M∑
m=0

hm

ˆ
cos (2M −m− n)ω dω +

M−1∑
m=0

hm

ˆ
cos (n−m)ω dω

The Octave function directFIRsymmetricEsqPW implements the piece-wise calculation of E2, and its gradients with respect to
the coefficients, hn, of a symmetric FIR filter.

Piece-wise mean-squared-error of the response of a non-symmetric FIR filter

If the impulse response of a non-symmetric filter is h = [h0, . . . , hN]⊤ and the nominal FIR filter delay, 0 < dk < N , is an
integral number of samples, then the mean-squared-error over each frequency region Ωk is:

E2
k = 1

π

ˆ
Ωk

Wk

∣∣H (ω)−Ake
−ıdkω

∣∣2 dω
684

= 1
π

ˆ
Ωk

Wk

[
N∑

n=0
hne
−ınω −Ake

−ıdkω

][
N∑

n=0
hne

ınω −Ake
ıdkω

]
dω

= 1
π

ˆ
Ωk

Wk

[
N∑

n=0

N∑
m=0

hnhm cos (n−m)ω − 2Ak

N∑
n=0

hn cos (n− dk)ω +A2
k

]
dω

= 1
π
Wk

ω N∑
n=0

h2
n +

N∑
m=0

N∑
m=0,m ̸=n

hnhm
sin (n−m)ω

n−m
− 2Akhdk

ω − 2Ak

N∑
n=0,n̸=dk

hn
sin (n− dk)ω

n− dk
+A2

kω

Ωk

In stop bands the nominal delay, dk, is assumed to be zero. The Octave function directFIRnonsymmetricEsqPW.m calculates the
piece-wise calculation of E2, and its gradients with respect to the coefficients, hn, of a non-symmetric FIR filter.

Piece-wise mean-squared-error of the response of an anti-symmetric FIR Hilbert filter

The piece-wise mean-squared-error of the response of an anti-symmetric FIR Hilbert filter is calculated in a similar fashion to
that of a symmetric FIR filter. The Octave function directFIRhilbertEsqPW implements the piece-wise calculation of E2, and its
gradients with respect to the coefficients, hn, of an anti-symmetric FIR Hilbert filter.

N.2.3 Examples of the design of FIR filters with unconstrained optimisation

Design of FIR low-pass filters with unconstrained optimisation

The Octave script qp_lowpass_filter.m uses qp to design a low-pass filter with unconstrained optimisation. The filter specification
is similar to a Parks-McClellan low-pass filter example [239, Table I]. The filter is designed as both a symmetric FIR filter and a
non-symmetric filter with nominal delay M/2 samples. The filter specification is:

nplot=1000 % Frequency points in [0,0.5)
M=14 % Filter order is 2*M
fap=0.17265 % Amplitude pass band edge
Wap=10 % Amplitude pass band weight
Wat=0.01 % Amplitude transition band weight
fas=0.26265 % Amplitude stop band edge
Was=1 % Amplitude stop band weight

Figure N.12 shows the amplitude response of the symmetric FIR filter. The symmetric FIR filter coefficients are:

h = [-0.0011416422, -0.0064608157, 0.0006753211, 0.0126461978, ...
0.0066188281, -0.0171074193, -0.0218078604, 0.0130944715, ...
0.0434468525, 0.0086576279, -0.0666514847, -0.0664970801, ...
0.0846011495, 0.3038505994, 0.4086342531, 0.3038505994, ...
0.0846011495, -0.0664970801, -0.0666514847, 0.0086576279, ...
0.0434468525, 0.0130944715, -0.0218078604, -0.0171074193, ...
0.0066188281, 0.0126461978, 0.0006753211, -0.0064608157, ...
-0.0011416422]';

For comparison, Figure N.13 shows the response of a symmetric FIR filter designed with the Parks-McClellan algorithm shown
in Appendix N.5.3 implemented by the Octave function mcclellanFIRsymmetric. The filter distinct filter coefficients are:

hPM = [-0.0020635021, -0.0059268488, -0.0016828636, 0.0086378543, ...
0.0092366641, -0.0095751683, -0.0221620427, 0.0023748967, ...
0.0391203496, 0.0202373167, -0.0564064614, -0.0755218675, ...
0.0694063134, 0.3072652182, 0.4257585421]';

Figure N.14 shows the amplitude and group delay responses of the non-symmetric low-pass FIR filter with nominal delay M/2
samples. The non-symmetric FIR filter coefficients are:

685

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

Symmetric FIR : order N=28,fap=0.17265,fas=0.26265

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-50

-40

-30

-20

Figure N.12: Amplitude response of a symmetric FIR low-pass filter designed with unconstrained optimisation.

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

Symmetric FIR (Parks-McClellan) : order N=28,K=5.0,fap=0.17265,fas=0.26265

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-50

-40

-30

-20

Figure N.13: Amplitude response of a symmetric FIR low-pass filter designed with the Parks-McClellan algorithm.

686

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

A
m

pl
itu

de
(d

B
)

Non-symmetric FIR : order N=28,d=7,fap=0.17265,fas=0.26265

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

0 0.1 0.2 0.3 0.4 0.5
6.6

6.8

7

7.2

7.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure N.14: Amplitude and group delay responses of a non-symmetric FIR low-pass filter designed with unconstrained optimi-
sation.

hd = [-0.0064568376, 0.0176100874, 0.0172866593, -0.0343904802, ...
-0.0617718242, 0.0535160208, 0.2862616171, 0.4308766500, ...
0.3289847569, 0.0755113812, -0.0911385497, -0.0697468599, ...
0.0256869785, 0.0532070232, 0.0067851239, -0.0310934802, ...

-0.0197169928, 0.0101206833, 0.0190744260, 0.0043894934, ...
-0.0112491933, -0.0104888468, 0.0024066303, 0.0097488053, ...
0.0033589647, -0.0057520650, -0.0049210939, 0.0020153765, ...
0.0033685316]';

Design of FIR band-pass filters with unconstrained optimisation

The Octave script qp_bandpass_test.m uses qp to design a band-pass filter with unconstrained optimisation. The filter is designed
as both a symmetric FIR filter and a non-symmetric filter with nominal delay M/2 samples. The filter specification is:

nplot=1000 % Frequency points in [0,0.5)
M=40 % Filter order is 2*M
fasl=0.15 % Amplitude lower stop band edge
fatlu=0.198 % Amplitude lower trans. band upper edge
fapl=0.2 % Amplitude pass band lower edge
faplu=0.22 % Amplitude pass band lower upper edge
fapul=0.248 % Amplitude pass band upper lower edge
fapu=0.25 % Amplitude pass band upper edge
fapul=0.252 % Amplitude upper trans. band lower edge
fasu=0.3 % Amplitude upper stop band edge
Wasl=1 % Amplitude lower stop band weight
Watll=0.1 % Amplitude lower trans. band lower weight
Watlu=0.2 % Amplitude lower trans. band upper weight
Wapl=50 % Amplitude pass band lower weight
Wap=25 % Amplitude pass band weight
Wapu=50 % Amplitude pass band upper weight
Watul=0.2 % Amplitude upper trans. band lower weight
Watuu=0.1 % Amplitude upper trans. band upper weight
Wasu=1 % Amplitude upper stop band weight

687

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

Symmetric FIR : order N=80,fasl=0.15,fapl=0.20,fapu=0.25,fasu=0.30

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0

0.1

0.2

Figure N.15: Amplitude response of a symmetric FIR band-pass filter designed with unconstrained optimisation.

Figure N.15 shows the amplitude response of the symmetric FIR filter. The symmetric FIR filter coefficients are:

h = [0.0002797241, 0.0001966438, -0.0051184756, -0.0030507204, ...
0.0083029621, 0.0076040731, -0.0077933238, -0.0105252893, ...
0.0040038965, 0.0084319756, -0.0004031126, -0.0008016642, ...
0.0013917439, -0.0087819939, -0.0087382797, 0.0146288936, ...
0.0195230614, -0.0129992630, -0.0275728720, 0.0050897229, ...
0.0274947892, 0.0033885054, -0.0183007132, -0.0056051631, ...
0.0041463802, -0.0025960747, 0.0078430098, 0.0208185918, ...
-0.0107607236, -0.0445158874, 0.0003395738, 0.0665912752, ...
0.0237907098, -0.0792893120, -0.0576197783, 0.0763654383, ...
0.0931380177, -0.0555534438, -0.1202732967, 0.0203599593, ...
0.1304482334, 0.0203599593, -0.1202732967, -0.0555534438, ...
0.0931380177, 0.0763654383, -0.0576197783, -0.0792893120, ...
0.0237907098, 0.0665912752, 0.0003395738, -0.0445158874, ...
-0.0107607236, 0.0208185918, 0.0078430098, -0.0025960747, ...
0.0041463802, -0.0056051631, -0.0183007132, 0.0033885054, ...
0.0274947892, 0.0050897229, -0.0275728720, -0.0129992630, ...
0.0195230614, 0.0146288936, -0.0087382797, -0.0087819939, ...
0.0013917439, -0.0008016642, -0.0004031126, 0.0084319756, ...
0.0040038965, -0.0105252893, -0.0077933238, 0.0076040731, ...
0.0083029621, -0.0030507204, -0.0051184756, 0.0001966438, ...
0.0002797241]';

For comparison, Figure N.16 shows the response of a symmetric FIR filter designed with the Parks-McClellan algorithm shown
in Appendix N.5.3 implemented by the Octave function mcclellanFIRsymmetric. The filter distinct filter coefficients are:

hPM = [-0.0002591487, -0.0000677819, 0.0006672837, 0.0004486165, ...
-0.0009499685, -0.0009449698, 0.0007797988, 0.0009812455, ...
-0.0001706585, 0.0002696197, 0.0000105558, -0.0028007959, ...
-0.0013721390, 0.0052738461, 0.0042484613, -0.0055991453, ...
-0.0064093894, 0.0031041926, 0.0044131281, -0.0001839318, ...
0.0034185384, 0.0014126970, -0.0140704984, -0.0093663390, ...
0.0205433660, 0.0202402741, -0.0171404788, -0.0237006715, ...

688

0 0.1 0.2 0.3 0.4 0.5
-100

-90

-80

-70

-60

Symmetric FIR (Parks-McClellan) : order N=80,fasl=0.15,fapl=0.2,fapu=0.25,fasu=0.3,K=5,nplot=1000

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.01

-0.005

0

0.005

0.01

Figure N.16: Amplitude response of a symmetric FIR band-pass filter designed with the Parks-McClellan algorithm.

0.0061908437, 0.0092929371, -0.0000064366, 0.0241280733, ...
0.0144454529, -0.0633874581, -0.0569221215, 0.0862313026, ...
0.1176241929, -0.0750230244, -0.1718287995, 0.0297516702, ...
0.1935760345]';

Figure N.17 shows the amplitude and group delay responses of the non-symmetric band-pass FIR filter with nominal delay M/2
samples. The non-symmetric FIR filter coefficients are:

hd = [0.0209959120, 0.0029710155, -0.0258403597, -0.0111816405, ...
0.0203805829, 0.0124262243, -0.0068877978, 0.0015174193, ...

-0.0040679303, -0.0304439926, 0.0000783024, 0.0635196927, ...
0.0240897613, -0.0851327111, -0.0623303419, 0.0843002153, ...
0.1010009434, -0.0603564749, -0.1269646353, 0.0215676781, ...
0.1334495245, 0.0205034096, -0.1206837022, -0.0557658519, ...
0.0933574828, 0.0772722421, -0.0584543557, -0.0814151352, ...
0.0243630121, 0.0687293235, 0.0004911822, -0.0447826868, ...

-0.0106095483, 0.0189235730, 0.0062912357, -0.0002629860, ...
0.0064003976, -0.0066786209, -0.0191758963, 0.0034208486, ...
0.0260038145, 0.0047120561, -0.0253280145, -0.0122459823, ...
0.0191664674, 0.0158348959, -0.0108754876, -0.0144322156, ...
0.0036417374, 0.0086484680, -0.0000059034, -0.0004909753, ...
0.0013846876, -0.0068356697, -0.0071369358, 0.0100765979, ...
0.0141532421, -0.0079333076, -0.0181581630, 0.0023467017, ...
0.0163815550, 0.0024617413, -0.0096094845, -0.0028642490, ...
0.0017601802, -0.0015527223, 0.0028851819, 0.0077604049, ...

-0.0026574992, -0.0116367667, -0.0006313178, 0.0109662811, ...
0.0034449325, -0.0067478879, -0.0032969355, 0.0020118656, ...
0.0002976662, 0.0005962550, 0.0035057852, -0.0004099441, ...

-0.0060555132]';

689

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

A
m

pl
itu

de
(d

B
)

Non-symmetric FIR : order N=80,d=20,fasl=0.15,fapl=0.20,fapu=0.25,fasu=0.30

0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5
19

19.5

20

20.5

21

D
el

ay
(s

am
pl

es
)

Frequency

Figure N.17: Amplitude and group delay responses of a non-symmetric FIR band-pass filter designed with unconstrained opti-
misation.

690

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

Frequency

A
m

pl
itu

de
(d

B
)

Hilbert FIR : order N=158,fap=0.010,fas=0.490

Figure N.18: Amplitude response of an anti-symmetric FIR Hilbert filter designed with unconstrained optimisation.

Design of an anti-symmetric FIR Hilbert filter with unconstrained optimisation

The Octave script qp_hilbert_filter.m uses qp to design an anti-symmetric FIR Hilbert filter with unconstrained optimisation.
The filter specification is:

nplot=1000 % Frequency points in [0,0.5)
M=40 % Filter order is (4*M)-1
fap=0.01 % Amplitude pass band edge
fas=0.49 % Amplitude stop band edge

Figure N.18 shows the amplitude response of the anti-symmetric FIR Hilbert filter. The distinct filter coefficients are:

hM = [0.0002574103, 0.0003585881, 0.0004787633, 0.0006199268, ...
0.0007841803, 0.0009737426, 0.0011909593, 0.0014383152, ...
0.0017184501, 0.0020341802, 0.0023885252, 0.0027847429, ...
0.0032263738, 0.0037172976, 0.0042618057, 0.0048646933, ...
0.0055313780, 0.0062680520, 0.0070818794, 0.0079812534, ...
0.0089761354, 0.0100785059, 0.0113029719, 0.0126675974, ...
0.0141950568, 0.0159142667, 0.0178627437, 0.0200900946, ...
0.0226633273, 0.0256751956, 0.0292578122, 0.0336058698, ...
0.0390184331, 0.0459793040, 0.0553250507, 0.0686370642, ...
0.0893056970, 0.1261483151, 0.2114995129, 0.6363837968]';

691

N.3 PCLS design of symmetric FIR digital filters with Lagrange multipliers

This section describes peak-constrained-least-squares (PCLS) design of non-symmetric FIR filters with optimisation by Lagrange
multipliers and the exchange algorithm of Selesnick, Lang and Burrus [90]. In the following, I will almost always consider odd-
length, even-order, symmetric FIR filters.

Given a desired amplitude response, Ad (ω), and a weight function, W (ω), the mean-squared-error of the amplitude response of
the FIR filter is:

E = 1
π

ˆ π

0
W (ω) [A (ω)−Ad (ω)]2 dω

The design problem is to minimise the mean-squared-error subject to constraints on the amplitude response:

A (ωp) ≥ L (ωp)
A (ωq) ≤ U (ωq)

The method of Lagrange multipliers defines a Lagrangian function:

L (ω) = E −
∑

p

λp [A (ωp)− L (ωp)]−
∑

q

λq [U (ωq)−A (ωq)]

where λp and λq are the Lagrange multipliers for the amplitude constraints at the corresponding frequencies ωp and ωq . The
method of Lagrange multipliers minimises E subject to the constraints by solving the following system of equations for hn, λp

and λq:

∂E
∂hn

−
∑

p

λp
∂A (ωp)
∂hn

+
∑

q

λq
∂A (ωq)
∂hn

= 0

A (ωp) = L (ωp)
A (ωq) = U (ωq)

where:

∂E
∂hn

= 2
π

ˆ π

0
W (ω) [A (ω)−Ad (ω)] ∂A (ω)

∂hn
dω

and, for an even-order, symmetric, FIR filter:

∂A (ω)
∂hn

=
{

2 cos (M − n)ω n = 0, . . . ,M − 1
1 n = M

The minimisation problem can be written in matrix form as:[
R G⊤

G 0

] [
h
λ

]
=
[

C
D

]
(N.15)

where R is a symmetric matrix. The solution is:

λ =
(

GR−1G⊤
)−1 (

GR−1C −D
)

h = R−1 (C −G⊤λ
)

When the Lagrange multipliers are non-negative, λp, λq ≥ 0, then the Karush-Kuhn-Tucker conditions guarantee that the
equality-constrained problem also solves the inequality-constrained problem. The exchange algorithm of Selesnick et al. solves
successive minimisation problems with constraints on the peaks of the response. If any Lagrange multipliers are negative at
some iteration then the corresponding constraint frequencies are sequentially dropped so that an inequality-constrained problem
is solved.

N.3.1 Examples of the design of constrained least-squared error symmetric FIR filters with optimi-
sation by the method of Lagrange multipliers

This section shows examples of the design of an even-order, symmetric, FIR filter by the exchange algorithm described by
Selesnick et al. [91, p.498] and summarised in Section 8.1.2.

692

0 0.1 0.2 0.3 0.4 0.5
0.994
0.995
0.996
0.997
0.998
0.999

1

Lowpass FIR : fap=0.1,dBap=0.02,Wap=1,fas=0.2,dBas=52,Was=10

A
m

pl
itu

de

Initial
PCLS

Adu
Adl

0 0.1 0.2 0.3 0.4 0.5
-0.004

-0.002

0

0.002

0.004

A
m

pl
itu

de

Frequency

Figure N.19: Amplitude response of the initial FIR low-pass filter and the optimised low-pass FIR filter designed with Lagrange
multipliers and the exchange algorithm of Selesnick et al. .

Design of a constrained least-squared error symmetric FIR low-pass filter

The Octave script directFIRsymmetric_slb_lowpass_test.m implements the design of an even-order symmetric FIR low-pass
filter with constraints on the amplitude response by the method of Lagrange multipliers. The matrix equation shown above in
Equation N.15 is solved by left division in the Octave function directFIRsymmetric_mmsePW and the exchange algorithm of
Selesnick et al. is implemented by the Octave function directFIRsymmetric_slb. The low-pass filter specification is:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
nplot=1000 % Frequency points across the band
M=15 % M+1 distinct coefficients
fap=0.1 % Amplitude pass band edge
dBap=0.02 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
fas=0.2 % Amplitude stop band edge
dBas=52 % Amplitude stop band peak-to-peak ripple
Was=10 % Amplitude stop band weight

The bandwidth of the constrained low-pass filter is slightly narrower than that of the initial unconstrained filter. The amplitude
responses of the initial and optimised low-pass filters are shown in Figure N.19. The distinct optimised filter coefficients are:

hM1 = [0.0015415562, 0.0021622752, -0.0004724047, -0.0057312301, ...
-0.0081256352, -0.0016428074, 0.0123722369, 0.0218047186, ...
0.0115474186, -0.0202014306, -0.0510078994, -0.0433674249, ...
0.0270095515, 0.1450930022, 0.2573031209, 0.3034299040]';

Figure N.20 shows the initial response and the response obtained when one coefficient of the floating-point solution is rounded
and the remaining coefficients are optimised with the pass-band ripple constraint relaxed.

693

0 0.1 0.2 0.3 0.4 0.5
0.994
0.995
0.996
0.997
0.998
0.999

1

Lowpass FIR (coefficient 6 rounded to 10 bits) : fap=0.1,dBapt=0.05,Wap=1,fas=0.2,dBast=52,Was=10

A
m

pl
itu

de

Initial
PCLS
Adut
Adlt

0 0.1 0.2 0.3 0.4 0.5
-0.004

-0.002

0

0.002

0.004

A
m

pl
itu

de

Frequency

Figure N.20: Amplitude response of the initial FIR low-pass filter and the optimised band pass FIR filter designed with one
coefficient rounded and the remaining coefficients optimised by the Lagrange multipliers and the exchange algorithm of Selesnick
et al. .

694

0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1

1.1

Bandpass FIR : fapl=0.1,fapu=0.2,dBap=1,Wap=1,fasl=0.05,fasu=0.25,dBas=36.947,Wasl=20,Wasu=40

A
m

pl
itu

de

Initial
PCLS

Adu
Adl

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

A
m

pl
itu

de

Frequency

Figure N.21: Amplitude response of the initial FIR band-pass filter and the optimised band-pass FIR filter designed with Lagrange
multipliers and the exchange algorithm of Selesnick et al. .

Design of a constrained least-squared error symmetric FIR band-pass filter

Similarly to the previous example, the Octave script directFIRsymmetric_slb_bandpass_test.m implements the design of an even-
order symmetric FIR band-pass filter with constraints on the amplitude response by the method of Lagrange multipliers. The
band-pass filter specification is:

tol=1e-05 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
nplot=1000 % Frequency points across the band
M=16 % M+1 distinct coefficients
fapl=0.1 % Amplitude pass band lower edge
fapu=0.2 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
dBap=1 % Amplitude pass band peak-to-peak ripple
fasl=0.05 % Amplitude lower stop band edge
Wasl=20 % Amplitude lower stop band weight
fasu=0.25 % Amplitude upper stop band edge
Wasu=40 % Amplitude upper stop band weight
dBas=36.947 % Amplitude stop band peak-to-peak ripple

Figure N.21 shows the amplitude responses of the initial and optimised band-pass filters. The distinct optimised filter coefficients
are:

hM1 = [-0.0058181010, 0.0017787857, -0.0047084625, -0.0143846688, ...
-0.0077550125, 0.0219788564, 0.0432578789, 0.0247317110, ...
-0.0077853817, -0.0010276677, 0.0304650309, 0.0009925325, ...
-0.1110651112, -0.1806101683, -0.0725659905, 0.1536437055, ...
0.2719559562]';

Figure N.22 shows the initial response and the response obtained when three coefficients of the floating-point solution are rounded
and the remaining coefficients are optimised with the stop-band ripple constraint relaxed.

695

0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1

1.1

Bandpass FIR (coefficients 7,9,11 rounded to 8 bits) : fapl=0.1,fapu=0.2,dBapt=3,fasl=0.05,fasu=0.25,dBast=25

A
m

pl
itu

de

Initial
PCLS
Adut
Adlt

0 0.1 0.2 0.3 0.4 0.5
-0.1

-0.05

0

0.05

0.1

A
m

pl
itu

de

Frequency

Figure N.22: Amplitude response of the initial FIR band-pass filter and the optimised band-pass FIR filter designed with three
coefficients rounded and the remaining coefficients optimised by Lagrange multipliers and the exchange algorithm of Selesnick
et al. .

Design of a least-mean-squared error even-order FIR Hilbert filter

The design problem is to minimise the mean-squared-error subject to constraints on the zero-phase amplitude response of the
Hilbert filter:

E = 1
π

ˆ π

0
W (ω) [A (ω) + 1]2 dω

A (ωp) ≥ L (ωp)
A (ωq) ≤ U (ωq)

where Ad (ω) = −1.

In a similar fashion to that shown in Appendix N.4, the method of Lagrange multipliers optimises the mean-squared-error by
solving the following system of equations for λp, λq and the coefficients of an even order 4M − 2 Hilbert filter, h2k, with
k = 0, 1, . . . ,M − 1:

∂E
∂h2k

−
∑

p

λp
∂A (ωp)
∂h2k

+
∑

q

λq
∂A (ωq)
∂h2k

= 0

A (ωp) = L (ωp)
A (ωq) = U (ωq)

where:

∂E
∂h2k

= 2
π

ˆ π

0
W (ω) [A (ω) + 1] ∂A (ω)

∂h2k
dω

and:

∂A (ω)
∂h2k

= 2 sin (2M − 2k − 1)ω

696

This system of equations can be expressed in matrix form with components given by: e

ˆ
∂A (ω)
∂h2k

dω = −2cos (2M − 2k − 1)ω
(2M − 2k − 1)

ˆ
A (ω) ∂A (ω)

∂h2k
dω = 2h2kω + 2

M−1∑
l=0,l ̸=k

h2l
sin (2k − 2l)ω

2k − 2l − 2
M−1∑
l=0

h2l
sin (4M − 2k − 2l − 2)ω

4M − 2k − 2l − 2

The Octave script directFIRhilbert_slb_test.m implements the design of an FIR Hilbert filter with constraints on the amplitude
response by the method of Lagrange multipliers. The matrix equation shown above in Equation N.15 is solved by left division
in the Octave function directFIRhilbert_mmsePW and the PCLS exchange algorithm of Selesnick et al. is implemented by the
Octave function directFIRhilbert_slb. The FIR Hilbert filter specification is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=0.0001 % Tolerance on constraints
npoints=1000 % Frequency points across the band
M=10 % M distinct coefficients
fapl=0.025 % Amplitude pass band lower edge
fapu=0.475 % Amplitude pass band upper edge
Wap=1 % Amplitude pass band weight
dBap=0.5 % Amplitude pass band peak-to-peak ripple
Was=0 % Amplitude stop band weight

The group delay of the filter is 2M − 1 samples. The bandwidth of the constrained Hilbert filter is slightly wider than that of the
initial unconstrained filter. The absolute value of the PCLS pass-band response is constrained to be less than 1. Figure N.23 shows
the amplitude responses of the initial and optimised Hilbert filters. The FIR Hilbert filter pass-band response is symmetrical about
the frequency 0.25, where the sampling rate is normalised to 1. The distinct optimised filter coefficients are:

hM2 = [-0.0086302951, -0.0133649396, -0.0194607169, -0.0273205074, ...
-0.0379833788, -0.0525480847, -0.0750429861, -0.1138083316, ...
-0.2013619122, -0.6286182035]';

The corresponding FIR filter is:

h=kron([hM2(:);-flipud(hM2(:))],[1;0])(1:(end-1));

e2 sin x sin y = cos (x− y)− cos (x + y)

697

0 0.05 0.1 0.15 0.2 0.25
-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

FIR Hilbert : fapl=0.025,fapu=0.475,dBap=0.5,Was=0

Initial
MMSE

PCLS

Figure N.23: Amplitude response of the initial FIR Hilbert filter and the optimised FIR Hilbert filter designed with Lagrange
multipliers and the exchange algorithm of Selesnick et al. .

698

0 0.05 0.1 0.15 0.2 0.25
-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

FIR Hilbert : fasl=0.1,fapl=0.16325,fapu=0.33675,fasu=0.4,dBap=0.31375,dBas=35

Initial
PCLS

Figure N.24: Amplitude response of the initial band-pass FIR Hilbert filter and the optimised FIR Hilbert bandpass filter designed
with Lagrange multipliers and the exchange algorithm of Selesnick et al. .

Design of a least-mean-squared error even-order FIR Hilbert band-pass filter

The Octave script directFIRhilbert_bandpass_slb_test.m designs an FIR Hilbert filter with a band-pass response. The corre-
sponding filter specification is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=0.0001 % Tolerance on constraints
npoints=1000 % Frequency points across the band
M=8 % M distinct coefficients
fasl=0.1 % Amplitude stop band lower edge
fapl=0.16325 % Amplitude pass band lower edge
fapu=0.33675 % Amplitude pass band upper edge
fasu=0.4 % Amplitude stop band upper edge
Wap=1 % Amplitude pass band weight
dBap=0.31375 % Amplitude pass band peak-to-peak ripple
Wat=0.001 % Amplitude transition band weight
Was=10 % Amplitude stop band weight
dBas=35 % Amplitude stop band peak ripple

Figure N.24 shows the amplitude responses of the initial and optimised band-pass Hilbert filters Figure N.25 shows the pass-band
responses. The distinct optimised filter coefficients are:

hM2 = [-0.0104589390, 0.0031738998, 0.0291468051, -0.0144604946, ...
-0.0629162600, 0.0550052923, 0.1596092306, -0.4239235327]';

699

0.16 0.18 0.2 0.22 0.24
-1

-0.5

0

0.5

1

Frequency

A
m

pl
itu

de
(d

B
)

FIR Hilbert : fasl=0.1,fapl=0.16325,fapu=0.33675,fasu=0.4,dBap=0.31375,dBas=35

Initial
PCLS

Figure N.25: Pass-band amplitude response of the initial band-pass FIR Hilbert filter and the optimised FIR Hilbert bandpass
filter designed with Lagrange multipliers and the exchange algorithm of Selesnick et al. .

700

N.4 PCLS design of non-symmetric FIR filters with SOCP

This section describes peak-constrained-least-squares (PCLS) design of non-symmetric FIR filters with SOCP optimisation and
the exchange algorithm of Selesnick, Lang and Burrus [90]. The results of this section are, of course, also applicable to the design
of symmetric FIR filters.

N.4.1 Frequency response and gradients of a non-symmetric FIR filter

The complex frequency response of an order N non-symmetric FIR filter with coefficients hk is:

H (ω) =
N∑

k=0
hke
−ıkω

Squared magnitude response of a non-symmetric FIR filter

The squared magnitude response is differentiable. The squared magnitude response of a non-symmetric FIR filter is:

|H (ω)|2 = H (ω)∗H (ω)

=
(

N∑
l=0

hle
ılω

)(
N∑

k=0
hke
−ıkω

)

=
N∑

l=0

N∑
k=0

hlhk (cos lω cos kω + sin lω sin kω)

=
N∑

l=0

N∑
k=0

hlhk cos (l − k)ω

The gradient with respect to hk of the squared magnitude of a non-symmetric FIR filter is:

∂|H (ω)|2

∂hk
= eıkω

N∑
l=0

hle
−ılω + e−ıkω

N∑
l=0

hle
ılω

= 2
N∑

l=0
hl cos (l − k)ω

The calculation of the squared magnitude response of a non-symmetric FIR filter is implemented in the Octave function direct-
FIRnonsymmetricAsq.m exercised by the Octave script directFIRnonsymmetricAsq_test.m.

Phase response of a non-symmetric FIR filter

The phase response of a non-symmetric FIR filter is:

argH (ω) = arctan ℑH (ω)
ℜH (ω)

= − arctan
∑N

k=0 hk sin kω∑N
k=0 hk cos kω

The gradient with respect to hk of the phase response of a non-symmetric FIR filter is:

|H (ω)|2 ∂ argH (ω)
∂hk

= ℜH (w) ∂ℑH (w)
∂hk

−ℑH (w) ∂ℜH (w)
∂hk

= − sin kω
N∑

l=0
hl cos lω + cos kω

N∑
l=0

hl sin lω

=
N∑

l=0
hl sin (l − k)ω

The calculation of the phase response of a non-symmetric FIR filter is implemented in the Octave function directFIRnonsymmet-
ricP.m exercised by the Octave script directFIRnonsymmetricP_test.m.

701

Group delay response of a non-symmetric FIR filter

The group delay response, T (ω), of a non-symmetric FIR filter is:

T (ω) = −∂ argH (ω)
∂ω

|H (ω)|2T (ω) =
N∑

l=0
hl cos lω

N∑
k=0

khk cos kω +
N∑

l=0
hl sin lω

N∑
k=0

khk sin kω

=
N∑

k=0

N∑
l=0

khkhl cos (l − k)ω

The gradient with respect to hk of the group delay response of a non-symmetric FIR filter is:

∂|H (ω)|2

∂hk
T (ω) + |H (ω)|2 ∂T (ω)

∂hk
=

N∑
k=0

N∑
l=0

hl cos [(l − k)ω] ∂

∂hk
khk +

N∑
k=0

N∑
l=0

lhl
∂

∂hk
hk cos (k − l)ω

=
N∑

l=0
(l + k)hl cos (l − k)ω

The calculation of the group delay response of a non-symmetric FIR filter is implemented in the Octave function directFIRnon-
symmetricT.m exercised by the Octave script directFIRnonsymmetricT_test.m.

N.4.2 Examples of the PCLS design of non-symmetric FIR filters with SOCP optimisation

Design of a non-symmetric FIR low pass filter

The Octave script directFIRnonsymmetric_socp_slb_lowpass_test.m designs a low pass non-symmetric FIR filter with a nominal
pass band delay using SOCP optimisation and the PCLS exchange algorithm of Selesnick, Lang and Burrus. The FIR filter
specification is:

tol=0.0001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=500 % Frequency points across the band
N=30 % FIR filter order
fap=0.15 % Amplitude pass band edge
dBap=1 % Amplitude pass band peak-to-peak ripple
Wap=1 % Amplitude pass band weight
Wat=1e-08 % Amplitude transition band weight
fas=0.2 % Amplitude stop band edge
dBas=40 % amplitude stop band peak-to-peak ripple
Was=1000 % Amplitude stop band weight
ftp=0.125 % Delay pass band edge
td=10 % Nominal pass band filter group delay
tdr=1 % Delay pass band peak-to-peak ripple
Wtp=0.5 % Delay pass band weight

The resulting FIR impulse response is:

h = [-0.00514359, -0.00010522, 0.00903057, 0.01387585, ...
0.00115297, -0.02706471, -0.04272784, -0.00549323, ...
0.09937991, 0.23445372, 0.32328674, 0.30323800, ...
0.17772249, 0.02034029, -0.07856735, -0.07822720, ...

-0.01246172, 0.04662598, 0.05113023, 0.01028393, ...
-0.03030618, -0.03523108, -0.00825181, 0.01957184, ...
0.02380736, 0.00681772, -0.01145923, -0.01507939, ...

-0.00584348, 0.00414479, 0.01058012]';

Figure N.26 shows the amplitude response. Figure N.27 shows the pass band amplitude, phase error and delay responses. The
pass band phase error is adjusted for the nominal delay.

702

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Nonsymmetric FIR low pass : N=30,fap=0.15,dBap=1,ftp=0.125,td=10,fas=0.20,dBas=40

Figure N.26: Amplitude response of a non-symmetric low pass FIR filter designed with SOCP and PCLS.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Nonsymmetric FIR low pass pass band : N=30,fap=0.15,dBap=1,ftp=0.125,td=10,tdr=1

A
m

pl
itu

de
(d

B
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
9.4

9.6

9.8

10

10.2

10.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure N.27: Pass band amplitude, phase error and delay responses of a non-symmetric low pass FIR filter designed with SOCP
and PCLS. The pass band phase error is adjusted for the nominal delay.

703

Design of a non-symmetric FIR band pass Hilbert filter

The Octave script directFIRnonsymmetric_socp_slb_bandpass_hilbert_test.m designs a band pass non-symmetric FIR Hilbert
filter with a nominal pass band delay using SOCP optimisation and the PCLS exchange algorithm of Selesnick, Lang and Burrus.
The FIR filter specification is:

tol=0.001 % Tolerance on coefficient update vector
ctol=1e-05 % Tolerance on constraints
n=500 % Frequency points across the band
N=50 % FIR filter order
fapl=0.1 % Pass band squared amplitude lower edge
fapu=0.2 % Pass band squared amplitude upper edge
dBap=0.25 % Pass band squared amplitude ripple
Wap=1 % Pass band squared amplitude weight
fasl=0.05 % Lower stop band squared amplitude lower edge
fasu=0.25 % Upper stop band squared amplitude upper edge
dBas=40 % Stop band squared amplitude response ripple
Wasl=10 % Lower stop band squared amplitude weight
Wasu=20 % Upper stop band squared amplitude weight
ftpl=0.11 % Pass band group delay response lower edge
ftpu=0.19 % Pass band group delay response upper edge
td=10 % Pass band nominal group delay
tdr=0.5 % Pass band group delay response ripple
Wtp=0.5 % Pass band group delay response weight
fppl=0.11 % Pass band phase response lower edge
fppu=0.19 % Pass band phase response upper edge
pd=2.5 % Pass band initial phase (multiples of pi)
ppr=0.02 % Pass band phase response ripple
Wpp=2 % Pass band phase response weight

The resulting FIR impulse response is:

h = [0.0035324444, -0.0139319228, -0.0094095914, 0.0005149648, ...
-0.0130492773, -0.0559859751, -0.0581356581, 0.0485629272, ...
0.1956228757, 0.2030320169, -0.0010246770, -0.2422353720, ...

-0.2755442515, -0.0813542493, 0.1152702456, 0.1330345501, ...
0.0381148192, 0.0029135455, 0.0541067766, 0.0733941728, ...
0.0039369788, -0.0684442066, -0.0606532570, -0.0121474951, ...

-0.0046318830, -0.0335045767, -0.0317864266, 0.0128213468, ...
0.0437733231, 0.0287316552, 0.0031810564, 0.0050190016, ...
0.0184321224, 0.0105749516, -0.0133427761, -0.0228629870, ...

-0.0114642320, -0.0003250787, -0.0023759376, -0.0066059635, ...
-0.0017847168, 0.0064154097, 0.0079254383, 0.0032096424, ...
0.0000385525, 0.0007584860, 0.0014249791, -0.0001012961, ...

-0.0013577718, -0.0015152917, -0.0007674169]';

Figure N.28 shows the amplitude response. Figure N.29 shows the pass band amplitude, phase and delay responses. The pass
band phase response shown is adjusted for the nominal delay. (In fact the response requires an additional π radians phase shift
or multiplication of the amplitude by −1).

704

0 0.1 0.2 0.3 0.4 0.5
-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Non-symmetric FIR bandpass Hilbert filter : N=50, td=10

Figure N.28: Amplitude response of a non-symmetric band pass FIR Hilbert filter designed with SOCP and PCLS.

0.1 0.12 0.14 0.16 0.18 0.2

-0.2
-0.1

0
0.1

Non-symmetric FIR bandpass Hilbert filter : N=50, td=10

A
m

pl
itu

de
(d

B
)

0.12 0.14 0.16 0.18

0.495
0.5

0.505

Ph
as

e(
ra

d.
/π

)

0.12 0.14 0.16 0.18
9.6
9.8
10

10.2
10.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure N.29: Pass band amplitude, phase and delay responses of a non-symmetric band pass FIR Hilbert filter designed with
SOCP and PCLS. The pass band phase response shown is adjusted for the nominal delay.

705

N.5 Constrained mini-max error optimisation of FIR digital filters

N.5.1 The alternation theorem

A symmetric or linear phase FIR filter with even order 2M and a symmetric impulse response with 2M + 1 coefficients has
zero-phase frequency response:

A (ω) = hM + 2
M−1∑
k=0

hk cos (M − k)ω

=
M∑

k=0
ak cos kω

=
M∑

k=0
akTk (cosω)

where Tk (x) is the k-th order Chebyshev polynomial of the first kind. This section considers methods of minimising the maximum
error:

max
ω

E (ω) = W (ω) |A (ω)−Ad (ω)|

where W (ω) is a weighting function and Ad (ω) is the desired response. This is also called the Chebyshev distance. For a given
filter order (assumed to be even) the number of frequency constraints is limited by the approximation theorem, shown by Roberts
and Mullis [193, p. 192] as:

Theorem (Chebyshev): Let d (x) be a real-valued function which is continuous on −1 ≤ x ≤ 1.

1. There is a unique polynomial p (x) of degree at most M which minimizes ∥d (x)− p (x)∥∞.

2. p (x) is that polynomial if-and-only-if there exist points −1 ≤ x0 ≤ x1 ≤ . . . ≤ xn+1 ≤ 1 for which

d (xi)− p (xi) = (−1)i
ε , i = 0, 1, . . . , n+ 1

where |ε| = ∥d (x)− p (x)∥∞.

Oppenheim and Schafer show a similar theorem [169, Page 489]:

Alternation Theorem: Let FP denote the closed subset consisting of the disjoint union of closed subsets of the real axis x.
Then

P (x) =
r∑

k=0
akx

r

is an r-th order polynomial. Also, DP (x) denotes a given desired function of x that is continuous on FP ; WP (x) is a
positive function, continuous on FP , and

EP (x) = WP (x) [DP (x)− P (x)]

is the weighted error. The maximum error is defined as

∥E∥ = max
x∈FP

|EP (x)|

A necessary and sufficient condition that P (x) be the unique rth order polynomial that minimises ∥E∥ is thatEP (x) exhibit
at least (r + 2) alternations; i.e., there must exist at least (r + 2) values xi in FP such that x1 < x2 < . . . < xr+2 and such
that EP (xi) = −EP (xi+1) = ∥E∥ for i = 1, 2, . . . , (r + 1).

Oppenheim and Schafer illustrate the conditions under which an extremum of a polynomial function is also considered to be
an alternation [169, Figure 7.34]. They point out that, for a polynomial of order M , the Alternation Theorem requires that the

706

optimal approximation have at least M + 2 alternations (the equi-ripple approximation) and that a low-pass filter may have at
most M + 3 alternations (the extra-ripple case). They include alternations at the pass-band edge (for which the polynomial
amplitude is 1 − δp) and at the stop-band edge (for which the amplitude is +δs). Further, the polynomial amplitude will be
equi-ripple except possibly at ω = 0 or ω = π.

N.5.2 Hofstetter’s algorithm for mini-max FIR filter approximation

Hofstetter [50] describes an iterative technique for the design of FIR transfer functions that have the specified pass-band and
stop-band ripple. The technique:

begins by making an initial estimate of the frequencies at which these extrema will occur and the uses Lagrange
interpolation to obtain a polynomial that goes through the maximum allowable ripple values at these frequencies. ...
The next stage of the algorithm is to locate the frequencies at which the extrema of the first Lagrange interpolation
polynomial occur. These frequencies are taken to be a second, hopefully improved, guess as to the frequencies at
which the extrema of the filter response will achieve the desired ripple values. ... The algorithm now “closes the
loop” by using these new frequencies to construct a Lagrange interpolation polynomial that achieves the desired
ripple values at these frequencies. The extrema of this new polynomial are then located and used to start the next
cycle of the algorithm. The algorithm is reminiscent of, but different from, the Remes exchange algorithm used in
the theory of Tchebycheff approximation.

The pass-band constraint frequencies are ω1, . . . , ωNp
and the stop-band constraint frequencies are ωNp+1, . . . , ωNp+Ns

, where
M + 1 = Np +Ns, ω1 = 0 and ωNp+Ns = π. At each iteration, the algorithm solves the system of equations:

A (ωl) =
{

1 + (−1)l+c
δp for 1 ≤ l ≤ Np

(−1)l+c
δs for Np + 1 ≤ l ≤ Np +Ns

where c is chosen to be 0 or 1. These equations can be solved efficiently by barycentric Lagrange interpolationf [50, Page
5] [239, Page 192] [100].

The Octave script hofstetterFIRsymmetric_lowpass_test.m uses an implementation of Hofstetter’s algorithm in the Octave func-
tion hofstetterFIRsymmetric.m to design a low-pass filter. The filter specification is:

M=41 % Filter order is 2*M
fap=0.1 % Amplitude pass band edge
% nMp+1=10 % Amplitude pass band alternations
deltap=0.0001 % Amplitude pass band peak-to-peak ripple
fas=0.2 % Amplitude stop band edge
% nMs+1=32 % Amplitude stop band alternations
deltas=1e-06 % Amplitude stop band peak-to-peak ripple
nplot=2000 % Number of frequencies
tol=1e-05 % Tolerance on convergence

Figure N.30 shows the pass-band and stop-band amplitude responses of the filter. Figure N.31 shows the zeros of the filter. The
distinct filter coefficients are:

hM = [-0.0000062744, -0.0000244944, -0.0000551827, -0.0000819533, ...
-0.0000704428, 0.0000126058, 0.0001616955, 0.0003015039, ...
0.0003011099, 0.0000545772, -0.0004030099, -0.0008306872, ...
-0.0008611077, -0.0002397438, 0.0008969019, 0.0019246655, ...
0.0019925489, 0.0005973054, -0.0018561923, -0.0039713247, ...
-0.0040237875, -0.0011533299, 0.0036425566, 0.0075576337, ...
0.0074125952, 0.0018804923, -0.0068946723, -0.0136868237, ...
-0.0129477931, -0.0026876364, 0.0129511570, 0.0246280536, ...
0.0226298007, 0.0034332146, -0.0258331372, -0.0483977600, ...
-0.0449658253, -0.0039620478, 0.0704678795, 0.1575442544, ...
0.2274359299, 0.2541534897]';

The Octave script hofstetterFIRsymmetric_bandpass_test.m calls the Octave function hofstetterFIRsymmetric.m to design a band-
pass filter. The filter specification is:

fThe Octave polyfit built-in function inverts the corresponding Vandermonde matrix

707

0 0.1 0.2 0.3 0.4 0.5
0.9998

0.9999

1

1.0001

1.0002

Hofstetter lowpass FIR: M=41,nMp=9,deltap=0.0001,nMs=31,deltas=1e-06

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-2e-06

-1e-06

0

1e-06

2e-06

Figure N.30: Response of a mini-max FIR low-pass filter designed with Hofstetter’s algorithm.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Hofstetter lowpass FIR: M=41,nMp=9,deltap=0.0001,nMs=31,deltas=1e-06

Figure N.31: Zeros of a mini-max FIR low-pass filter designed with Hofstetter’s algorithm.

708

0 0.1 0.2 0.3 0.4 0.5
0.998

0.999

1

1.001

1.002

Hofstetter bandpass FIR: fasl=0.15,fapl=0.2,fapu=0.25,fasu=0.3,deltap=0.001,deltas=0.001

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.32: Response of a mini-max FIR band-pass filter designed with Hofstetter’s algorithm.

M=30 % Filter order is 2*M (M+1 distinct coefficients)
fasl=0.15 % Amplitude stop band lower edge
fapl=0.2 % Amplitude pass band lower edge
fapu=0.25 % Amplitude pass band upper edge
fasu=0.3 % Amplitude stop band upper edge
deltap=0.001 % Amplitude pass band peak-to-peak ripple
deltas=0.001 % Amplitude stop band peak-to-peak ripple
nplot=2000 % Number of frequencies
tol=1e-05 % Tolerance on convergence

Figure N.32 shows the pass-band and stop-band amplitude responses of the filter. Figure N.33 shows the zeros of the filter. The
distinct filter coefficients are:

hM = [0.0016403235, 0.0003811934, -0.0031154274, -0.0014736974, ...
0.0041494943, 0.0026338117, -0.0033919821, -0.0021854812, ...
0.0005763605, -0.0018192528, 0.0028371388, 0.0098604875, ...

-0.0041768995, -0.0193489621, 0.0016309399, 0.0246939527, ...
0.0032233259, -0.0198235341, -0.0044329061, 0.0022230559, ...

-0.0062571008, 0.0239834184, 0.0346597112, -0.0484236390, ...
-0.0792843518, 0.0589851401, 0.1296762482, -0.0483396210, ...
-0.1697773982, 0.0186531279, 0.1850850479]';

The Octave script hofstetterFIRsymmetric_multiband_test.m calls the Octave function hofstetterFIRsymmetric.m to design a
multi-band filter. The filter specification is:

M=30 % Filter order is 2*M
fasu1=0.1 % Amplitude first stop-band upper edge
fapl1=0.15 % Amplitude first pass band lower edge
fapu1=0.2 % Amplitude first pass band upper edge
fasl2=0.25 % Amplitude second stop band lower edge
fasu2=0.3 % Amplitude second stop band upper edge
fapl2=0.35 % Amplitude second pass band lower edge
fapu2=0.4 % Amplitude second pass band upper edge
fasl3=0.45 % Amplitude third stop band lower edge

709

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Hofstetter bandpass FIR: fasl=0.15,fapl=0.2,fapu=0.25,fasu=0.3,deltap=0.001,deltas=0.001

Figure N.33: Zeros of a mini-max FIR band-pass filter designed with Hofstetter’s algorithm.

nplot=2000 % Number of frequency grid points in [0,0.5]
maxiter=100 % Maximum iterations
tol=1e-12 % Tolerance on convergence

Some experimentation was required to find the number of extrema in each band that approximately satisfied the specification.
Figure N.34 shows the pass-band and stop-band amplitude responses of the filter. Figure N.35 shows the zeros of the filter. The
distinct filter coefficients are:

hM = [-0.0069124566, 0.0077531943, 0.0019595959, -0.0005177889, ...
0.0001182649, -0.0063168091, 0.0014745510, -0.0006395502, ...
0.0018024181, -0.0104721027, 0.0209069674, 0.0112324220, ...

-0.0214733804, 0.0017516866, -0.0314988245, 0.0168413105, ...
0.0289331993, -0.0063863456, -0.0032179597, 0.0109003138, ...
0.0150475050, -0.0727626671, 0.0078394926, -0.0351408173, ...
0.0672651896, 0.1895697499, -0.1682471918, -0.0573225385, ...

-0.0867759493, -0.0462400577, 0.3400571569]';

710

0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1

1.001

1.002

Hofstetter multi-band FIR: M=30,fasu1=0.1,fapl1=0.15,fapu1=0.2,fasl2=0.25,fasu2=0.3,fapl2=0.35,fapu2=0.4,fasl3=0.45

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.01

-0.005

0

0.005

0.01

Figure N.34: Response of a mini-max FIR multi-band filter designed with Hofstetter’s algorithm.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Hofstetter multi-band FIR: M=30,fasu1=0.1,fapl1=0.15,fapu1=0.2,fasl2=0.25,fasu2=0.3,fapl2=0.35,fapu2=0.4,fasl3=0.45

Figure N.35: Zeros of a mini-max FIR multi-band filter designed with Hofstetter’s algorithm.

711

Selesnick-Burrus modification to Hofstetter’s algorithm for low-pass filters

Selesnick and Burrus [89] point out that whilst Hofstetter’s algorithm “produces equi-ripple filters with the specified δp and δs,
it is not widely used because if allows limited control over the location of the band edges and only produces extra-ripple filters”.
They add a non-extremal frequency constraint in the transition band at ωt.

Suppose ω1, . . . , ωM+1 is the ordered reference set of frequencies in [0, π] including ωt. Let ω1, . . . , ωq−1 be the frequencies in
the pass-band, less than ωt, and ωq+1, . . . , ωM+1 be the frequencies in the stop-band, greater than ωt. The system of equations
to be solved at each iteration is:

A (ωk) = 1 + (−1)k+c
δp for 1 ≤ k ≤ q − 1

A (ωt) = At

A (ωk) = (−1)k+c+1
δs for q + 1 ≤ k ≤M + 1

where c is chosen to equal 0 or 1, whichever yields A (ωq−1) = 1 + δp.

The exchange algorithm is described as follows:

Let S be the set obtained by appending ωt to the set of extrema of A (ω) in [0, π]:S will have either M + 1 or
M + 2 frequencies and will include both 0 and π. If S has M + 1 frequencies, then take the new reference set to be
S. If S has M + 2 frequencies, then remove either 0 or π from S according to the following rules:

1. If A (ω) has no extrema in the open interval (0, ωt), then remove 0 from S.

2. If A (ω) has no extrema in the open interval (ωt, π) then remove π from S.

3. Otherwise, let ωa be the extrema of A (ω) in (0, ωt) closest to 0, and let ωb be the extrema of A (ω) in (ωt, π)
closest to π. If |A (0)−A (ωa)| δs < |A (π)−A (ωb)| δp then remove 0 from S, otherwise remove π from S.

The Octave script selesnickFIRsymmetric_lowpass_test.m designs a low-pass filter with the implementation of Hofstetter’s algo-
rithm with the modifications of Selesnick and Burrus in the Octave function selesnickFIRsymmetric_lowpass.m. The extremal
frequencies are found by quadratic interpolation on a coarse grid. The filter specification is:

M=85 % Filter order is 2*M
deltap=1e-06 % Amplitude pass band peak-to-peak ripple
deltas=1e-08 % Amplitude stop band peak-to-peak ripple
ft=0.15 % Amplitude transition band frequency
At=deltas % Amplitude at transition band frequency
nf=1000 % Number of frequencies
tol=1e-10 % Tolerance on convergence

Figure N.36 shows the pass-band and stop-band amplitude responses of the filter. Figure N.37 shows the zeros of the filter. The
distinct filter coefficients are:

hMb = [-0.000000028464, -0.000000153958, -0.000000403711, -0.000000727907, ...
-0.000000892974, -0.000000546300, 0.000000570241, 0.000002265612, ...
0.000003664746, 0.000003400698, 0.000000401587, -0.000004991701, ...

-0.000010311780, -0.000011528427, -0.000005231465, 0.000008360603, ...
0.000023488812, 0.000030146071, 0.000019275280, -0.000010100860, ...

-0.000046245182, -0.000067204352, -0.000051859592, 0.000004763823, ...
0.000081191523, 0.000133669184, 0.000117644666, 0.000018117502, ...

-0.000129093667, -0.000243323166, -0.000237847085, -0.000076164707, ...
0.000186850059, 0.000411913210, 0.000441094361, 0.000196406775, ...

-0.000244907152, -0.000655562899, -0.000763744250, -0.000417472963, ...
0.000284238786, 0.000988506442, 0.001249667324, 0.000791673374, ...

-0.000273011969, -0.001420365493, -0.001949797405, -0.001387242585, ...
0.000162895090, 0.001953346945, 0.002922263494, 0.002291701772, ...
0.000115518653, -0.002579849867, -0.004234794301, -0.003618670001, ...

-0.000659833998, 0.003280997826, 0.005972817456, 0.005523459974, ...
0.001609851838, -0.004026537376, -0.008260761443, -0.008240290194, ...

-0.003179707219, 0.004776364405, 0.011315604898, 0.012175913404, ...
0.005740487402, -0.005483681310, -0.015590866477, -0.018172416563, ...

-0.010064339136, 0.006099495087, 0.022236869275, 0.028410286058, ...
0.018233496964, -0.006577897529, -0.035134157916, -0.050931701456, ...

-0.038934677581, 0.006881382067, 0.079164410066, 0.158436702296, ...
0.219889962745, 0.243014607974]';

712

0 0.1 0.2 0.3 0.4 0.5
-1e-05

-5e-06

0

5e-06

1e-05

Selesnick-Burrus Hofstetter low-pass : nf=1000,M=85,deltap=1e-06,deltas=1e-08,ft=0.15,At=deltas

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-170

-165

-160

-155

-150

Figure N.36: Response of a mini-max FIR low-pass filter designed with Hofstetter’s algorithm and the modifications of Selesnick
and Burrus.

-2 -1 0 1

-1

-0.5

0

0.5

1

Selesnick-Burrus Hofstetter low-pass : nf=1000,M=85,deltap=1e-06,deltas=1e-08,ft=0.15,At=deltas

Figure N.37: Zeros of a mini-max FIR low-pass filter designed with Hofstetter’s algorithm and the modifications of Selesnick
and Burrus.

713

The Octave script selesnickFIRsymmetric_halfband_test.m calls the Octave function selesnickFIRsymmetric_lowpass to design
a half-band filter with the specification:

M=199 % Filter order is 2*M
delta=1e-06 % Amplitude peak-to-peak ripple
ft=0.25 % Amplitude transition band frequency
At=0.5 % Amplitude at transition band frequency
nf=2000 % Number of frequencies
tol=1e-10 % Tolerance on convergence

For the half-band filter, δp = δs, ft = 0.25 and At = 0.5. Figure N.38 shows the amplitude response of the half-band filter. The
distinct filter coefficients are:

hM = [-0.000000748558, 0.000000000000, 0.000000603215, 0.000000000000, ...
-0.000000843471, 0.000000000000, 0.000001144926, 0.000000000000, ...
-0.000001518383, 0.000000000000, 0.000001975976, 0.000000000000, ...
-0.000002531273, 0.000000000000, 0.000003199387, 0.000000000000, ...
-0.000003997086, 0.000000000000, 0.000004942909, 0.000000000000, ...
-0.000006057285, 0.000000000000, 0.000007362648, 0.000000000000, ...
-0.000008883565, 0.000000000000, 0.000010646856, 0.000000000000, ...
-0.000012681718, 0.000000000000, 0.000015019857, 0.000000000000, ...
-0.000017695606, 0.000000000000, 0.000020746059, 0.000000000000, ...
-0.000024211195, 0.000000000000, 0.000028134007, 0.000000000000, ...
-0.000032560623, 0.000000000000, 0.000037540439, 0.000000000000, ...
-0.000043126237, 0.000000000000, 0.000049374311, 0.000000000000, ...
-0.000056344588, 0.000000000000, 0.000064100749, 0.000000000000, ...
-0.000072710348, 0.000000000000, 0.000082244931, 0.000000000000, ...
-0.000092780151, 0.000000000000, 0.000104395888, 0.000000000000, ...
-0.000117176362, 0.000000000000, 0.000131210254, 0.000000000000, ...
-0.000146590824, 0.000000000000, 0.000163416029, 0.000000000000, ...
-0.000181788657, 0.000000000000, 0.000201816450, 0.000000000000, ...
-0.000223612244, 0.000000000000, 0.000247294121, 0.000000000000, ...
-0.000272985565, 0.000000000000, 0.000300815635, 0.000000000000, ...
-0.000330919162, 0.000000000000, 0.000363436959, 0.000000000000, ...
-0.000398516066, 0.000000000000, 0.000436310020, 0.000000000000, ...
-0.000476979166, 0.000000000000, 0.000520691015, 0.000000000000, ...
-0.000567620643, 0.000000000000, 0.000617951169, 0.000000000000, ...
-0.000671874287, 0.000000000000, 0.000729590893, 0.000000000000, ...
-0.000791311804, 0.000000000000, 0.000857258593, 0.000000000000, ...
-0.000927664555, 0.000000000000, 0.001002775826, 0.000000000000, ...
-0.001082852685, 0.000000000000, 0.001168171059, 0.000000000000, ...
-0.001259024280, 0.000000000000, 0.001355725119, 0.000000000000, ...
-0.001458608168, 0.000000000000, 0.001568032601, 0.000000000000, ...
-0.001684385417, 0.000000000000, 0.001808085218, 0.000000000000, ...
-0.001939586653, 0.000000000000, 0.002079385630, 0.000000000000, ...
-0.002228025473, 0.000000000000, 0.002386104185, 0.000000000000, ...
-0.002554283079, 0.000000000000, 0.002733297041, 0.000000000000, ...
-0.002923966807, 0.000000000000, 0.003127213709, 0.000000000000, ...
-0.003344077459, 0.000000000000, 0.003575737742, 0.000000000000, ...
-0.003823540551, 0.000000000000, 0.004089030545, 0.000000000000, ...
-0.004373991051, 0.000000000000, 0.004680493905, 0.000000000000, ...
-0.005010962059, 0.000000000000, 0.005368248902, 0.000000000000, ...
-0.005755739754, 0.000000000000, 0.006177483074, 0.000000000000, ...
-0.006638362059, 0.000000000000, 0.007144321892, 0.000000000000, ...
-0.007702674910, 0.000000000000, 0.008322516718, 0.000000000000, ...
-0.009015303348, 0.000000000000, 0.009795667219, 0.000000000000, ...
-0.010682595676, 0.000000000000, 0.011701175158, 0.000000000000, ...
-0.012885245283, 0.000000000000, 0.014281569434, 0.000000000000, ...
-0.015956639253, 0.000000000000, 0.018008282147, 0.000000000000, ...
-0.020586554565, 0.000000000000, 0.023933921137, 0.000000000000, ...
-0.028469265238, 0.000000000000, 0.034983913239, 0.000000000000, ...
-0.045173699724, 0.000000000000, 0.063447988407, 0.000000000000, ...
-0.105974775276, 0.000000000000, 0.318267024988, 0.500000000000]';

Assuming M is odd, the following Octave code converts an even-order half-band filter with M + 1 distinct coefficients, hM , into
a Hilbert filter (see Section N.4) and plots the amplitude response:

714

0 0.1 0.2 0.3 0.4 0.5
-1e-05

-5e-06

0

5e-06

1e-05
Selesnick-Burrus Hofstetter half-band : nf=2000,M=199,delta=1e-06

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-130

-125

-120

-115

-110

Figure N.38: Pass-band and stop-band response of a mini-max FIR half-band filter designed with Hofstetter’s algorithm and the
modifications of Selesnick and Burrus.

altm1=zeros((2*M)+1,1);
altm1(1:2:end)=((-1).^(0:M))';
hhilbert=2*[hM(1:M);0;hM(M:-1:1)].*altm1;
[Hhilbert,w]=freqz(hhilbert,1,4096);
subplot(211)
plot(w*0.5/pi,imag(Hhilbert.*exp(j*w*M)));
subplot(212)
plot(w*0.5/pi,mod((unwrap(angle(Hhilbert))+(w*(M)))/pi,2));

Figure N.39 shows the amplitude and phase responses of the Hilbert filter derived from the half-band filter shown in Figure N.38.
The phase response shown is adjusted for the nominal delay. Figure N.40 shows the zeros of the Hilbert filter.

715

0 0.1 0.2 0.3 0.4 0.5
-2e-05

-1e-05

0

1e-05

2e-05
Selesnick-Burrus Hofstetter Hilbert : M=199,delta=1e-06

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
1.49

1.495

1.5

1.505

1.51

Ph
as

e(
ra

d.
/π

)

Frequency

Figure N.39: Amplitude response of a mini-max FIR Hilbert filter derived from the half-band filter designed with Hofstetter’s
algorithm and the modifications of Selesnick and Burrus. The phase response shown is adjusted for the nominal delay.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Selesnick-Burrus Hofstetter Hilbert : M=199,delta=1e-06

Figure N.40: Zeros of a mini-max FIR Hilbert filter derived from the half-band filter designed with Hofstetter’s algorithm and
the modifications of Selesnick and Burrus.

716

Selesnick-Burrus modification to Hofstetter’s algorithm for band-pass filters

Selesnick and Burrus [89, Section II.C] also describe an exchange algorithm for band-pass filters with lower stop-band, pass-band
and upper stop-band errors δsl, δp and δsu and lower and upper transition-band frequencies ωtl and ωtu. An additional constraint
makes the slope of A (ω) is equal in magnitude and opposite in sign at the transition frequencies. Selesnick and Burrus state that:
“because the reference set must contain M − 2 extremal frequencies, it will therefore be necessary to exclude 0, 1, 2 or 3 local
minima and maxima when updating the reference set.” Suppose ω1, . . . , ωL are the local extrema of A (ω) listed in order. The
procedure for excluding maxima and minima is:

1. To exclude 1 local extremum (L = M − 1), use the same update rule used for the low-pass case.

2. To exclude 2 local extrema (L = M), find the index k that minimises

[E (ωk)− E (ωk+1)] (−1)k+c

where c = 1 if ω1 is a local maximum and c = 0 if ω1 is a local minimum. E (ω) denotes the error function. ... If
1 < k < M − 2, then exclude ωk and ωk+1 from the reference set. If k = 1 or K = L, then exclude ωk and use the
procedure above for excluding 1 local extremum.

3. To exclude 3 local extrema (L = M + 1), use the procedure for excluding 1 extremum, followed by the procedure for
excluding 2 extrema.

The Octave script selesnickFIRsymmetric_bandpass_test.m designs a band-pass filter with the implementation of Hofstetter’s
algorithm with the modifications of Selesnick and Burrus in the Octave function selesnickFIRsymmetric_bandpass.m. Unlike
the MATLAB implementation made available by Selesnick, firebp.m [220], this function uses Lagrange interpolation to find the
response in the x = cosω domain rather than using left division to find the coefficients directly and does not attempt to implement
the constraint on the slope of the response at the transition frequencies. Consequently, the exchange algorithm uses a reference
set of M − 1, rather than M − 2, extremal frequencies plus the two transition band frequencies and only 1 or, at most, 2 extremal
frequencies need be removed. The case of removing 3 frequencies, listed above, should not occur. The extremal frequencies are
found by quadratic interpolation. The filter specification is:

M=255 % Filter order is 2*M
deltasl=1e-05 % Amplitude lower stop-band peak ripple
deltap=0.0001 % Amplitude pass-band peak ripple
deltasu=1e-05 % Amplitude upper stop-band peak ripple
ftl=0.2 % Amplitude lower transition band frequency
ftu=0.35 % Amplitude upper transition band frequency
At=1-deltap % Amplitude at transition band frequencies
nf=1800 % Number of frequencies
tol=1e-10 % Tolerance on convergence

Figure N.41 shows the pass-band and stop-band amplitude responses of the filter. Figure N.42 shows the zeros of the filter. The
distinct filter coefficients are:

hMc = [0.000006348104, -0.000004299772, 0.000002791447, 0.000009838670, ...
-0.000016340858, -0.000006019899, 0.000025662821, -0.000004340389, ...
-0.000017844362, 0.000005442330, -0.000000992472, 0.000010620744, ...
0.000009883327, -0.000026480225, -0.000001831907, 0.000017373474, ...

-0.000003349623, 0.000012615043, -0.000011740680, -0.000029515055, ...
0.000028860412, 0.000014647020, -0.000013259780, 0.000006121987, ...

-0.000031307438, 0.000000332339, 0.000054063278, -0.000018940638, ...
-0.000022538967, 0.000002793994, -0.000025938125, 0.000048995871, ...
0.000031811923, -0.000069723386, -0.000001577563, 0.000012750729, ...
0.000000678249, 0.000068211551, -0.000046261348, -0.000078387345, ...
0.000061313076, 0.000014458111, 0.000016790759, 0.000026596959, ...

-0.000119252699, 0.000005987478, 0.000114357621, -0.000029943763, ...
0.000006871030, -0.000043830112, -0.000100158101, 0.000144616338, ...
0.000065528880, -0.000109425488, 0.000005994184, -0.000073179582, ...
0.000025111674, 0.000203530237, -0.000109736461, -0.000127839115, ...
0.000058072923, -0.000038930719, 0.000154180099, 0.000074480824, ...

-0.000281837312, 0.000015800669, 0.000125310194, -0.000004544061, ...
0.000158816666, -0.000179119834, -0.000240950249, 0.000271665592, ...
0.000077747785, -0.000035352918, 0.000032436155, -0.000331854462, ...
0.000079587394, 0.000394072083, -0.000158990504, -0.000076345160, ...

717

-0.000086038884, -0.000207397887, 0.000452335822, 0.000143609536, ...
-0.000426326002, 0.000022739249, -0.000077028971, 0.000109437010, ...
0.000503163159, -0.000400473835, -0.000382749070, 0.000291151099, ...

-0.000012161800, 0.000323835672, 0.000088649247, -0.000774652256, ...
0.000145648260, 0.000467739505, -0.000080985809, 0.000244152034, ...

-0.000479622050, -0.000509464746, 0.000828988281, 0.000180599990, ...
-0.000292953384, 0.000014956067, -0.000677404552, 0.000335717600, ...
0.000970443325, -0.000576311941, -0.000325873837, -0.000052388245, ...

-0.000303245387, 0.001069921512, 0.000167657619, -0.001182030229, ...
0.000158324623, 0.000088528999, 0.000269223481, 0.000955378153, ...

-0.001097703840, -0.000822697082, 0.000956012790, 0.000073060567, ...
0.000477728662, -0.000014682912, -0.001681103433, 0.000598828660, ...
0.001220846125, -0.000415350313, 0.000226819785, -0.000995399707, ...

-0.000821376128, 0.002011891804, 0.000221179920, -0.001024157901, ...
0.000019981883, -0.001092279214, 0.000947864329, 0.001927345428, ...

-0.001626655970, -0.000818722074, 0.000286464723, -0.000311781241, ...
0.002088481356, -0.000057364181, -0.002667194802, 0.000679818328, ...
0.000642939327, 0.000433504005, 0.001489401469, -0.002489129321, ...

-0.001393945169, 0.002490125792, 0.000147918304, 0.000400273138, ...
-0.000341599756, -0.003110668101, 0.001765115869, 0.002592858165, ...
-0.001421579178, -0.000020733734, -0.001692847084, -0.001027079861, ...
0.004218162369, -0.000087089567, -0.002675389246, 0.000255453314, ...

-0.001417978704, 0.002143317472, 0.003312427574, -0.003932530802, ...
-0.001568142489, 0.001420158804, -0.000186277188, 0.003577490038, ...
-0.000893678505, -0.005331272168, 0.002189310348, 0.001928673924, ...
0.000335233479, 0.001990922832, -0.005051516167, -0.001919733998, ...
0.005741697967, -0.000075708622, -0.000351537519, -0.000977590569, ...

-0.005264439891, 0.004440765253, 0.004937878811, -0.004060464754, ...
-0.000627352283, -0.002432662289, -0.000898037335, 0.008325472917, ...
-0.001444328528, -0.006231467990, 0.001358817120, -0.001405661833, ...
0.004381690294, 0.005342739239, -0.009073023135, -0.002529165721, ...
0.004614325789, -0.000015944569, 0.005858413528, -0.003204388672, ...

-0.010557126060, 0.006446445303, 0.004827569264, -0.000855351079, ...
0.002440692451, -0.010399991588, -0.002063264984, 0.013596114575, ...

-0.001623396236, -0.003074055783, -0.002074581181, -0.009388956865, ...
0.011599299771, 0.009934250972, -0.012126719485, -0.001901334082, ...

-0.003005749719, 0.000066580740, 0.018918858005, -0.006808261837, ...
-0.016649742979, 0.006401117119, -0.000447227938, 0.010471622183, ...
0.010345118848, -0.026778344016, -0.004019801453, 0.017767910595, ...

-0.000568212557, 0.012696374655, -0.013150834662, -0.031170881014, ...
0.028120772493, 0.017739615313, -0.010212181979, 0.004206187305, ...

-0.039328008739, 0.000125788500, 0.068164616995, -0.018850625782, ...
-0.029191308541, -0.008185528095, -0.053154143451, 0.116687783855, ...
0.095961593836, -0.255252526630, -0.047822580790, 0.319358331526]';

718

0 0.1 0.2 0.3 0.4 0.5
0.9998

0.9999

1

1.0001

1.0002

Selesnick-Burrus Hofstetter band-pass : M=255,deltasl=1e-05,deltap=0.0001,deltasu=1e-05,ftl=0.2,ftu=0.35,At=1-deltap

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-2e-05

-1e-05

0

1e-05

2e-05

Figure N.41: Response of a mini-max FIR band-pass filter designed with Hofstetter’s algorithm and the modifications of Selesnick
and Burrus.

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Selesnick-Burrus Hofstetter band-pass : M=255,deltasl=1e-05,deltap=0.0001,deltasu=1e-05,ftl=0.2,ftu=0.35,At=1-deltap

Figure N.42: Zeros of a mini-max FIR band-pass filter designed with Hofstetter’s algorithm and the modifications of Selesnick
and Burrus.

719

N.5.3 Parks-McClellan algorithm for mini-max FIR filter approximation

Parks and McClellan [239, 94][169, Section 7.4.3] modify Hofstetter’s algorithm by substituting non-extremal amplitude con-
straints at the filter band edges. This allows the designer to specify ωp, ωs and the ratio δp/δs but does not allow direct specifica-
tion of δp and δs. Parks and McClellan [239] and Oppenheim and Schafer [169, Section 7.4.3] describe the algorithm shown in
Algorithm N.2g.

Design of a low-pass FIR filter with the Parks-McClellan algorithm The Octave signal package includes remez.cc, an oct-
file implementation of the Parks-McClellan algorithm. Alternatively, the Octave script mcclellanFIRsymmetric_lowpass_test.m
calls the Octave function mcclellanFIRsymmetric to design the Parks-McClellan low-pass filter example [239, Table I]. The filter
specification is:

M=14 % Filter order is 2*M
fap=0.17265 % Amplitude pass band edge
fas=0.26265 % Amplitude stop band edge
K=5 % Stop band weight
nplot=10000 % Number of frequency grid points in [0,0.5]
tol=1e-12 % Tolerance on convergence

Figure N.43 shows the pass-band and stop-band amplitude responses of the filter. Figure N.44 shows the zeros of the filter. The
stop-band ripple found is ρ =0.00167218 and the distinct filter coefficients are:

hM = [-0.0020632913, -0.0059266754, -0.0016831407, 0.0086376134, ...
0.0092367643, -0.0095748911, -0.0221622199, 0.0023744709, ...
0.0391202673, 0.0202379100, -0.0564060230, -0.0755221777, ...
0.0694057740, 0.3072654865, 0.4257593871]';

gNone of the references justify the calculation of ρ (eg: [169, Equation 7.101]). The following is my unsatisfactory attempt. Suppose that the alternations
of A (xk) mean that

∑M+2
k=1 |A (xk)−Ad (xk)| may be approximated by

∑M+2
k=1 (−1)k+1 A (xk) /2 and that, since |x− xk| ≤ 2, (x− xk) is replaced

with 2. For the minimum possible approximation error:

M+2∑
k=1

bk

[
Ad (xk)−

(−1)k+1 ρ

W (xk)

]
= 0

The result follows. In his MATLAB scripts [220], Selesnick avoids this difficulty by directly calculating ρ and the coefficients of A (x) by left-division.

720

Algorithm N.2 Parks-McClellan FIR filter design [169, Section 7.4.3] [239, 94].

1. The optimum filter satisfies the equations:

W (ωk) [Ad (ωk)−A (ωk)] = (−1)k+1
ρ , k = 1, 2, . . . , (M + 2) (N.16)

where

A (eıω) =
M∑

k=0
ak (cosω)k

For a lowpass filter, the approximation polynomial has values A (ωk) = 1 ± Kρ if W (ω) = 1
K in 0 ≤ ωk ≤ ωp and

A (ωk) = ±ρ if W (ω) = 1 in ωs ≤ ωk ≤ π [169, Equation 7.85].

2. Begin by guessing a set of alternation frequencies, ω1, ω2, . . . , ωM+2. This set includes the pass-band and stop-band
frequencies, ωp and ωs. If ωk = ωp then ωk+1 = ωs.

3. The required values at the extremal frequencies are given by [169, Equation 7.101]:

ρ =
∑M+2

k=1 bkAd (xk)∑M+2
k=1

bk(−1)k+1

W (xk)

where [169, Equation 7.102]

bk =
M+2∏

l=1,l ̸=k

1
(xk − xl)

and xk = cosωk.

4. A (ω) is an M -th order polynomial in x = cosω so we can interpolate through M + 1 of the M + 2 known values of
A (x). The Lagrange interpolation formula gives [169, Equation 7.103a]

A (x) =
∑M+1

k=1
dk

(x−xk)Ck∑M+1
k=1

dk

(x−xk)

where [169, Equation 7.103b]

Ck = Ad (x)− (−1)k+1
ρ

W (xk)

and [169, Equation 7.103c]

dk =
M+1∏

l=1,l ̸=k

1
(xk − xl)

5. Now A (x) and the error, E (x) = A (x)− Ad (x), can be calculated at a dense grid of frequencies. If |E (x)| ≤ ρ for all
x in the pass-band and stop-band, then the optimal filter is found. Otherwise, this procedure is repeated with a new set of
extremal frequencies chosen at the M + 2 greatest values of |E (x)|.

6. The impulse response can be approximated with equally spaced samples of the frequency response (calculated by Lagrange
interpolation) and the discrete Fourier transform pair [193, Section 4.5]:

F (l) =
K−1∑
k=0

f (k)W−kl
K

f (k) = 1
K

K−1∑
l=0

F (l)W kl
K

where, f (k) is an even order, N = 2M , odd length, K = 2M + 1, FIR filter and WK = e
2πı
K .

721

0 0.1 0.2 0.3 0.4 0.5

0.985

0.99

0.995

1

1.005

1.01

1.015

McClellan lowpass FIR: M=14,fap=0.17265,fas=0.26265,K=5,nplot=1000,rho=0.00167218

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

Figure N.43: Response of a mini-max FIR low-pass filter designed with the Parks-McClellan algorithm [239, Table I].

-2 -1 0 1

-1

-0.5

0

0.5

1

McClellan lowpass FIR: M=14,fap=0.17265,fas=0.26265,K=5,nplot=1000,rho=0.00167218

Figure N.44: Zeros of a mini-max FIR low-pass filter designed with the Parks-McClellan algorithm [239, Table I].

722

0 0.1 0.2 0.3 0.4 0.5

0.998

1

1.002

McClellan bandpass FIR: M=40,fasl=0.15,fapl=0.2,fapu=0.25,fasu=0.3,K=20,nplot=2000,rho=-9.08201e-05

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.0001

0

0.0001

Figure N.45: Response of a mini-max FIR band-pass filter designed with the Parks-McClellan algorithm [239, Table I].

Design of a band-pass FIR filter with the Parks-McClellan algorithm The Octave script
mcclellanFIRsymmetric_bandpass_test.m designs the band-pass filter with the specification:

M=40 % Filter order is 2*M
fasl=0.15 % Amplitude stop band lower edge
fapl=0.2 % Amplitude pass band lower edge
fapu=0.25 % Amplitude pass band upper edge
fasu=0.3 % Amplitude stop band upper edge
K=20 % Stop band weight
nplot=2000 % Number of frequency grid points in [0,0.5]
tol=1e-12 % Tolerance on convergence

In this case, the Octave function mcclellanFIRsymmetric does a preliminary search for error alternation failures when finding the
error extremal frequencies. In my experience, failure of this error extremal amplitude alternation search indicates that the filter
specification is unrealistic. Figure N.45 shows the pass-band and stop-band amplitude responses of the filter. Figure N.46 shows
the zeros of the filter. The stop-band ripple found is ρ =-0.00009082 and the distinct filter coefficients are:

hM = [-0.0001825792, -0.0000454355, 0.0004370679, 0.0002807949, ...
-0.0005520292, -0.0004924576, 0.0003279243, 0.0002034241, ...
0.0001098090, 0.0011408993, 0.0000084476, -0.0033146927, ...

-0.0014230452, 0.0050412028, 0.0037898840, -0.0046801365, ...
-0.0049343476, 0.0020859086, 0.0019942325, 0.0002287784, ...
0.0059232581, 0.0017378064, -0.0154830996, -0.0096436533, ...
0.0202482490, 0.0192036966, -0.0156768643, -0.0206396147, ...
0.0049234838, 0.0048498311, -0.0000052363, 0.0281745803, ...
0.0154584790, -0.0653441300, -0.0573965919, 0.0857782989, ...
0.1158919480, -0.0734661088, -0.1675416638, 0.0289464179, ...
0.1881653480]';

723

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

McClellan bandpass FIR: M=40,fasl=0.15,fapl=0.2,fapu=0.25,fasu=0.3,K=20,nplot=2000,rho=-9.08201e-05

Figure N.46: Zeros of a mini-max FIR band-pass filter designed with the Parks-McClellan algorithm [239, Table I].

724

Design of a multi-band FIR filter with the Parks-McClellan algorithm The Octave script
mcclellanFIRsymmetric_multiband_test.m calls the Octave function mcclellanFIRsymmetric to design a multi-band filter with
the specification:

M=30 % Filter order is 2*M
fasu1=0.1 % Amplitude first stop-band upper edge
fapl1=0.15 % Amplitude first pass band lower edge
fapu1=0.2 % Amplitude first pass band upper edge
fasl2=0.25 % Amplitude second stop band lower edge
fasu2=0.3 % Amplitude second stop band upper edge
fapl2=0.35 % Amplitude second pass band lower edge
fapu2=0.4 % Amplitude second pass band upper edge
fasl3=0.45 % Amplitude third stop band lower edge
K1=2 % First stop band weight
K2=4 % Second stop band weight
K3=8 % Third stop band weight
nplot=2000 % Number of frequency grid points in [0,0.5]
tol=1e-12 % Tolerance on convergence

Figure N.47 shows the amplitude response of the filter. Figure N.48 shows the zeros of the filter. The pass-band ripple found is
ρ =0.00113842 and the distinct filter coefficients are:

hM = [0.0020852534, -0.0017262027, -0.0000084962, 0.0003285677, ...
-0.0014901131, -0.0085441600, 0.0063716710, 0.0041746799, ...
0.0017192812, 0.0043711270, -0.0061979483, -0.0006439915, ...

-0.0043622061, -0.0027483676, -0.0258056098, 0.0296490648, ...
0.0335773014, -0.0180841232, 0.0066018472, -0.0280836542, ...

-0.0023059288, -0.0198877239, 0.0048779015, -0.0319820481, ...
0.0791193238, 0.1774151448, -0.1910626448, -0.0521172035, ...

-0.1086275176, -0.0549671680, 0.4144310402]';

725

0 0.1 0.2 0.3 0.4 0.5

-60

-50

-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

McClellan multi-band FIR: M=30,fasu1=0.1,fapl1=0.15,fapu1=0.2,fasl2=0.25,fasu2=0.3,fapl2=0.35,fapu2=0.4,fasl3=0.45

Figure N.47: Response of a mini-max FIR multi-band filter designed with the Parks-McClellan algorithm [239, Table I].

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

McClellan multi-band FIR: M=30,fasu1=0.1,fapl1=0.15,fapu1=0.2,fasl2=0.25,fasu2=0.3,fapl2=0.35,fapu2=0.4,fasl3=0.45

Figure N.48: Zeros of a mini-max FIR multi-band filter designed with the Parks-McClellan algorithm [239, Table I].

726

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

McClellan differentiator FIR: M=500,fap=0.247,fas=0.25,Kp=0.75,Kt=10,nplot=10000,rho=-0.00103223

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4 0.5
1.499

1.4995

1.5

1.5005

Ph
as

e/
π

(A
dj

us
te

d
fo

rd
el

ay
)

Frequency

Figure N.49: Amplitude and phase responses of a mini-max FIR differentiator filter designed with the Parks-McClellan algo-
rithm.

Design of a low-pass differentiator FIR filter with the Parks-McClellan algorithm The Octave script mcclellanFIRdif-
ferentiator_test.m calls the Octave function mcclellanFIRdifferentiator to design a low-pass FIR differentiator filter with the
specification:

M=500 % Filter order is 2*M
fap=0.247 % Amplitude pass band edge
fas=0.25 % Amplitude stop band edge
Kp=0.75 % Pass band weight
Kt=10 % Transition band weight
nplot=10000 % Number of frequency grid points in [0,0.5]
maxiter=100 % Maximum iterations
tol=1e-10 % Tolerance on convergence

The ripple found is ρ =-0.00103223 . Figure N.49 shows the amplitude and phase responses of the filter. Figure N.50 shows the
amplitude error responses of the filter.

727

0 0.1 0.2 0.3 0.4 0.5
-0.002

-0.001

0

0.001

0.002

McClellan differentiator FIR: M=500,fap=0.247,fas=0.25,Kp=0.75,Kt=10,nplot=10000,rho=-0.00103223

A
m

pl
itu

de
er

ro
r

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.50: Amplitude error of a mini-max FIR differentiator filter designed with the Parks-McClellan algorithm.

728

Selesnick-Burrus modification to the Parks-McClellan algorithm

Selesnick and Burrus describe modifications to the Parks-McClellan algorithm [89, Section II.A] that allow either the pass-band
or stop-band ripple, δp or δs, to be fixed and the other minimised. The user specifies M , ωp, ωs, Kp, Ks, ηp and ηs satisfying:

δp = Kpδ + ηp

δs = Ksδ + ηs

The parameters Kp,Ksηp and ηs must be non-negative and satisfy the inequalities Kp + ηp > 0 and Ks + ηs > 0. When
ηp = ηs = 0 the linear relationship reduces to the usual Parks-McClellan algorithm. Alternatively, if Ks = ηp = 0, then the
stop-band ripple, δs = ηs and the pass-band ripple, δp, is minimised.

The linear system of equations to be solved at each iteration is, in addition to the affine equations for δp and δs:

A (ωk) =
{

1 + (−1)k+c
δp for 1 ≤ k ≤ q

(−1)k+c
δs for q + 1 ≤ k ≤M + 2

where ωp = ωq and ωs = ωq+1 and c is chosen to be 0 or 1 so that A (ωq) = 1− δp.

If δp or δs are found to be negative then the interpolation step should be repeated. If δp < 0:

A (ωk) =
{

1 + (−1)k+c
δp for 1 ≤ k ≤ q

0 for q + 1 ≤ k ≤M + 2

δs = 0

If δs < 0:

A (ωk) =
{

1 for 1 ≤ k ≤ q
(−1)k+c

δs for q + 1 ≤ k ≤M + 2

δp = 0

The exchange algorithm is described as follows:

The procedure to update the reference set from one iteration to the next is the multiple exchange of the PM
algorithm: Let S be the set obtained by appending ωp and ωs to the set of extrema of A (ω) in [0, π]. S will have
either M + 2 or M + 3 frequencies and will include both 0 and π. If S has M + 2 frequencies, then take the new
reference set to be S. If S has M + 3 frequencies, then remove either 0 or π from S according to the following rule:
If ω = 0 is a local maximum of A (ω) then let α = 1, otherwise set α = −1. If ω = π is a local maximum of A (ω)
then let β = 1, otherwise set β = −1. If

[A (0)− 1]α− δp < A (π)β − δs

then remove 0 from S, otherwise remove π from S, and take the new reference set to be the resulting set S. The
expressions on each side of the inequality indicate the amount by which the error exceeds its intended value. α and
β must be chosen appropriately because both the magnitude and the sign of this value is important: negative values
appear in the design of filters possessing a scaled extra-ripple. The rule states that the frequency to be retained in S
is the one at which the error exceeds its intended value the most.

A MATLAB example, faffine.m, of low-pass filter design with this algorithm is available [220]. The Octave script affineFIRsym-
metric_lowpass_test.m calls affineFIRsymmetric_lowpass.m to design a low-pass filter with the following specification:

M=27 % Filter order is 2*M
fp=0.2 % Amplitude pass band edge
fs=0.25 % Amplitude stop band edge
kappap=1 % Pass-band kappa
kappas=0 % Stop-band kappa
etap=0 % Pass-band eta
etas=0.001 % Stop-band eta
nplot=2000 % Number of frequency points
maxiter=100 % Maximum iterations
tol=1e-12 % Tolerance on convergence

729

0 0.1 0.2 0.3 0.4 0.5
0.99

0.995

1

1.005

1.01

Affine lowpass FIR : M=27,fp=0.2,fs=0.25,kappap=1,kappas=0, etap=0,etas=0.001,nplot=2000,deltap=0.00644777,deltas=0.001

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.51: Response of a mini-max FIR low-pass filter designed with the Parks-McClellan algorithm modified by Selesnick
and Burrus [89, Section II.A].

The resulting filter has δp =0.00644777 . Figure N.51 shows the pass-band and stop-band amplitude responses of the filter. The
distinct filter coefficients are:

hM = [-0.0015354915, -0.0027935586, -0.0005350974, 0.0025612838, ...
0.0019847095, -0.0030146978, -0.0039715920, 0.0023433449, ...
0.0066374062, -0.0004379921, -0.0091369881, -0.0033095998, ...
0.0108888765, 0.0088870186, -0.0107796012, -0.0162298272, ...
0.0077051550, 0.0247940105, -0.0002036318, -0.0338385150, ...

-0.0137467925, 0.0423716626, 0.0385605735, -0.0493950809, ...
-0.0899799941, 0.0540125856, 0.3127505254, 0.4443748462]';

730

N.6 Design of FIR filters with maximally-linear pass-bands and equi-ripple stop-
bands using the Parks-McClellan algorithm

Vaidyanathan [174] and Selesnick and Burrus [88] describe the design of FIR filters with flat pass-bands and equi-ripple stop-
bands. Selesnick and Burrus interpret the flat pass-band FIR filter structure proposed by Vaidyanathan [174, Figure 4] as [88,
Figure 2]:

H (z) = z−
N−1

2 +HL (z)HM (z)

where:

HL (z) =
(

1− z−1

2

)L

The filter length, N , is odd and HM (z) is a high-pass filter with a symmetric impulse response of length N − L. The frequency
reponse of HM (ω) is:

HM (ω) = e−ıω(N−L−1
2)AM (ω)

where AM (ω) is a real valued function. When L is chosen to be even:(
1− e−ıω

2

)L

= (−1)
L
2
(
e−

ıω
2
)L
(

sin ω2

)L

Therefore the frequency response is:

H (ω) = e−ıω(N−1
2)A (ω)

where the amplitude response is:

A (ω) = 1 + (−1)
L
2
(

sin ω2

)L

AM (ω)

Let M = (N − L− 1) /2 then:

AM (ω) = hM (M) + 2
M−1∑
k=0

hM (k) cos [ω (M − k)]

where hM are the coefficients of HM .

N.6.1 Design of FIR low-pass filters with maximally-flat pass-bands and equi-ripple stop-bands

Selesnick and Burrus describe exchange algorithms for the cases in which the maximally-flat pass-band, low-pass, FIR filter
design:

1. specifies N , L, ωs and minimises δs

2. specifies N , L, δs and minimises ωs

Maximally-flat pass-band and fixed ωs

In the first case, AM (ω) is found by minimising [88, Section II.A]:

∥[AM (ω)−D (ω)]W (ω)∥∞

where:

D (ω) = − (−1)
L
2(

sin ω
2
)L

W (ω) =
{

0 for ω < ωs

(−1)
L
2
(
sin ω

2
)L

for ω ≥ ωs

731

0 0.1 0.2 0.3 0.4 0.5
0.98

0.99

1

1.01

1.02

Selesnick-Burrus flat low-pass FIR : N=33,L=22,fs=0.3

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.02

-0.01

0

0.01

0.02

Figure N.52: Response of a mini-max FIR maximally-flat pass-band low-pass filter with fixed ωs designed with the Parks-
McClellan algorithm [88, Section II.A].

On each iteration, a reference set of stopband frequencies is updated and the filter HM is found such that
A (ω) alternately interpolates δs and −δs, over the reference set frequencies. The size of the reference set is
q = (N − L+ 3) /2.

The Octave script mcclellanFIRsymmetric_flat_lowpass_test.m calls the Octave function mcclellanFIRsymmetric to design a
maximally-flat FIR low-pass filter having fixed ωs with the Parks-McClellan algorithm (Algorithm N.2). The specification of the
filter is:

N=33 % Filter length
L=22 % Filter flat-ness
fs=0.3 % Amplitude stop band frequency
nplot=4000 % Number of frequency points
tol=1e-10 % Tolerance on convergence

Figure N.52 shows the pass-band and stop-band amplitude responses of the fixed ωs filter. The distinct filter coefficients of
HM (z) are:

hM = [56.17896774, 466.93894436, 1839.26934699, 4492.82391996, ...
7488.61684242, 8849.58705438]';

The distinct filter coefficients of the overall filter, H (z), are:

hA = [0.000013394110, -0.000183343493, 0.001083363085, -0.003486589406, ...
0.006051274414, -0.003407242506, -0.006369164439, 0.009523748743, ...
0.008065137563, -0.021430848277, -0.009486047978, 0.043915909948, ...
0.010310734167, -0.093052907047, -0.010646959048, 0.313738455002, ...
0.510722170324]';

732

Maximally-flat pass-band and fixed δs

In the second case [88, Section II.B]:

Like the Remez algorithm, this approach employs a set of stopband reference frequencies. On each iteration:
1) an interpolation problem is solved and 2) the reference set is updated. The reference set here, however, does not
contain the stopband edge (indeed, it is not specified). Therefore the reference set contains (N − L+ 1) /2 stopband
frequencies. ... At each iteration, the local extremal frequencies of A (ω) in (0, π] are found and are taken to be the
reference set frequencies for the next iteration.

The Octave script selesnickFIRsymmetric_flat_lowpass_test.m calls the Octave function selesnickFIRsymmetric_flat_lowpass to
design a maximally-flat FIR low-pass filter having fixed δs. The specification of the filter is:

N=33 % Filter length
L=22 % Filter flat-ness
deltas=0.01 % Amplitude stop band peak ripple

Figure N.53 shows the pass-band and stop-band amplitude responses of the fixed δs filter. The Octave function selesnickFIRsym-
metric_flat_lowpass uses Lagrange interpolation to find the filter amplitude response and removes spurious peaks in the pass-band
amplitude response that are due to numerical errors. The distinct filter coefficients of HM (z) are:

hM = [43.91080519, 372.91677570, 1494.48125206, 3697.49748358, ...
6212.16961201, 7361.28481996]';

The distinct filter coefficients of the overall filter, H (z), are:

hA = [0.000010469152, -0.000141411051, 0.000818659827, -0.002541531294, ...
0.004055046944, -0.001227041686, -0.006392990415, 0.006672187289, ...
0.009840325210, -0.018250303773, -0.013299129454, 0.040971335274, ...
0.016130924455, -0.090969568900, -0.017947413469, 0.312986334142, ...
0.518568215500]';

733

0 0.1 0.2 0.3 0.4 0.5
0.985

0.99

0.995

1

Selesnick-Burrus flat low-pass FIR : N=33,L=22,δs=0.01

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.02

-0.01

0

0.01

0.02

Figure N.53: Response of a mini-max FIR maximally-flat pass-band low-pass filter with fixed δs [88, Section II.B].

734

N.6.2 Design of FIR band-pass filters with maximally-flat pass-bands and equi-ripple stop-bands

Selesnick and Burrus describe the design of maximally-flat pass-band, band-pass, FIR filters with centre frequency, ωp, pass-band
width 2ωt and upper and lower stop-band ripple δsu and δsl, respectively. For maximally-flat band-pass FIR filters:

HL (z) =
[

1− 2z−1 cosωp + z−2

4

]L
2

where L is a multiple of 4, N is odd. The amplitude response is:

A (ω) = 1 + (−1)
L
2

[
cosωp − cosω

2

]L
2

AM (ω)

where AM is the amplitude response of a symmetric FIR filter, HM , of length N − L. Selesnick and Burrus describe exchange
algorithms for the two cases:

1. specifies N , L, ωp, ωt, K = δsu/δsl and minimises δsl

2. specifies N , L, δsu and δsl and maximises ωt

The exchange algorithms described in this section place all extremal frequencies in the stop-bands. The Remez exchange algo-
rithm requires that the error alternate in sign over the set of reference frequencies. Consequently, at each iteration, only one of
the stop-band edges can be included in the set of reference frequencies.

Maximally-flat pass-band and fixed ωp and ωt

For convenience, set ωa = ωp − ωt and ωb = ωp + ωt. In this case [88, Section III]:

The reference set is updated by the following procedure: First compute the set of all local extremal frequencies of
A (ω) in [0, π]. Calling this setR, remove ωp fromR. R will then contain either (N − L+ 1) /2 or (N − L+ 3) /2
frequencies. If R contains (N − L+ 3) /2 frequencies, then remove either 0 or π as follows: if |A (π)| < K |A (0)|
then remove π, otherwise remove 0. Next append either ωa or ωb to R: if |A (ωb)| < K |A (ωa)| then append ωa,
otherwise append ωb. R is the new reference set and has size (N − L+ 3) /2. On each iteration, the filter HM is
found such thatA (ω) interpolates δsl (−1)k over the reference set frequencies in the first stop-band andKδsl (−1)k

in the second stop-band.

The Octave script mcclellanFIRsymmetric_flat_bandpass_test.m calls the Octave function mcclellanFIRsymmetric to design a
maximally-flat FIR band-pass filter having fixed ωp and ωt and K = δsu/δsl. The specification of the filter is:

N=55 % Filter length
L=8 % Filter flat-ness
fp=0.2 % Amplitude pass-band centre frequency
ft=0.05 % Amplitude pass-band half-width frequency
K=2 % Amplitude stop-band ripple ratio
nplot=4000 % Number of frequency points
tol=1e-10 % Tolerance on convergence

Figure N.54 shows the detailed pass-band and stop-band amplitude responses of the filter. The distinct filter coefficients of
HM (z) are:

hM = [1.70555584, 3.17821682, -5.09701343, -19.07316638, ...
-4.76049523, 47.75504982, 57.98434573, -53.19114156, ...

-167.68691503, -41.82256908, 272.22952127, 296.56112747, ...
-214.69078694, -642.37351794, -167.60342750, 821.69750188, ...
853.07954884, -502.92454392, -1496.85361123, -422.07303994, ...
1551.08341809, 1569.37603234, -695.67269651, -2152.30662247]';

The distinct filter coefficients of the overall filter, H (z), are:

hA = [0.006662327500, -0.004055269899, -0.008683546807, -0.002873321599, ...
0.008005029674, 0.007713691662, -0.004255694702, -0.009847048614, ...

-0.001812617050, 0.004798782809, 0.001027331693, 0.000266976513, ...
0.008495033147, 0.004817900540, -0.018885705210, -0.025569566382, ...
0.013381986383, 0.051133914935, 0.017876953299, -0.058493690708, ...

-0.064941412550, 0.029188820612, 0.098830498685, 0.031751715332, ...
-0.091124032213, -0.093779841405, 0.037083123198, 0.119938222140]';

735

0 0.1 0.2 0.3 0.4 0.5
0.98

0.99

1

1.01

1.02

Selesnick-Burrus flat band-pass FIR : N=55,L=8,fp=0.2,ft=0.05,K=2

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.02

-0.01

0

0.01

0.02

Figure N.54: Pass-band and stop-band responses of a mini-max FIR maximally-flat pass-band band-pass filter with fixed ωp and
ωt [88, Section III].

Maximally-flat pass-band and fixed δsu and δsl

In the second case [88, Section III]:

A similar algorithm is used for approach (2) in which δsl and δsu are specified and the stop-band edges are left
variable. The reference set is updated in the same manner, except no stopband edge is appended to R. Let ω1, . . . ωq

denote the reference set frequencies ordered in increasing order. On each iteration, the filter HM is found such that:

A (ω) = δsl (−1)k+c for ωk < ωp

A (ω) = δsu (−1)k+c+1 for ωk > ωp

where c equals 0 or 1, whichever gives A (ω) = −δsl at the highest reference frequency less than ωp.

The Octave script selesnickFIRsymmetric_flat_bandpass_test.m calls the Octave function selesnickFIRsymmetric_flat_bandpass
to design a maximally-flat FIR low-pass filter having fixed δsu and δsl. The specification of the filter is:

N=55 % Filter length
L=16 % Filter maximal flat-ness
deltasl=0.01 % Amplitude lower stop-band peak ripple
deltasu=0.02 % Amplitude upper stop-band peak ripple
fp=0.2 % Amplitude pass-band centre frequency
ft=0.04 % Initial amplitude pass-band half-width
nplot=4000 % Number of frequency
tol=1e-09 % Tolerance

Figure N.55 shows the pass-band and stop-band amplitude responses of the fixed δsu and δsl filter. The distinct filter coefficients
of HM (z) are:

hM = [346.6174393, 1384.1759764, 475.0397672, -6894.9867351, ...
-12695.2181907, 7309.6402723, 47779.7574138, 34867.3658180, ...
-77730.9674673, -154784.1927737, 6678.4653510, 292558.9876402, ...
247910.0879215, -256448.0019794, -582855.1939345, -107334.9576096, ...
681059.0642255, 644221.8804970, -312203.9143812, -912262.6344293]';

736

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

Selesnick-Burrus flat band-pass FIR : N=55,L=16,δsl=0.01,δsu=0.02

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.04

-0.02

0

0.02

0.04

Figure N.55: Response of a mini-max FIR maximally-flat pass-band band-pass filter with fixed δsu and δsl [88, Section III].

The distinct filter coefficients of the overall filter, H (z), are:

hA = [0.005288962392, -0.005029218937, 0.001698717395, 0.000837899810, ...
-0.006722826962, -0.007310340028, 0.003652712225, 0.008669566372, ...
0.000373708830, -0.002473206124, 0.003854128365, -0.003966841418, ...

-0.020504739337, -0.007257285427, 0.027139879204, 0.025442553022, ...
-0.010768618013, -0.017976446123, 0.000514558620, -0.018567051350, ...
-0.041227875018, 0.027796612785, 0.118120851465, 0.044099737518, ...
-0.146972969140, -0.162797555955, 0.068053509975, 0.222063151703]';

737

N.6.3 Design of maximally-linear FIR low-pass differentiators with equi-ripple stop-bands

The ideal full-band differentiator response is H (ω) = ıω where |ω| ≤ π. If the input signal contains broadband random noise
then a differentiator filter with a low-pass amplitude response is preferred. Selesnick and Burrus [88, Section IV, Figure 5]h

describe the design of low-pass FIR differentiator filters with equi-ripple stop-bands and “a specified degree of tangency, L, at
ω = 0”. They present the design equations shown below.

Even-length FIR differentiators

If N and L are even and S (z) = −
(
1− z−1) /2 and C (z) = −

(
1− z−1)2

/2, so that S (ω) = sin ω
2 and C (ω) = 1− cosω,

then the amplitude response is:

A (ω) = sin
(ω

2

) [
2 + d1C (ω) + d2C

2 (ω) + . . .+ dL
2 −1C

L
2 −1 (ω) +AMC

L
2 (ω)

]
where AM (ω) is an arbitrary cosine polynomial of degree M = (N − L− 1) /2 and:

dk = 1 · 3 · 5 · · · (2k − 1)
k! · (2k + 1) · 22k−1

For the amplitude response, A (0) = 0, A′ (0) = 1 and A(k) (0) = 0 for k = 2, . . . , L.

Odd-length FIR differentiators

If N is odd and L is even and S (z) = −
(
1− z−2) /2 so that S (ω) = sinω, then the amplitude response is:

A (ω) = sin (ω)
[
1 + d1C (ω) + d2C

2 (ω) + . . .+ dL
2 −1C

L
2 −1 (ω) +AMC

L
2 (ω)

]
where AM (ω) is an arbitrary cosine polynomial and:

dk = k!
1 · 3 · 5 · · · (2k + 1)

Failed design of an odd length differentiator with mcclellanFIRsymmetric

The Octave script mcclellanFIRsymmetric_linear_differentiator_fail_test.m calls the Octave function mcclellanFIRsymmetric
to design the stop-band filter, AM (ω), of an odd-length, even-order, maximally-linear pass-band, equi-ripple stop-band, FIR
differentiator filter. The filter specification is similar to that of the example of Selesnick and Burrus [88, Figure 6]:

N=59 % Filter length
L=34 % Filter linearity
fs=0.2 % Amplitude stop band frequency

Figure N.56 shows the response of the length M + 1 FIR stop-band filter, AM (ω). The FIR stop-band filter has small errors.
Figure N.57 shows the amplitude response of the differentiator filter. The small errors in the response of AM result in very large
errors in the differentiator stop-band amplitude response.

hThe caption to Figure 5 should say “N even”

738

0 0.1 0.2 0.3 0.4 0.5

-1e+06

-8e+05

-6e+05

-4e+05

-2e+05

0

McClellan symmetric FIR differentiator : N=59,L=34,fs=0.2

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.1

-0.08

-0.06

-0.04

-0.02

0

Figure N.56: Response of the AM filter of an odd-length, even-order, maximally-linear pass-band, equi-ripple stop-band, FIR
differentiator [88, Section IV].

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

Frequency

A
m

pl
itu

de

McClellan symmetric FIR differentiator : N=59,L=34,fs=0.2

Figure N.57: Response of the failed design of an odd-length, even-order, maximally-linear pass-band, equi-ripple stop-band, FIR
differentiator [88, Section IV].

739

Design of an odd length differentiator with mcclellanFIRantisymmetric_linear_differentiator

The Octave function mcclellanFIRantisymmetric_linear_differentiator designs maximally-linear pass-band, equi-ripple stop-
band, FIR differentiator filters. It follows the MATLAB function chebdiff.m of Selesnick [221] for even-length filters and adds
the odd-length case. The Octave script mcclellanFIRantisymmetric_linear_differentiator_test.m exercises this function to design
an even-length, odd-order and an odd-length, even-order filter. The filter specification for the even-length filter is similar to that
of the example of Selesnick and Burrus [88, Figure 6]. The specification of the odd-length filter is:

N=57 % Filter length
L=34 % Filter linearity
deltas=0.0001 % Amplitude stop band ripple

The coefficients of the odd-length, even-order, anti-symmetric, FIR differentiator filter arei:

hA57 = [-0.000000026687, 0.000000490000, -0.000003958470, 0.000017980629, ...
-0.000047304433, 0.000057983906, 0.000034848673, -0.000205142638, ...
0.000104960387, 0.000475677202, -0.000593304133, -0.000865109279, ...
0.001806247068, 0.001319859178, -0.004353873501, -0.001749075510, ...
0.009179985235, 0.002096147899, -0.017729632353, -0.002508748862, ...
0.032351684085, 0.003724726890, -0.057627851331, -0.008372615640, ...
0.106138256967, 0.029574595700, -0.239992860846, -0.311662304083, ...

-0.000000000023, 0.311662304123, 0.239992860823, -0.029574595697, ...
-0.106138256955, 0.008372615619, 0.057627851351, -0.003724726905, ...
-0.032351684076, 0.002508748857, 0.017729632355, -0.002096147900, ...
-0.009179985234, 0.001749075509, 0.004353873501, -0.001319859178, ...
-0.001806247068, 0.000865109279, 0.000593304133, -0.000475677202, ...
-0.000104960387, 0.000205142638, -0.000034848673, -0.000057983906, ...
0.000047304433, -0.000017980629, 0.000003958470, -0.000000490000, ...
0.000000026687]';

Figure N.58 shows the pass-band and stop-band amplitude responses of the odd-length even-order FIR maximally-linear pass-
band differentiator filter. The width of the stop-band is determined by the stop-band ripple specification. There are M =
(N − 1− L) /2 stop-band extremal frequencies. Figure N.59 shows the zeros of the differentiator filter. There are single zeros
at z = ±1. Figure N.60 shows the values of odd or even N and even L with deltas=1e-4 and tol=1e-8 for which the Octave
function mcclellanFIRantisymmetric_linear_differentiator converges to a feasible filter.

iThis truncation introduces ripple of about ±1e− 7 into the maximally-linear low-pass differentiator response.

740

0 0.1 0.2 0.3 0.4 0.5
-0.5

0

0.5

1

1.5

Parks-McClellan maximally-linear differentiator FIR : N=57,L=34,deltas=0.0001,maxiter=100,tol=1e-08

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.0002

-0.0001

0

0.0001

0.0002

Figure N.58: Pass-band and stop-band amplitude responses of an odd-length, even-order, maximally-linear pass-band, equi-
ripple stop-band, FIR differentiator [88, Section IV].

-1 0 1 2 3

-1

0

1

Parks-McClellan maximally-linear differentiator FIR : N=57,L=34,deltas=0.0001,maxiter=100,tol=1e-08

Figure N.59: Zeros of an odd-length, even-order, maximally-linear pass-band, equi-ripple stop-band, FIR differentiator [88,
Section IV].

741

0 20 40 60 80 100
0

20

40

60

80

100

N

L

Feasible N and L for mcclellanFIRantisymmetric_linear_differentiator : deltas=0.0001,maxiter=100,tol=1e-08

Figure N.60: Feasible values of odd or even N and even L with deltas=1e-4 and tol=1e-8 for the maximally-linear pass-band,
equi-ripple stop-band, FIR differentiator designed by the Octave function mcclellanFIRantisymmetric_linear_differentiator.

742

N.7 Closed-form design of maximally-linear FIR filters

Maximally-linear filters are preferred when a signal is repeated or re-transmitted many times. The linearity constraints allow a
closed-form solution for the filter coefficients. Samadi and Nishihara give a historical survey of maximally-flat FIR filters [218].
They emphasise their use since the late 19th century by actuaries for graduation or data-smoothing. Maximally-linear FIR filters
are typically longer than equi-ripple FIR filters but may have fewer multipliers.

N.7.1 Closed-form design of maximally-flat low-pass FIR filters

Herrmann’s closed form design of FIR low-pass filters that are maximally-flat at ω = 0 and ω = π

Herrman [161] describes a method of designing maximally-flat low-pass FIR filters with a closed form expression for the coef-
ficients. The zero-phase frequency response of the filter is:

A (ω) =
M∑

k=0
dk cos kω

where the length of the filter is N = 2M + 1. The maximally-flat constraints on the low-pass filter coefficients are:

A (ω)|ω=0 = 1
A (ω)|ω=π = 0

dp

dωp
A (ω)

∣∣∣∣
ω=0

= 0 p = 1, 2, . . . , 2L− 1

dq

dωq
A (ω)

∣∣∣∣
ω=π

= 0 q = 1, 2, . . . , 2K − 1

where M = L + K − 1 and L and K represent the required degrees of “flatness” at ω = 0 and ω = π. Herrmann defines a
transformation cosω = 1− 2x on the interval [0, 1] by which A (ω) is transformed into:

PM,K (x) =
M∑

k=0
akx

k

PM,K (x) has K zeros at x = 1 and L = M −K + 1 zeros at x = 0. Herrmann states that:

PM,K (x) = (1− x)K
M−K∑
k=0

(
M + k − 1

k

)
xk

Herrmann gives an empirical relation for the filter cut-off frequency, xc:

K = M − ⌊Mxc + 0.5⌋

Rajagopal and Roy [125] derive PM,K (x) from the properties of the Bernstein polynomialj representation of a function f (x) on
the interval [0, 1]:

BM (f ;x) =
M∑

k=0
f

(
k

M

)(
M
k

)
xk (1− x)M−k

where the values of f (x) at x = 0
M , 1

M , . . . , M
M are known. They point out that for a low-pass function, f (x):

f

(
k

M

)
=
{

1, 0 ≤ k ≤M −K
0, M −K + 1 ≤ k ≤M

we get:

BM,K (f ;x) =
M−K∑
k=0

(
M
k

)
xk (1− x)M−k

jIn computer graphics a two- or three-dimensional Bernstein polynomial [63] is called a Bezier curve. The DeCasteljau recursion is a numerically stable
method for calculation of the value of the Bernstein polynomial.

743

Expanding and simplifying, Rajagopal and Roy [125, Appendix A] derive Herrmann’s PM,K (x):

BM,K (x) = (1− x)K
M−K∑
k=0

(
M + k − 1

k

)
xk (N.17)

Identifying x with − 1
4
(
1− z−1)2

and 1 − x with 1
4
(
1 + z−1)2

, the filter transfer function corresponding to the Bernstein
polynomial representation of the low-pass function, f (x), is:

H (z) = 1
4M

M−K∑
k=0

(−1)k

(
M
k

)(
1− z−1)2k (1 + z−1)2(M−k)

Alternatively, applying Bernstein interpolation to f (x):

BM (f ;x) =
M∑

k=0
∆kf (0)

(
M
k

)
xk

where ∆kf (0) is the kth forward differencek at x = 0 calculated from the values of f (x) at x = 0
M , 1

M , . . . , M
M , Rajagopal and

Roy show that [125, Equation 23]:

a0 = 1

ak =

0, k = 1, . . . , L− 1

(−1)k−L+1 · L
k ·

(
M − L
k − L

)
·

(
M

L

)
, k = L, . . . ,M

In this case the filter transfer function is:

H (z) =
M∑

k=0
ak

[
−1

4
(
1− z−1)2

]k

Figure N.61 shows the x-domain responses of maximally-flat lowpass filters for M = 10 and K = 1, . . . ,M designed with the
Octave function herrmannFIRsymmetric_flat_lowpass. It reproduces Herrmann’s Figure 1 [161].

The distinct coefficients of the z-domain impulse response of an M = 19 and K = 11 maximally-flat low-pass filter are:

hM19K11 = [0.000000159191, 0.000000672138, -0.000001957109, -0.000012098491, ...
0.000007057453, 0.000102837177, 0.000027686932, -0.000548464945, ...
-0.000430046377, 0.002056743542, 0.002490944957, -0.005758881918, ...
-0.009666694648, 0.012477577489, 0.029411432653, -0.021390132839, ...
-0.080658625913, 0.029411432653, 0.308820042861, 0.467320630385];

The numerical range of the maximally-flat filter ak coefficients increases rapidly with the length of the filter.

kThe forward differences are:

∆0fn = fn

∆1fn = fn+1 − fn

∆kfn = ∆k−1fn+1 −∆k−1fn

=
k∑

p=0

(−1)p
(

k
p

)
fn+p

744

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

P
M

,K
(x

)

PM,K (x) for M = 10 and K = 1, . . . , M

K=1

K=10

Figure N.61: x-domain amplitude responses of maximally-flat low-pass filters designed by the method of Herrmann withM = 10
and K = 1, . . . ,M [161, Figure 1].

745

Vlček et al.’s recursive algorithm for the calculation of the coefficients of odd-length, symmetric, maximally-flat, FIR
low-pass filters

Vlček et al. [148] give a recursive algorithm for the coefficients of an odd-length, even-order, symmetric, maximally flat, low-pass
FIR filter. They begin with a length N = 2M + 1 z-domain impulse response [148, Equations 1 to 4]:

H (z) =
N−1∑
k=0

hkz
−k

= z−M

[
hM + 2

M∑
k=1

hM−n ·
1
2
(
zk + z−k

)]

The zero-phase frequency response is:

A (v) =
[
a0 +

M∑
k=1

akTk (v)
]

where a0 = hM , ak = 2hM−m, v = cosω and Tk (ω) = cos kω is a Chebyshev polynomial of the first kind. If the impulse
response has all zeros at z = ±1 then the zero-phase amplitude response is a Bernstein polynomal. Re-writing Equation N.17 in
terms of v [148, Equation 9]l, A (v) = CM,K (v), where:

CM,K (v) =
(

1 + v

2

)K M−K∑
k=0

(
M + k − 1

k

)(
1− v

2

)k

Vlček et al. state that:

d

dv
CM,K (v) = 2−MM

(
M − 1
M −K

)
(1− v)M−K (1 + v)K−1 (N.18)

Differentiating again [148, Equation 11]:

(
1− v2) d2

dv
CM,K (v) + [(M − 2K + 1) + (M − 1) v] d

dv
CM,K = 0

The Chebyshev polynomials of the first kind have the property:

d

dv
Tk (v) = kUk−1 (v)

where Uk (v) is a Chebyshev polynomial of the second kind. An alternative expression of Equation N.18 is:

d

dv
CM,K (v) =

M∑
k=1

kakUk−1 (v)

Substituting αk = kak:

(
1− v2) d2

dv2CM,K (v) =
M∑

k=1
αk

(
1− v2) d

dv
Uk−1 (v)

= −
M∑

k=1

(
k − 1

2

)
αkUk (v) +

M∑
k=1

(
k + 1

2

)
αkUk−2 (v)

The second-order differential equation becomes:

M∑
k=1

M − k
2 αkUk (v) +

M∑
k=1

(M − 2K + 1)αkUk−1 (v) +
M∑

k=1

M + k

2 αkUk−2 (v) = 0

Setting α0 = 0 and U−1 (v) = 0:

M+1∑
k=1

M − k + 1
2 αk−1Uk−1 (v) +

M∑
k=1

(M − 2K + 1)αkUk−1 (v) +
M−1∑
k=1

M + k + 1
2 αk+1Uk−1 (v) = 0

lIn the notation of Vlček et al., p = M −K and q = K − 1.

746

For k = M + 1, the first sum gives:

M −M
2 αMUM (v) = 0

Comparing the coefficient of the highest power of v in the expansion of d
dvA (v) in Chebyshev polynomials of the second kind,

UM−1 (v), with that in d
dvCM,K (v):

2M−1MaM = (−1)M−K 2−MM

(
M − 1
M −K

)
αM = (−1)M−K 2−2M+1M

(
M − 1
M −K

)
Setting k = M gives: (

1
2αM−1 + (M − 2K + 1)αM

)
Uk−1 (v) = 0

or:

αM−1 = −2 (M − 2K + 1)αM

Finally, a0 is given by the value of A (v) at v = 1 or ω = 0:

a0 = 1−
M∑

k=1
aM

Algorithm N.3 summarises the calculation. It reproduces Table I of Vlček et al..

Algorithm N.3 Vlček et al.’s backwards recursion for the calculation of the impulse response of an odd-length, symmetric,
maximally-flat, low-pass FIR filter [148, Table 1].

Require: M , K

Initialisation:

αM = (−1)M−K 2−2M+1M

(
M − 1
M −K

)
αM−1 = −2 (M − 2K + 1)αM

Body:
for k = M − 1 down to 2 do

M−k+1
2 αk−1 = (2K − 1−M)αk − M+k+1

2 αk+1
end for

Integration:
for k = M down to 1 do

ak = αk

k
end for
a0 = 1−

∑M
k=1 aM

Impulse response:
for k = M down to 1 do

hM±k = ak

2
end for
hM = a0

The backwards recursion of Vlček et al. can successfully calculate the coefficients of much longer filters than is possible with
the “direct” calculation of Herrman [161] or Rajagopal and Roy [125]. The Octave function vlcekFIRsymmetric_flat_lowpass
calculates the distinct coefficients of a symmetric, odd-length, maximally-flat FIR low-pass filter by the backwards recursion.
Figure N.62 shows the amplitude responses of maximally-flat low-pass filters with M = 300 and K = 10, 30, . . . , 290.

747

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Frequency

A
m

pl
itu

de

Vlcek maximally-flat low-pass filter responses for M=300,K=10,30,...,290

K=10K=290

Figure N.62: Amplitude responses of maximally-flat low-pass filters designed by the backwards recursion of Vlček et al. [148,
Table 1] with M = 300 and K = 10, 30, . . . , 290.

Working for Vlček et al. Equation 14 [148] The recursion for the Chebyshev polynomials of the first kind is:

T0 (v) = 1
T1 (v) = v

Tk (v) = 2vTk−1 (v)− Tk−2 (v)

The recursion for the Chebyshev polynomials of the second kind is:

U0 (v) = 1
U1 (v) = 2v
Uk (v) = 2vUk−1 (v)− Uk−2 (v)

Also:

Tk (v) = Uk (v)− vUk−1 (v)

The derivatives of the Chebyshev polynomials are:

d

dv
Tk (v) = kUk−1 (v)(

v2 − 1
) d
dv
Uk (v) = (k + 1)Tk+1 − vUk (v)

Accordingly: (
1− v2) d

dv
Uk−1 (v) = vUk−1 (v)− kTk

= vUk−1 (v)− kUk (v) + kvUk−1 (v)
= (k + 1) vUk−1 (v)− kUk (v)

= (k + 1)
(
Uk (v) + Uk−2 (v)

2

)
− kUk (v)

= −
(
k − 1

2

)
Uk (v) +

(
k + 1

2

)
Uk−2 (v)

748

Closed-form design of FIR filters by Nuevo et al.’s interpolation with a maximally-flat model filter

Nuevo et al. [260] describe a general method for the design of interpolated FIR filters of the form H (z) = HM

(
zP
)
G (z).

HM (z) is called the model filter, designed to meet the required frequency specification in zP . HM (z) is transformed by
interpolating P − 1 zeros between each impulse response coefficient creating P images of the desired frequency response. The
G (z) filter places zeros at each of the P − 1 unwanted images. This method is claimed to “implement most practical FIR filters
with significant savings in the number of arithmetic operations”.

The Octave script nuevoFIRsymmetric_flat_bandpass_test.m applies this method to the design of a bandpass filter. The max-
imally flat model filter is designed by the Octave function herrmannFIRsymmetric_flat_lowpass with M = 19 and fc = 0.2
giving K = 12. The interpolation factor is P = 8. The script constructs an interpolator filter, G (z), with double zeros at z = 1
and z = −1, a pair of zeros at z = ±ı and pairs of zeros at on the unit circle at ω = ±2π [3, 29, 35, 47, 48, 50, 62] / (16P). The
latter were adjusted “by-eye”. The resulting filter has a model filter with length 39 and an overall filter length of 325. The model
filter has 20 distinct coefficients and the interpolator filter requires 8 distinct non-power-of-two multipliers. Figure N.63 shows
the responses of the interpolated maximally-flat model filter and the interpolator filter. Figure N.64 shows the overall response
of the interpolated filter. The distinct coefficients of the model filter are:

hM = [-0.000000115775, -0.000000977656, -0.000001682143, 0.000008798903, ...
0.000035928853, -0.000008798903, -0.000247553748, -0.000258101150, ...
0.000888689188, 0.001935758628, -0.001537852688, -0.007637447678, ...

-0.001205449691, 0.020284404047, 0.017043474829, -0.039348693565, ...
-0.068841149448, 0.057879182976, 0.303865710623, 0.434291748796]';

The coefficients of the two sections of the interpolator filter are:

hza = [-1.000000000000, 0.000000000000, 1.000000000000, 0.000000000000, ...
1.000000000000, 0.000000000000, -1.000000000000]';

and

hzb = [-0.004136886270, -0.017852189988, -0.038019167415, -0.047930433674, ...
-0.031132075251, 0.011819680270, 0.059109120400, 0.079676236949, ...
0.059109120400, 0.011819680270, -0.031132075251, -0.047930433674, ...

-0.038019167415, -0.017852189988, -0.004136886270]';

Figure N.65 shows the overall response of the filter with 16-bit rounded coefficients. The model filter now has 16 distinct
coefficients, a total of 24 multipliers are required and the overall filter length is 261. The distinct 16-bit coefficients of the model
filter are:

hMf = [1, 0, -8, -8, ...
29, 63, -50, -250, ...

-40, 665, 558, -1289, ...
-2256, 1897, 9957, 14231]'/32768;

The 16-bit coefficients of the interpolator filter are:

hzbf = [-136, -585, -1246, -1571, ...
-1020, 387, 1937, 2611, ...
1937, 387, -1020, -1571, ...
-1246, -585, -136]'/32768;

749

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Interpolated model filter : P=8,M=19,fc=0.2,K=12

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Interpolator filter

A
m

pl
itu

de
(d

B
)

Frequency

Figure N.63: Amplitude response of the interpolated maximally-flat model filter and interpolator filter with P = 8, M = 19,
fc = 0.2, K = 12.

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Frequency

A
m

pl
itu

de
(d

B
)

Interpolated maximally flat FIR filter : P=8,M=19,fc=0.2,K=12

Figure N.64: Amplitude response of an interpolated maximally-flat band-pass filter with P = 8, M = 19, fc = 0.2, K = 12.

750

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Frequency

A
m

pl
itu

de
(d

B
)

Interpolated maximally flat FIR filter amplitude response with 16-bit rounded coefficients: P=8,M=19,fc=0.2,K=12

Figure N.65: Amplitude response of an interpolated maximally-flat band-pass filter with P = 8, M = 19, fc = 0.2, K = 12
and 16-bit rounded coefficients.

751

Vaidyanathan’s design of multiplier-less FIR filters by combining maximally-flat interpolators

Vaidyanathan [173] describes the design of monotonic (rather than maximally-flat) FIR filters by combining maximally-flat
interpolator blocks. The filters are designed with “closed-form” formulas and coefficient multiplications are implemented with
shift-and-add arithmetic.

Vaidyanathan [173, Section II] first reviews the properties of maximally-flat symmetric, even-order, N, FIR filters. He writes the
zero-phase transfer function as:

H0 (z) = h0z
N
2 + h1z

N
2 −1 + . . .+ hNz

−N
2

The associated linear-phase filter is H (z) = z−
N
2 H0 (z). The corresponding frequency response is:

H0 (eıω) = hN
2

+ 2
N
2∑

k=1
hN

2 −k cos kω

The filter is maximally-flat if:

∂kH0 (eıω)
∂ωk

∣∣∣∣
ω=0

= 0, for k = 1, 2, . . . , 2L− 1

∂kH0 (eıω)
∂ωk

∣∣∣∣
ω=π

= 0, for k = 1, 2, . . . , 2K − 1

where N := 2 (K + L− 1). K represents the degree of flatness at ω = 0 and L represents the degree of flatness at ω = π.
Herrmann [161] and Rajagopal and Roy [125] show a solution for H0 (eıω) by Hermite interpolation:

H0 (eıω) =
(

cos ω2

)2K L−1∑
k=0

d (k)
(

sin ω2

)2k

where:

d (k) = (K − 1 + k)!
(K − 1)!k!

The corresponding filter transfer functions are:

H0 (z) =
(

1
2 + 1

2
z + z−1

2

)K L−1∑
k=0

d (k)
(

1
2 −

1
2
z + z−1

2

)k

H (z) =
(

1 + z−1

2

)2K L−1∑
k=0

z−(L−1−k) (−1)k
d (k)

(
1− z−1

2

)2k

Vaidyanathan points out that L non-trivial multipliers are needed to implement this transfer function and that these multipliers
have a large dynamic range. In addition, the usual design of a maximally-flat linear-phase FIR filter begins with the specification
of the centre of the transition band, β, and the width of the transition band, δ, both in multiples of π, and computes the K and L
required so that the resulting filter has a gain of 0.95 at ω =

(
β − δ

2
)
π and 0.05 at ω =

(
β + δ

2
)
π. The order of such a filter,

N = 2 (K + L− 1) grows as δ2. Instead, Vaidyanathan employs the interpolated FIR method of Nuevo et al. [260], shown in
Section N.7.1.

The interpolated FIR design method of Nuevo et al first designs a filter with β̂ = Mβ and δ̂ = Mδ, where M is an integer. This
filter transfer function is expanded with M − 1 delays between each coefficient and the unwanted pass-bands are suppressed by
a maximally-flat interpolator. Vaidyanathan proposes the following efficient interpolators suitable for M = 2. Other values of
M are obtained by combining these interpolators. In the following C (ω) = cos2 ω

2 and S (ω) = sin2 ω
2 .

1. Interpolator I (z):

β = 0.5, δ = 0.4, K = 3, L = 3, N = 10
I (eıω) = C3 (ω)

(
1 + 3S (ω) + 6S2 (ω)

)
752

2. Interpolator J (z):

β = 0.6, δ = 0.5, K = 2, L = 4, N = 10
J (eıω) = C2 (ω)

(
1 + 2S (ω) + 3S2 (ω) + 4S3 (ω)

)
3. Interpolator K (z):

β = 0.4, δ = 0.4, K = 4, L = 2, N = 10
K (eıω) = C4 (ω) (1 + 4S (ω))

4. Interpolator L (z):

β = 0.5, δ = 0.5, K = 2, L = 2, N = 6
L (eıω) = C2 (ω) (1 + 2S (ω))

Vaidyanathan now points out that since 0 ≤ C (eıω) ≤ 1 then each C (z) can be replaced with a function F (z) for which
0 ≤ F

(
eıθ
)
≤ 1, for all θ. This constitutes a frequency transformation for which

ω = 2 cos−1
{[
F
(
eıθ
)] 1

2
}

If F (z) is linear-phase then the resulting filter is linear-phase. For example, ifm:

II (z) := I (z)|C(z)←I2(z)

then II (z) has a much sharper cutoff than I (z) itself.

The Octave script vaidyanathanFIRsymmetric_lowpass_test.m calculates the amplitude response of Vaidyanathan’s example
H5 (z) [173, Figure 12]:

H5 (z) = II (z) II

(
z2) JJ

(
z4)

Figure N.66 shows the amplitude response for the H5 (z) example FIR filter.

Vaidyanathan states that this orderN = 700 multiplier-less FIR filter has an amplitude response equivalent to that of anN = 174
equi-ripple FIR filter but with far fewer arithmetic operations.

mSimilarly S (z)← 1− I2 (z).

753

0 0.1 0.2 0.3 0.4 0.5
-120

-100

-80

-60

-40

-20

0

20

Frequency

A
m

pl
itu

de
(d

B
)

Vaidyanathan multiplier-less interpolated FIR filter

Figure N.66: Amplitude response of Vaidyanathan’s exampleH5 (z) of an interpolated multiplier-less low-pass filter [173, Figure
12].

754

N.7.2 Closed-form design of maximally-flat FIR half-band filters

Gumacos’s closed form design of FIR half-band filters that are maximally-flat at ω = 0

Gumacos [33, Equation 1] represents the zero-phase amplitude response of a half-band filter, A (ω), by a power series:

A (ω) =
M∑

k=0
ak cos (2k + 1)ω

where a0 = 1 and N = 4M + 3 is the length of the filter. Scaling and mean-value are to be determined later. The condition for
maximal flatness at ω = 0 is:

A(l) (ω)
∣∣∣
ω=0

= 0 l = 1, . . . , 2M

resulting in a set of M constraint equations:

1 +
M∑

k=1
(2k + 1)2l

ak = 0 l = 1, . . . ,M

Gumacos solves this system of equations algebraically [33, Equation 4]:

ak = (−1)k

2k + 1 ·
M ! (M + 1)!

(M − k)! (M + k + 1)! k = 0, 1, . . . ,M

Recursively:

a0 = 1

ak = −ak−1 ·
2k − 1
2k + 1 ·

M − k + 1
M + k + 1 k = 1, . . . ,M

The z-domain transfer function is:

H (z) = z−2M−1

[
h0 +

M∑
k=0

h2k+1
(
z2k+1 + z−2k−1)]

where:

h0 = 1
2

h1 =
[

4
M∑

k=0
ak

]−1

h2k+1 = h1ak k = 2, . . . ,M

The Octave script gumacosFIRsymmetric_flat_halfband_test.m calls the Octave function gumacosFIRsymmetric_flat_halfband.m
to design half-band filters with M = 5, 10, 15, 20 and 25. Figure N.67 shows the amplitude responses of the resulting half-band
filters. Figure N.68 shows the amplitude responses of the corresponding Hilbert filters.

755

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

Frequency

A
m

pl
itu

de
(d

B
)

Gumacos maximally-flat half-band filters : M=5,10,15,20 and 25

M=5
M=10
M=15
M=20
M=25

Figure N.67: Amplitude responses of maximally-flat half-band FIR filters designed by the method of Gumacos [33] with M =
5, 10, 15, 20 and 25.

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.008

-0.006

-0.004

-0.002

0

Frequency

A
m

pl
itu

de
(d

B
)

Gumacos maximally-flat Hilbert filters : M=5,10,15,20 and 25

M=5
M=10
M=15
M=20
M=25

Figure N.68: Amplitude responses of maximally-flat Hilbert FIR filters derived from half-band FIR filters designed by the method
of Gumacos [33] with M = 5, 10, 15, 20 and 25.

756

N.7.3 Closed-form design of maximally-flat FIR Hilbert filters

Pei and Wang’s design of maximally-flat Hilbert FIR filters by truncated power series

Pei and Wang [224] describe the closed form design of maximally-flat Hilbert, differentiator and fractional-delay FIR filters
by truncation of a power series. Here I follow their derivation of a closed form expression for a maximally-flat FIR Hilbert
filter [224, Section II.A]. The Hilbert filter frequency response is H (ω) = −ı signω where −π < ω < π and sign is the sign
function:

signω =

−1 ω < 0

0 ω = 0
1 ω > 0

Pei and Wang choose to represent sign x by:

sign x = x√
x2

x ̸= 0

If f (u) = u−
1
2 then:

sign x = xf
(
x2) x ̸= 0

The Taylor series expansion of this representation of the sign x function at x = c is:

sign x = x√
c

[
1 +

∞∑
k=1

(2k − 1) !!
(2k) !!

(
1− x2

c

)k
]

(N.19)

where 2k!! and (2k − 1) !! are the double factorial:

(2k − 1) !! = 1 · 3 · 5 · . . . · (2k − 1)
(2k) !! = 2 · 4 · 6 · . . . · (2k)

This series converges for −1 <
(

1− x2

c

)
< 1 or c > 1

2x
2.

Pei and Wang observe that:

signω = sign sinω = sign sin ω2

where −π < ω < π. Consequently, if sign x is approximated by a polynomial in x, then sinω or sin ω
2 can be substituted for x.

Subsituting x = sinω and using the firstM terms of the power series, the frequency response of the Hilbert filter is approximated
by:

H (ω, c) = −ı sinω√
c

[
1 +

M∑
k=1

(2k − 1) !!
(2k) !!

(
1− sin2 ω

c

)k
]

In the z-plane, substituting ı
2
(
z−1 − z

)
for sinω and multiplying by z−2M−1, the causal transfer function that approximates a

Hilbert filter is:

H (z, c) = −1− z−2

2
√
c

z−2M +
M∑

k=1

(2k − 1) !!
(2k) !! z−2(M−k)

(
z−2 + 1

c

(
1− z−2

2

)2)k

In particular, if c = 1, then H (ω) is maximally flat at ω = π
2 and:

H (z) = −1− z−2

2

[
z−2M +

M∑
k=1

(2k − 1) !!
(2k) !! z−2(M−k)

(
1 + z−2

2

)2k
]

Pei and Wang [224, Figure 2] show a realisation of this order 4M + 2 transfer function with M coefficients of the form 2k−1
2k .

757

0 0.1 0.2 0.3 0.4 0.5
-0.01

-0.008

-0.006

-0.004

-0.002

0

Frequency

A
m

pl
itu

de
(d

B
)

Amplitude responses of Pei and Wang maximally flat at ω = π
2 Hilbert filters for M=5,10,...,25

M=5M=25

M=5
M=10
M=15
M=20
M=25

Figure N.69: Amplitude responses of Pei and Wang [224, Section II.A] maximally-flat at ω = π
2 Hilbert FIR filters.

The Octave code to calculate the amplitude response for M = 1, . . . , 25 is:

nplot=1024;
w=(0:(nplot-1))'*pi/nplot;
kM=1:25;
AM=sin(w).*(1+cumsum(cumprod(((2*kM)-1)./(2*kM)).*(cos(w).^(2*kM)),2));

Figure N.69 shows the amplitude responses of the maximally-flat at ω = π
2 Hilbert filters for M = 5, 10, . . . , 25. These Hilbert

filters are identical to the Gumacos Hilbert filters.

Addendum The Taylor series expansion of f (x) = x−
1
2 at x = c is:

f (x) = f (c) +
∞∑

k=1

f (k) (c)
k! (x− c)k

= c−
1
2 +

∞∑
k=1

f (k) (c)
k! (−1)k

ck
(

1− x

c

)k

The derivatives of f (x) are:

f (1) (x) = −1
2 · x

−1− 1
2

f (2) (x) = (−1)2 1
2 ·

3
2 · x

−2− 1
2

...

f (k) (x) = (−1)k 1
2 ·

3
2 · . . . ·

2k − 1
2 · x−k− 1

2

Since k! · 2k = (2k) !! , Equation N.19 follows.

758

N.7.4 Closed-form design of maximally-linear FIR low-pass differentiators

Kumar and Roy [23] and Selesnick [87] describe the closed-form design of maximally-linear low-pass FIR differentiator filters.
Yoshida et al. [240] show formulas for an FIR differentiator that is maximally-linear at ω = 0 and maximally flat at ω = π with a
given group-delay at ω = 0. Khan et al. [86] show formulas for the coefficients of an FIR differentiator that is maximally-linear
at the middle of the frequency band, ω = π

2 . Purczyński and Pawelczak [104] extend the work of Kumar et al. [24] to show
formulas for the weighting coefficients of FIR differentiators that are maximally-linear at frequencies π/p, where p is a positive
integer.

The derivation of the coefficients of the maximally-linear FIR differentiator begins with the constraints on the zero-phase ampli-
tude response, A (ω). When the constraint is at ω = 0 [87, Equations 6 to 8]:

A (ω)|ω=0 = 0
d

dω
A (ω)

∣∣∣∣
ω=0

= 1

dk

dωk
A (ω)

∣∣∣∣
ω=0

= 0 k = 2, . . . , 2L

Kumar etal. [24] define similar constraints at ω = π
p . Selesnick [87, Equation 9] adds a constraint on the amplitude response at

ω = π:

dk

dωk
A (ω)

∣∣∣∣
ω=π

= 0 k = 0, . . . , 2M

Yoshida et al. [240, Equation 3d] add a constraint on the group-delay of the frequency response, H (ω), at ω = 0:

− d

dω
argH (ω)

∣∣∣∣
ω=0

= τ

Kumar and Roy closed form design of FIR low-pass differentiators that are maximally-linear at ω = 0

Kumar and Roy [23, Equation 2] approximate the zero-phase amplitude response, A (ω), of an FIR differentiator filter, by a
power series:

A (ω) =
n∑

k=1
dk sin kω

where n = N−1
2 and N is the order of the filter, assumed to be odd. Applying the maximally-linear constraints at ω = 0, the

system of constraint equations is [23, Equation 4]:
1 1 1 . . . 1
1 22 32 . . . n2

1 24 34 . . . n4

...
...

1 22n−2 32n−2 . . . n2n−2

D1
D2
D3

...
Dn

 =

1
0
0
...
0

where Dk = kdk. As n increases, this system of equations rapidly becomes numerically unstable. Kumar and Roy solve this
system of constraint equations algebraically as [23, Equation 14]:

dk =
[
k

(
2n− 1
n− 1

)]−1 n−1∑
l=0

(−1)l

(
n
l

) 2l∑
m=0

(−1)m

(
2l
m

)(
2n− 2l

n− k −m

)

This appears to be a misprint.
(

2n− 2l
n− k −m

)
is not defined for n − k −m < 0. For example, when k = n, l = n − 1 and

m = 2n− 2.

759

Selesnick closed form design of FIR low-pass differentiators that are maximally-linear at ω = 0 and maximally-flat at
ω = π

Selesnick [87, Equations 10 and 11] derives the z-domain transfer function, H (z), of a maximally-linear differentiator from a
transformation of the interval [0, 1] to polynomials on the upper half-circle of |z| = 1:

P (x) =
n∑

k=0
pkx

k

H (z) = P

(
−z + 2− z−1

4

)
Selesnick [87, Section IV] gives the following equation for the z-domain transfer function of Type IIIn and Type IV FIR differen-
tiators that are maximally-linear at ω = 0 and maximally-flat at ω = π:

H (z) =
(

1− z−1

2

)(
1 + z−1

2

)K

z−L
L∑

n=0
cn

[
−z + 2− z−1

4

]n

where the cn are defined recursively:

c0 = 2

c1 = K + 1
3

cn =
(
8n2 + 4Kn− 10n−K + 3

)
cn−1 − (2n+K − 3)2

cn−2

2n (2n+ 1)

The length of the impulse response is N = K + 2L + 2. When K is even H (z) is a Type IV transfer function and when K is
odd H (z) is Type III transfer function. When K = 0, the differentiator is “full-band”. The Octave script selesnickFIRantisym-
metric_linear_differentiator_test.m calls the Octave function selesnickFIRantisymmetric_linear_differentiator to design a series
of differentiator filters. Figure N.70 shows the differentiator filters for length N = 30 and K = 0, 4, 8, 12, 16, 20 and 24 [87,
Figure 1]. Figure N.71 shows the differentiator filters for length N = 31 and K = 1, 5, 9, 13, 17, 21 and 25 [87, Figure 2].

nSelesnick uses the terminology of Oppenheim and Schafer [169, Section 5.7.3]: Type I filters are symmetric and have even order, Type II filters are symmetric
and have odd order, Type III filters are anti-symmetric and have even order and Type IV filters are anti-symmetric and have odd order.

760

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3

Frequency

A
m

pl
itu

de

Selesnick maximally-linear FIR differentiator : N=30,K=0,4,8,12,16,20 and 24

K=0
K=4
K=8
K=12
K=16
K=20
K=24

Figure N.70: Amplitude response of length N = 30, maximally-linear pass-band, maximally-flat stop-band, FIR differentiators
with K = 0, 4, 8, 12, 16, 20 and 24 [87, Figure 1].

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3

Frequency

A
m

pl
itu

de

Selesnick maximally-linear FIR differentiator : N=31,K=1,5,9,13,17,21 and 25

K=1
K=5
K=9
K=13
K=17
K=21
K=25

Figure N.71: Amplitude response of length N = 31, maximally-linear pass-band, maximally-flat stop-band, FIR differentiators
with K = 1, 5, 9, 13, 17, 21 and 25 [87, Figure 2].

761

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

Frequency

A
m

pl
itu

de

Kumar et al. maximally-linear FIR differentiator amplitude response : N=85, p=2,4,8,16

p=2

p=4

p=8

p=16

Figure N.72: Amplitude responses of FIR differentiators that are maximally-linear at π
p with length N = 101 and p = 2, 4, 8

and 16 designed by the method of Kumar et al. [24] and with the recursive calculation of the dk performed by the method of
Purczyński and Pawelczak [104, Equation 7].

Kumar et al. closed form design of FIR low-pass differentiators that are maximally-linear at ω = π
p

Kumar et al. [24, Equation 9]o approximate the amplitude response of an FIR differentiator that is maximally-linear at ω = π
p

by:

|H (ω)| = π

2p

m∑
k=1

d2k−1 sin
(

(2k − 1) · p2 · ω
)

+ 1
2p

m∑
k=1

d2k sin
(

2k · p2 · ω
)

where p is a positive integer, m = n
2 , n = N−1

2 , n is even, and N is the length of the filter, assumed to be odd. They show a
realisation of the filter [24, Figure 1]. Purczyński and Pawelczak solve the resulting system of constraint equations algebraically
to find the following recursive closed-form solutions for the coefficients [104, Equation 7]:

d1 = m

42m−1

(
2m
m

)2

d2k−1 = d2k−3 ·
2k − 3
2k − 1 ·

m− k + 1
m+ k − 1 k = 2, . . . ,m

and

d2 = − 2m
m+ 1

d2k = d2k−2 ·
k − 1
k
· m− k + 1

m+ k
k = 2, . . . ,m

The Octave script purczynskiFIRantisymmetric_linear_differentiator_test.m calls the Octave function purczynskiFIRantisymmet-
ric_linear_differentiator to design FIR differentiators that are maximally linear at ω = π

p where p is a multiple of 2. Figure N.72
shows the amplitude responses of the differentiators for p = 2, 4, 8 and 16. Figure N.73 shows the corresponding amplitude
errors, |Hp (ω)| − ω, of the differentiators.

oSee also Khan et al. [86, Equation 1] for design of differentiators that are maximally-linear at ω = π
2

762

0 0.1 0.2 0.3 0.4 0.5
-300

-250

-200

-150

-100

-50

0

Frequency

A
m

pl
itu

de
er

ro
r(

dB
)

Kumar et al. maximally-linear FIR differentiator amplitude error (|Hp(ω)| − ω) : N=85, p=2,4,8,16

p=2

p=4

p=8

p=16

Figure N.73: Amplitude response errors, |Hp (ω)|−ω, of FIR differentiators that are maximally-linear at π
p with lengthN = 101

and p = 2, 4, 8 and 16 designed by the method of Kumar et al. [24] and with the recursive calculation of the dk performed by the
method of Purczyński and Pawelczak [104, Equation 7].

763

N.8 Linear Matrix Inequality(LMI) design of symmetric FIR filters

This section follows the peak-constrained LMI design of even-order symmetric FIR filters described by Tuan et al. [76]. They
use arguments from convex optimisation to derive results similar to those of Davidson et al. [233]. In particular, they derive a
version of the Markov-Lukacs theorem for trigonometric curves. The primal form of the SDP solution of the LMI FIR frequency
constraints requires O

(
n2) variables. Tuan et al. derive a dual form of the SDP with O (n) variables.

N.8.1 The Markov-Lukacs theorem

Després [19] shows the following version of the Markov-Lukacs theorem:

Pn is the set of nth order polynomials. The convex set P+
n = {p (x) ∈ Pn : p (x) ≥ 0 ∀ x ∈ [0, 1]}.

p (x) ∈ P+
n ⇔

{
∃ a (x) ∈ Pk, b (x) ∈ Pk−1 such that p (x) = a (x)2 + x (1− x) b (x)2

, n = 2k
∃ a (x) ∈ Pk, b (x) ∈ Pk such that p (x) = xa (x)2 + (1− x) b (x)2

, n = 2k + 1

Proof : By induction:

n = 2:

p (x) =
(

(1− x)
√
p (0)− x

√
p (1)

)2
+ x (1− x) b2

n ∈ 2N:

p (x) =
n
2∏

k=1
pk (x) , pk ∈ P+

2

=
n
2∏

k=1

∣∣∣ak (x) + ı bk

√
x (1− x)

∣∣∣2

=

∣∣∣∣∣∣
n
2∏

k=1

(
ak (x) + ı bk

√
x (1− x)

)∣∣∣∣∣∣
2

=
∣∣∣a (x) + ıb (x)

√
x (1− x)

∣∣∣2
= a (x)2 + x (1− x) b (x)

n ∈ 2N + 1:

xp (x) = p̂ (x) = â (x)2 + x (1− x) b̂ (x)2

= (xa (x))2 + x (1− x) b (x)2

p (x) = xa (x)2 + (1− x) b (x)2

Note that p (x) is not unique:

1 = 12 + x (1− x) 02 = (1− 2x)2 + x (1− x) 22

N.8.2 Trigonometric curves

Tuan et al. [76, Section I] define the trigonometric curve, Ca,b:

φ (ω) = (1, cosω, . . . , cosnω)⊤

764

Ca,b := {φ (ω) : cosω ∈ [cos a, cos b]} ⊂ Rn+1

and its polar, C⋆
a,b:

C⋆
a,b =

{
u ∈ Rn+1 : ⟨u, v⟩ ≥ 0 ∀ v ∈ Ca,b

}
A linear constraint on the variable x ∈ Rm is:

Ax+ d ∈ C⋆
a,b, A ∈ R(n+1)×m, d ∈ Rn+1

or:

⟨Ax+ d, φn (ω)⟩ ≥ 0, cosω ∈ [cos a, cos b]

N.8.3 Moment matrix of trigonometric curves

Let ϕk (t) =
(
1, t, . . . , tk

)⊤
. The k-th order moment matrix of ϕk (t) is:

Mk (t) = ϕk (t)ϕ⊤k (t)

=

1 t · · · tk

t t2 · · · tk+1

· · · · · · · · · · · ·
tk tk+1 · · · t2k

Similarly, define the matrix Tk (ω):

Tk (ω) = φk (ω)φ⊤k (ω)

=

1 cosω · · · cos kω

cosω 1
2 (1 + cos 2ω) · · · 1

2 (cos (k − 1)ω + cos (k + 1)ω)
· · · · · · · · · · · ·

cos kω 1
2 (cos (k − 1)ω + cos (k + 1)ω) · · · 1

2 (1 + cos 2kω)

The matrix Tk (y) is created from Tk (ω) with a change of variable, cos lω → yl:

Tk (y) =

y0 y1 · · · yk

y1
1
2 (y0 + y2) · · · 1

2 (yk−1 + yk+1)
· · · · · · · · · · · ·
yk

1
2 (yk−1 + yk+1) · · · 1

2 (y0 + y2k)

For convenience, also define:

Tl,k (ω) = cos lω Tk (ω)
Tl,k (y) = Tk (yl, yl+1, . . . , yl+2k)

=

yl · · ·

1
2
(
y|l−1| + yl+1

) 1
4
(
y|l−2| + 2yl + yl+2

)
· · ·

· · · · · · · · · · · ·
1
2
(
y|l−k| + yl+k

) 1
4
(
y|l−k−1| + y|l−k+1| + y|l+k−1| + yl+k+1

)
· · · 1

4
(
y|l−2k| + 2yl + yl+2k

)

Tuan et al [76, Appendix I] give a basis for Tl,k (y) comprised of symmetric matrixes:[
Em

l,k

]
i,j

= 1
4
(
δm−|i+j−l−2| + δm−|i+j+l−2| + δm−|i−j−l| + δm−|i−j+l|

)
where δm is the Kronecker delta function. Thus:

Tl,k (y) =
l+2k∑
m=0

ymEm
l,k

N.8.4 A Markov-Lukacs theorem for trigonometric curves

Tuan et al [75, Appendix 1] prove the following version of the Markov-Lukacs theorem:

765

Any algebraic polynomial, P (t) = ϕ⊤n (t)x, that is non-negative on [a, b] ⊂ (−∞,∞) can be written as:

P (t) =
{
⟨X,Mk (t)⟩+ (b− t) (t− a) ⟨Z,Mk−1 (t)⟩, n = 2k
(t− a) ⟨X,Mk (t)⟩+ (b− t) ⟨Z,Mk−1 (t)⟩, n = 2k + 1

(N.20)

where there exist X,Z ⪰ 0.

Tuan et al [76, Theorem 2] prove the following version of the Markov-Lukacs theorem for trigonometric polynomials:

Any algebraic polynomial, P (ω) = φ⊤n (ω)x, that is non-negative on [cos a, cos b] can be written as:

P (ω) =
{
⟨X, Tk (ω)⟩+ ⟨Z,Fa,b

k (ω)⟩, n = 2k
⟨cos b Z − cos a X, Tk (ω)⟩+ ⟨X − Z, T1,k1 (ω)⟩, n = 2k + 1

(N.21)

where there exist X,Z ⪰ 0 and

Fa,b
k (ω) = (cos b+ cos a) T1,k−1 (ω)− 1

2T2,k−1 (ω)−
(

1
2 + cos a cos b

)
Tk−1 (ω)

The Chebyshev polynomials of the first kind are:

cos lω =
l∑

m=0
blm cosm ω

Hence there is a triangular, non-singular transformation, Bk, such that:

φk (ω) = Bkϕk (cosω)

and:

Mk (cosω) = B−1
k Tk (ω)B−⊤k

Equation N.21 is found by substitution ofMk (cosω) into Equation N.20.

Tuan et al [76, Lemma 1] prove the following lemma:

If P (ω) = φ⊤n (ω)x can be represented as shown in Equation N.21, then for every y = (y0, y1, . . . , yn)⊤ ∈ Rn+1:

y⊤x =
{
⟨X,Tk (y)⟩+ ⟨Z,F a,b

k (y)⟩, n = 2k
⟨X,T1,k (y)− cos a Tk (y)⟩+ ⟨Z, cos b Tk (y)− T1,k (y)⟩, n = 2k + 1

where X,Z ⪰ 0 and:

F a,b
k (y) = (cos b+ cos a)T1,k−1 (y)− 1

2T2,k−1 (y)−
(

1
2 + cos a cos b

)
Tk−1 (y)

N.8.5 The conic hull of Ca,b

The convex hull of a set C ⊂ Rn is the smallest convex set in Rn that contains C. Likewise, The conic hull of a set C ⊂ Rn

is the smallest cone in Rn that contains C. The polar set of C is the cone C⋆ = {x : ⟨x, y⟩ ≥ 0 ∀ y ∈ C}. Tuan et al [76,
Theorem 3] prove the following version of the Markov-Lukacs theorem for the conic hull of trigonometric polynomials:

766

For the variables y = (y0, y1, . . . , y2k) ∈ Rn+1 define the following LMI constraints:{
Tk (y) ⪰ 0, F a,b

k (y) ⪰ 0, n = 2k
cos b Tk (y) ⪰ T1,k (y) ⪰ cos a Tk (y) , n = 2k + 1

(N.22)

The convex hull of the set Ca,b is characterised by the LMI constraints:

cohullCa,b = {(y0, y1, · · · , yn) : Equation N.22, y0 = 1}

The conic hull of Ca,b is defined by:

coneCa,b = {(y0, y1, · · · , yn) : Equation N.22}

Substituting the Em
l,k basis matrixes [76, Theorem 4]:

The trigonometric polynomial, P (ω) =
∑n

m=0 xm cosmω is non-negative on [cos a, cos b] if-and-only-if there are positive
semi-definite matrixes X and Z such that:

xm =
{
⟨X, Em

0,k⟩+ ⟨Z,Fa,b
m,k⟩, n = 2k

⟨X, Em
1,k⟩ − cos a Em

0,k + ⟨Z, cos b Em
0,k − Em

1,k⟩, n = 2k + 1
(N.23)

When n = 2k:

Fa,b
m,k = (cos b+ cos a) Em

1,k−1 −
1
2E

m
2,k−1 −

(
1
2 + cos a cos b

)
Em

0,k−1

F a,b
k (y) =

2k∑
m=0

ymFa,b
m,k

If em is the unit vector in Rn+1 with 1 at the m-th component, then the LMI constraint over [cos ai, cos bi] is:

e⊤m+1 (Aix+ di) =
{
⟨Xi, Em

0,k⟩+ ⟨Zi,Fai,bi

m,k ⟩, n = 2k
⟨Xi, Em

1,k − cos ai Em
0,k⟩+ ⟨Zi, cos bi Em

0,k − Em
1,k⟩, n = 2k = 1

(N.24)

where Xi, Zi ⪰ 0.

N.8.6 Optimisation of the dual of a convex quadratic objective function

The convex quadratic optimisation problem over a set of trigonometric polynomials is:

minimise x⊤Qx+ q⊤x

subject to Equation N.24

where Q ⪰ 0. The dual problem is :

max
yi∈Ci

min
x

[
x⊤Qx+ q⊤x−

∑
i

(Aix+ di)⊤ yi

]
= max

yi∈Ci

min
x

[
x⊤Qx+ x⊤

(
q −

∑
i

A⊤i y
i

)
−
∑

i

d⊤i y
i

]

= max
yi∈Ci

−∑
i

d⊤i y
i − 1

4

(
q −

∑
i

A⊤i y
i

)⊤
Q−1

(
q −

∑
i

A⊤i y
i

)
767

Using Equation N.22 the dual problem becomes:

maximise

−∑
i

d⊤i y
i − 1

4

(
q −

∑
i

A⊤i y
i

)⊤
Q−1

(
q −

∑
i

A⊤i y
i

)
subject to

{
Tk

(
yi
)
⪰ 0, F ai,bi

k

(
yi
)
⪰ 0, n = 2k

cos bi Tk

(
yi
)
⪰ T1,k

(
yi
)
⪰ cos ai Tk

(
yi
)
, n = 2k + 1

(N.25)

In SDP form:

maximise − ν −
∑

i

d⊤i y
i

subject to
[

ν
(
q −

∑
i A
⊤
i y

i
)⊤(

q −
∑

i A
⊤
i y

i
)

4Q

]
⪰ 0

Equation N.25

The optimal solution of the dual problem, x⋆ and yi
⋆, requires finding the n + 1 scalar variables for each constraint, yi

⋆, that
satisfy: ∑

i

(Aix⋆ + di)⊤ yi
⋆ = 0

x⋆ = −1
2Q
−1

(
q −

∑
i

A⊤i y
i
⋆

)

N.8.7 Example of LMI design of a low pass symmetric FIR filter

The low pass filter design primal problem is:

minimise x⊤Qx+ q⊤x

subject to x+ (δp − 1) e1 ∈ C⋆
ωp,0

−x+ (δp + 1) e1 ∈ C⋆
ωp,0

x+ δse1 ∈ C⋆
π,ωs

−x+ δse1 ∈ C⋆
π,ωs

The Octave script directFIRsymmetric_sdp_lowpass_test.m uses YALMIP and SeDuMi to solve the dual problem of designing a
low pass filter by the method of Tuan et al. [76]. I only allow solutions for which YALMIP and SeDuMi do not report numerical
problems. The filter specification isp:

M=31 % M+1 distinct coefficients, FIR filter order 2*M
fap=0.05 % Amplitude pass band edge
fas=0.1 % Amplitude stop band edge
dBap=0.04 % Amplitude pass band peak-to-peak ripple(dB)
deltap=0.00230258 % Amplitude pass band peak ripple
dBas=60 % Amplitude stop band peak ripple(dB)
deltas=0.001 % Amplitude stop band peak ripple
Wap=1 % Amplitude pass band weight
Wat=1 % Amplitude trans. band weight
Was=1 % Amplitude stop band weight

Figure N.74 shows the zero-phase amplitude responses in the pass band and the stop band.

In addition, the Octave script directFIRsymmetric_sdp_lowpass_test.m attempts to design a low pass filter with a specification
similar to that of the example of Tuan et al. [76, Figure 3]:

pTuan et al. define the pass-band peak-to-peak ripple as:

dBap = 20 log10
1 + δp

1− δp

768

0 0.1 0.2 0.3 0.4 0.5
0.996

0.998

1

1.002

1.004

Tuan low-pass FIR : M=31,fap=0.05,fas=0.1,deltap=0.00230258,deltas=0.001

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.74: Pass band and stop band zero-phase amplitude responses of an M = 31 symmetric low pass FIR filter designed
with the LMI procedure of Tuan et al. [76].

M=200 % M+1 distinct coefficients, FIR filter order 2*M
fap=0.03 % Amplitude pass band edge
fas=0.0364 % Amplitude stop band edge
dBap=0.3 % Amplitude pass band peak-to-peak ripple(dB)
deltap=0.0172677 % Amplitude pass band peak ripple
dBas=60 % Amplitude stop band peak ripple(dB)
deltas=0.001 % Amplitude stop band peak ripple
Wap=1 % Amplitude pass band weight
Wat=1 % Amplitude trans. band weight
Was=1 % Amplitude stop band weight

I could not reproduce the stop-band edge specification of fas = 0.0358 given by Tuan et al. [76, Table 1, Figure 3]. The
amplitude response specification dBap = 0.5, fas = 0.0358 gives a “reasonable” response despite numerical warning messages
from SeDuMi.

Figure N.75 shows the zero-phase amplitude responses in the pass band and the stop band.

For comparison, the Octave script mcclellanFIRsymmetric_lowpass_alternate_test.m uses the Parks-McClellan algorithm [239]
implemented in the Octave function mcclellanFIRsymmetric to design a filter similar to that of Tuan et al.’s Figure 3:

M=200 % Filter order is 2*M
fap=0.03 % Amplitude pass band edge
fas=0.0358 % Amplitude stop band edge
Wap=2 % Amplitude pass band weight
Was=1 % Amplitude stop band weight
K=50 % Stop band weight
ngrid=4000 % Number of frequency grid points in [0,0.5]

Figure N.76 shows the pass band and stop band zero-phase amplitude responses.

As another comparison, the Octave script selesnickFIRsymmetric_lowpass_alternate_test.m uses Hofstetter’s algorithm [50] with
the Selesnick-Burrus modification [89], implemented in the Octave function selesnickFIRsymmetric_lowpass, to design an FIR
filter similar to that of Tuan et al.’s Figure 4:

769

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

Tuan low-pass FIR : M=200,fap=0.03,fas=0.0364,deltap=0.0172677,deltas=0.001

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.75: Pass band and stop band zero-phase amplitude responses of an M = 200 symmetric low pass FIR filter designed
with the LMI procedure of Tuan et al. [76, Figure 3].

0 0.1 0.2 0.3 0.4 0.5
0.96

0.98

1

1.02

1.04

McClellan lowpass FIR: M=200,fap=0.03,fas=0.0358,Wap=2,Was=1,K=50,ngrid=4000,rho=0.00103561

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.76: Pass band and stop band zero-phase amplitude responses of a mini-max FIR low-pass filter designed with the
Parks-McClellan algorithm. The filter specification is similar to that of the example of Tuan et al. [76, Figure 3].

770

0 0.1 0.2 0.3 0.4 0.5
0.98

0.99

1

1.01

1.02

Selesnick-Burrus lowpass FIR : M=600,fap=0.1,dBap=0.3,fas=0.10322,dBas=110,ngrid=7250

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-4e-06

-2e-06

0

2e-06

4e-06

Figure N.77: Pass band and stop band responses of a mini-max FIR low-pass filter designed with the Selesnick-Burrus modifica-
tion to Hofstetter’s algorithm. The filter specification is similar to the example of Tuan et al. [76, Figure 4].

M=600 % Filter order is 2*M
fap=0.1 % Amplitude pass band edge
deltap=0.0172677 % Amplitude pass band ripple
dBap=0.3 % Amplitude pass band ripple(dB)
fas=0.10322 % Amplitude stop band edge
dBas=110 % Amplitude stop band ripple(dB)
deltas=3.16228e-06 % Amplitude stop band ripple
ngrid=7250 % Number of frequency grid points in [0,0.5]
maxiter=200 % Maximum number of iterations
tol=1e-12 % Tolerance on convergence

Figure N.77 shows the zero-phase pass band and stop band amplitude responses. The transition frequency is set to fas. The
actual pass band edge frequency is fap = 0.100033 .

N.8.8 Example of LMI design of a band-pass symmetric FIR filter

The Octave script directFIRsymmetric_sdp_bandpass_test.m uses the LMI procedure of Tuan et al. to design a band-pass sym-
metric FIR filter with the specification:

M=80 % M+1 distinct coefficients, FIR filter order 2*M
fasl=0.15 % Amplitude lower stop band edge
fapl=0.175 % Amplitude lower pass band edge
fapu=0.275 % Amplitude upper pass band edge
fasu=0.3 % Amplitude upper stop band edge
dBap=0.00868589 % Amplitude pass band peak-to-peak ripple(dB)
deltap=0.0005 % Amplitude pass band peak ripple(dB)
dBas=60 % Amplitude stop band peak ripple(dB)
deltas=0.001 % Amplitude stop band peak ripple(dB)
Wasl=1 % Amplitude lower stop band weight
Watl=1 % Amplitude lower trans. band weight
Wap =4 % Amplitude pass band weight
Watu=1 % Amplitude upper trans. band weight
Wasu=1 % Amplitude upper stop band weight

771

0 0.1 0.2 0.3 0.4 0.5
0.999

0.9995

1

1.0005

Tuan band-pass FIR : M=80,fasl=0.15,fapl=0.175,fapu=0.275,fasu=0.3,deltap=0.0005,deltas=0.001,Wap=4

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.78: Pass band and stop band zero-phase amplitude responses of an M = 80 symmetric band pass FIR filter designed
with the LMI procedure of Tuan et al. [76].

In this case the frequency bands are not weighted (i.e.: Wasl = 1, etc.).

The distinct filter coefficients are:

hM80 = [-0.0000639868, 0.0000221684, 0.0000757608, 0.0000592824, ...
-0.0001046901, -0.0001203408, 0.0000395215, 0.0000590722, ...
0.0000446941, 0.0001864170, 0.0000021759, -0.0004701338, ...

-0.0002148945, 0.0005010252, 0.0003376415, -0.0001742989, ...
-0.0000001835, -0.0001939294, -0.0007952585, 0.0001420287, ...
0.0014290542, 0.0003001962, -0.0011579110, -0.0003890061, ...
0.0000116615, -0.0005933594, 0.0009803636, 0.0022385215, ...

-0.0008235797, -0.0029527332, -0.0000882050, 0.0014832370, ...
0.0000592147, 0.0013933848, 0.0019472145, -0.0032015226, ...

-0.0044622691, 0.0023578834, 0.0043458598, -0.0003393307, ...
-0.0001746707, 0.0004461723, -0.0053681461, -0.0037493640, ...
0.0074877865, 0.0067065508, -0.0044104101, -0.0041298556, ...
0.0000345275, -0.0046388001, -0.0000958087, 0.0132419684, ...
0.0050100159, -0.0137114044, -0.0076436215, 0.0052413328, ...
0.0002853817, 0.0035621331, 0.0152978961, -0.0033423920, ...

-0.0263698275, -0.0043365485, 0.0206130023, 0.0059378797, ...
-0.0002801964, 0.0101552087, -0.0169621258, -0.0372398490, ...
0.0150884777, 0.0501064779, 0.0001893760, -0.0260942651, ...

-0.0001325078, -0.0299085837, -0.0433060477, 0.0818564273, ...
0.1278159870, -0.0883935333, -0.2137441855, 0.0380415029, ...
0.2510227334]';

Figure N.78 shows the zero-phase amplitude responses in the pass band and the stop bands.

In addition, the Octave script directFIRsymmetric_sdp_bandpass_test.m designs a band-pass symmetric FIR filter with a specifi-
cation similar to that of the example of Pipeleers et al. [62, Figure 4]:

M=15 % M+1 distinct coefficients, FIR filter order 2*M
fasl=0.05 % Amplitude lower stop band edge

772

0 0.1 0.2 0.3 0.4 0.5
0.9996

0.9998

1

1.0002

1.0004

Tuan band-pass FIR : M=15,fasl=0.05,fapl=0.15,fapu=0.25,fasu=0.35,deltap=0.0002,deltas=0.005,Wap=4

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.01

-0.005

0

0.005

0.01

Figure N.79: Pass band and stop band zero-phase amplitude responses of an M = 15 symmetric band pass FIR filter designed
with the LMI procedure of Tuan et al. [76].

fapl=0.15 % Amplitude lower pass band edge
fapu=0.25 % Amplitude upper pass band edge
fasu=0.35 % Amplitude upper stop band edge
dBap=0.00347436 % Amplitude pass band peak-to-peak ripple(dB)
deltap=0.0002 % Amplitude pass band peak ripple(dB)
dBas=46.0206 % Amplitude stop band peak ripple(dB)
deltas=0.005 % Amplitude stop band peak ripple(dB)
Wasl=1 % Amplitude lower stop band weight
Watl=1 % Amplitude lower trans. band weight
Wap =4 % Amplitude pass band weight
Watu=1 % Amplitude upper trans. band weight
Wasu=1 % Amplitude upper stop band weight

The distinct filter coefficients are:

hM15 = [-0.0051579522, -0.0009795946, -0.0039580318, -0.0125006906, ...
0.0044610682, 0.0145602006, -0.0018350046, 0.0275110194, ...
0.0515054222, -0.0173704017, -0.0260249902, 0.0194463757, ...

-0.1412890461, -0.2459630757, 0.1201954113, 0.4313855543]';

Figure N.79 shows the zero-phase amplitude responses in the pass band and the stop bands.

For comparison, the Octave script directFIRsymmetric_socp_slb_bandpass_test.m designs a band-pass symmetric FIR filter using
the PCLS algorithm of Selesnick et al. [90] with the specification:

M=15 % FIR filter order is 2*M
tol=1e-06 % Tolerance on coef. update
ctol=1e-07 % Tolerance on constraints
maxiter=5000 % SOCP iteration limit
npoints=500 % Frequency points across the band
fapl=0.15 % Amplitude pass band lower edge
fapu=0.25 % Amplitude pass band upper edge

773

0 0.1 0.2 0.3 0.4 0.5
0.9996

0.9998

1

1.0002

1.0004

FIR symmetric bandpass filter : M=15,fasl=0.05,fapl=0.15,fapu=0.25,fasu=0.35,deltap=0.0002,deltas=0.005

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.01

-0.005

0

0.005

0.01

Figure N.80: Zero-phase amplitude response of anM = 15 symmetric band pass FIR filter designed with the PCLS optimisation
procedure of Selesnick et al. [90].

deltap=0.0002 % Amplitude pass band peak ripple
Wap=1 % Amplitude pass band weight
fasl=0.05 % Amplitude stop band lower edge
fasu=0.35 % Amplitude stop band upper edge
deltas=0.005 % Amplitude stop band peak ripple
Wasl=1000 % Amplitude lower stop band weight
Wasu=1000 % Amplitude upper stop band weight

The distinct coefficients of this filter are:

hM1 = [-0.00498259, -0.00077441, -0.00359006, -0.01197965, ...
0.00505930, 0.01489769, -0.00162383, 0.02741140, ...
0.05084815, -0.01823754, -0.02676637, 0.01876929, ...

-0.14168499, -0.24558003, 0.12083560, 0.43200933]';

Figure N.80 shows the zero-phase amplitude response.

Similarly, the Octave script directFIRnonsymmetric_socp_slb_bandpass_test.m designs a non-symmetric FIR filter using the
PCLS algorithm of Selesnick et al. with the specification:

tol=1e-06 % Tolerance on coefficient update vector
ctol=1e-07 % Tolerance on constraints
n=500 % Frequency points across the band
N=30 % FIR filter order
fapl=0.15 % Pass band squared amplitude lower edge
fapu=0.25 % Pass band squared amplitude upper edge
deltap=0.0002 % Pass band amplitude peak ripple
Wap=1 % Pass band squared amplitude weight
fasl=0.05 % Lower stop band squared amplitude lower edge
fasu=0.35 % Upper stop band squared amplitude upper edge
deltas=0.005 % Stop band amplitude response peak ripple
Watl=0 % Lower transition band squared amplitude weight

774

0 0.01 0.02 0.03 0.04 0.05
0

0.002
0.004
0.006
0.008

FIR non-sym. bandpass : N=30,fasl=0.05,fapl=0.15,fapu=0.25,fasu=0.35,deltap=0.0002,deltas=0.005,tdr=0.02

A
m

pl
itu

de

0.16 0.18 0.2 0.22 0.24
0.9996
0.9998

1
1.0002
1.0004

A
m

pl
itu

de

0.16 0.18 0.2 0.22 0.24
13.98
13.99

14
14.01
14.02

D
el

ay
(s

am
pl

es
)

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
0

0.002
0.004
0.006
0.008

A
m

pl
itu

de

Frequency

Figure N.81: Pass band amplitude and delay responses and stop band amplitude response of an M = 15 non-symmetric band
pass FIR filter designed with the PCLS optimisation procedure of Selesnick et al. [90].

Watu=0 % Upper transition band squared amplitude weight
Wasl=1000 % Lower stop band squared amplitude weight
Wasu=1000 % Upper stop band squared amplitude weight
ftpl=0.15 % Pass band group delay response lower edge
ftpu=0.25 % Pass band group delay response upper edge
td=14 % Pass band nominal group delay
tdr=0.02 % Pass band group delay response peak-to-peak ripple
Wtp=0.1 % Pass band group delay response weight

The coefficients of this filter are:

h = [-0.0028467207, 0.0006476462, -0.0086666490, -0.0117339352, ...
0.0013358934, -0.0049350057, -0.0085071742, 0.0408410673, ...
0.0447144697, -0.0039663030, 0.0550589972, 0.0505163440, ...

-0.2318274887, -0.3108724588, 0.1330876947, 0.4024620875, ...
0.0930131661, -0.1578775283, -0.0523194757, -0.0062755881, ...

-0.0716293192, -0.0197389282, 0.0382082391, 0.0064384378, ...
0.0044589137, 0.0250700759, 0.0044139708, -0.0082307305, ...
0.0015695252, -0.0023735018, -0.0050359143]';

Figure N.81 shows the amplitude and delay responses in the pass band and the stop band amplitude response.

775

N.9 Design of half-band FIR filters

N.9.1 Vaidyanathan’s “TRICK” for the design of FIR half-band filters

Vaidyanathan and Nguyen [178] describe a method for the design of half-band FIR filters with pass-band edge fp and length
4M + 3:

1. Design a low-pass FIR filter, G (z) with odd order 2M + 1, pass band edge 2fp and transition band 2fp to 0.5

2. Construct the half-band FIR filter:

h (n) =

1
2g
(

n
2
)
, n = 0, 2, . . . , 4M + 2

0, n = 1, 3, . . . , 4M + 1, n ̸= 2M + 1
1
2 n = 2M + 1

The z-domain transfer function of H (z) is:

H (z) =
G
(
z2)+ z−(2M+1)

2

The Octave script vaidyanathan_trick_test.m designs a half-band filter with pass-band edge fp = 0.24 and M = 80 using
Vaidyanathan’s “TRICK”. The script calls the Octave remez function to design a low-pass filter with pass-band edge 2fp = 0.48
and stop-band edge 0.499. The remez function fails to converge for M > 81. Figure N.82 shows the frequency response of the
filter.

0 0.1 0.2 0.3 0.4 0.5
-0.004

-0.002

0

0.002

0.004

Vaidyanathan TRICK half-band filter: M=80, N=323, fp=0.24

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-78

-76

-74

-72

-70

Figure N.82: FIR half-band filter with fp = 0.24 and M = 80 designed with Vaidyanathan’s “TRICK” [178].

776

N.9.2 Design of equi-ripple FIR half-band filters

Zahradník, Vlček and Unbehauen [185] describe the closed-form design of almost-equiripple half-band FIR filters. The impulse
response, h, of a length 4n+ 3 half-band FIR filter is defined by the transfer function:

H (z) =
4n+2∑
k=0

hkz
−k (N.26)

where:

h2n+1 = 1
2

h2n+1±2k = 0 , k = 1, . . . , n

Substituting v = 1
2
(
z + 1

z

)
, the frequency response is:

H
(
eıωT

)
= e−ı(2n+1)ωTQ (cosωT)

In particular, the pass-band edge is at vp = cosωpT . Here Q (v), the zero-phase frequency response, is:

Q (v) = 1
2 +

n∑
k=0

c2k+1T2k+1 (v) (N.27)

Where the Tk (v) are the Chebyshev polynomials of the first kind and the coefficients, c2k+1, of the expansion ofQ are the distinct
symmetric FIR coefficients of the impulse response of H . Appendix C reviews the properties of the Chebyshev polynomials of
the first and second kinds. The latter are written Uk (v).

Vlček and Unbehauen [145, Section IV] show that the equivalent zero-phase response of an IIR filter is:

Q (v) = 1
1 + ε2F 2 (v)

The equiripple properties of F (v) correspond to a differential equation that can be solved by elliptic integrals, giving a set of
parametric equations for F and v in terms of Jacobian elliptic functions of a complex variable, u. With the choice of half-band
FIR filter order, the solution of interest here is [145, Equations 33 and 34]:

F (u) = cd
(
Mu

κ1
, κ1

)
v = dn (u, κ)

where F (v) = ± 1
κ1

are the stop-band extremal values and κ1 is the elliptic modulus [145, Equation 16]. The complex parameter
u follows the path shown in [145, Figure 8].

Zahradník et al. use the elliptic function identity

dn2 (u, κ) = κ′2 +
(
1− κ′2

)
cn2 (u, κ)

to give:

x = 2v2 − 1− κ′2

1− κ′2 = 2 cn2 (u, κ)− 1

Returning to the case of an almost-equiripple half-band FIR filter, Zahradník et al. [185, Section II] use the relation between the
Chebyshev polynomials of the first and second kinds:

dT2n+1 (v)
dv

= (2n+ 1)U2n (v)

to define G (v) = U2n (v) as the generating function for Q (v):

Q (v) = 1
2 + 1
N

ˆ
G (v) dv

777

where N is a normalising factor. Apparently by analogy with the equiripple IIR filter, Zahradník et al. [185, Equation 13]
substitute x into the double angle identity for U2n (cosω)q and redefine the generating function as:

G (v) = Un

(
2v2 − 1− κ′2

1− κ′2

)
+ Un−1

(
2v2 − 1− κ′2

1− κ′2

)

Zahradník and Vlček [182, Equation 10] modify this to give a better equiripple approximation:

G (v) = AUn

(
2v2 − 1− κ′2

1− κ′2

)
+BUn−1

(
2v2 − 1− κ′2

1− κ′2

)

Zahradník and Vlček [182, Equations 11 to 14] provide numerical approximations for n, κ′, A and B:

n = as − 18.18840664ωpT + 33.64775300
18.54155181ωpT − 29.13196871

κ′ = nωpT − 1.57111377n+ 0.00665857
−1.01927560n+ 0.37221484

A =
(

0.01525753n+ 0.03682344 + 9.24760314
n

)
κ′ + 1.01701407 + 0.73512298

n

B =
(

0.00233667n− 1.35418408 + 5.75145813
n

)
κ′ + 1.02999650− 0.72759508

n

where as < 0 is the stop-band attenuation in dB. Alternatively, A and B can be obtained numerically by solving:

Q (vp) =
{
Q (1) , if n is odd
Q (v01) , if n is even

and:

Q (v01) = 1, if n is odd
Q (1) = 1, if n is even

where v01 is the first zero of the generating function U2n (cn (u, κ)) (ie: the first extremal value of Q (v) as 1 → v) [185,
Equation 15]:

v01 =
√
κ′2 + (1− κ′2) cos2 π

2n+ 1

Writing:

Un (v) =
ˆ
Un

(
2v2 − 1− κ′2

1− κ′2

)
dv

the zero-phase transfer function is:

Q (v) = 1
2 + A

N
Un (v) + B

N
Un−1 (v)

The normalisation factor N is [182, Equation 17]:

N =
{

2 [AUn (v01) +BUn−1 (v01)] , if n is odd
2 [AUn (1) +BUn−1 (1)] , if n is even

Zahradník and Vlček [182, Figures 1 and 2] show plots of the generating function, G (v) and zero-phase frequency response,
Q (v) for n = 20, κ′ = 0.03922835, A = 1.08532371, B = 0.95360863 and N = 0.55091994. The Octave script zahrad-
nik_halfband_test.m an reproduces these as Figure N.83 and Figure N.84. Figure N.85 shows the corresponding frequency
response.

q

U2n (cos ω) =
sin [(2n + 1) ω] cos ω + sin ω cos [(2n + 1) ω]

2 sin ω cos ω
+

sin [(2n + 1) ω] cos ω − sin ω cos [(2n + 1) ω]
2 sin ω cos ω

= Un (cos 2ω) + Un−1 (cos 2ω)

= Un

(
2 cos2 ω − 1

)
+ Un−1

(
2 cos2 ω − 1

)

778

-1 -0.5 0 0.5 1
-10

0

10

20

30

40

50

v

G
(v

)

Zahradnik and Vlcek half-band filter, G(v): n=20, kp=0.03922835, A=1.08532371, B=0.95360863

Figure N.83: Equiripple FIR half-band filter generating function, G (v), for n = 20, κ′ = 0.03922835, A = 1.08532371,
B = 0.95360863 and N = 0.55091994 [182, Figure 1].

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

v

Q
(v

)

Zahradnik and Vlcek half-band filter, Q(v) : n=20, kp=0.03922835, A=1.08532371, B=0.95360863

Figure N.84: Equiripple FIR half-band filter zero-phase frequency response, Q (v), for n = 20, κ′ = 0.03922835, A =
1.08532371, B = 0.95360863 and N = 0.55091994 [182, Figure 2].

779

0 0.1 0.2 0.3 0.4 0.5
-25

-20

-15

-10

-5

0

5

Frequency

A
m

pl
itu

de
(d

B
)

Zahradnik and Vlcek half-band filter frequency response : n=20, kp=0.03922835, A=1.08532371, B=0.95360863

Figure N.85: Equiripple FIR half-band filter frequency response for n = 20, κ′ = 0.03922835, A = 1.08532371, B =
0.95360863 and N = 0.55091994.

The Chebyshev polynomials of the second kind satisfy the differential equation:

(
1− v2) d2Un (v)

dv2 − 3v dUn (v)
dv

+ n (n+ 2)Un (v) = 0 (N.28)

Substituting x [182, Equation 8]:

v
(
v2 − κ′2

) [(
1− v2) d2Un (v)

dv2 − 3v dUn (v)
dv

]
+
[(
κ′2 + 2v2) (1− v2)] dUn (v)

dv
+ 4v3n (n+ 2)Un (v) = 0 (N.29)

Equation N.29 is arranged so that its solution is simplified by using Equation N.28. Equation N.29 is solved by the series
expansion:

Un

(
2v2 − 1− κ′2

1− κ′2

)
=

n∑
l=0

α2lU2l (v) (N.30)

Integrating this expansion results in an expression of the form shown in Equation N.27. Zahradník and Vlček [182, Table 1] show
an algorithm for the evaluation of the coefficients, al, of Un, reproduced here, with a correction to α2n−4, as Algorithm N.4.

The Octave script zahradnik_halfband_test.m implements the design of an equiripple FIR half-band filter using Algorithm N.4.
The pass-band edge is fp = 0.240, the stop-band attenuation is as = −140dB and n = 118 for a filter length of 475. The value
of n given by Equation 11 of Zahradník and Vlček[182] is increased slightly. The values of A and B are found by a “brute-force”
search of all the extremal values in the pass-band. Figure N.86 shows the amplitude response of the half-band FIR filter.

780

Algorithm N.4 Zahradník and Vlček’s algorithm [182, Table 1] for the evaluation of the coefficients, al, of Un.

Require: n, κ′

Initialisation:
α2n =

(
1− κ′2

)−n

α2n−2 = −
[
1 + 2nκ′2

]
α2n

α2n−4 = − 4n+1+(n−1)(2n−1)κ′2

2n α2n−2 −
(2n+1)[(n+1)κ′2+1]

2n α2n

Body:
for l = n down to 3 do

α2l−6 =
{
−
[
3 (n (n+ 2)− (l − 2) l) + 2l − 3 + 2 (l − 2) (2l − 3)κ′2

]
α2l−4 . . .

−
[
3 (n (n+ 2)− (l − 1) (l + 1)) + 2 (2l − 1) + 2l (2l − 1)κ′2

]
α2l−2 . . .

− [n (n+ 2)− (l − 1) (l + 1)]α2l} / [n (n+ 2)− (l − 3) (l − 1)]

end for

Integration:
for l = 0 to n do

a2l+1 = α2l

2l+1
end for

Impulse response:
h2n+1 = 0
for l = 0 to n do

h2n+1±(2l+1) = a2l+1
2

end for

0 0.1 0.2 0.3 0.4 0.5
-8e-07

-6e-07

-4e-07

-2e-07

0

2e-07

Zahradnik and Vlcek half-band filter: fp=0.240, as=-140dB, n=118

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-145

-144

-143

-142

-141

-140

Figure N.86: Equiripple FIR half-band filter with fp = 0.240 and as = −140dB and n = 118 calculated by Algorithm N.4 [182,
Table 1].

781

The distinct coefficients of the half-band filter are (see Equation N.26):

h_distinct = [0.0000000341, -0.0000000357, 0.0000000541, -0.0000000788, ...
0.0000001110, -0.0000001527, 0.0000002058, -0.0000002725, ...
0.0000003557, -0.0000004584, 0.0000005841, -0.0000007368, ...
0.0000009212, -0.0000011424, 0.0000014061, -0.0000017189, ...
0.0000020880, -0.0000025215, 0.0000030285, -0.0000036188, ...
0.0000043034, -0.0000050945, 0.0000060053, -0.0000070505, ...
0.0000082459, -0.0000096088, 0.0000111583, -0.0000129148, ...
0.0000149006, -0.0000171396, 0.0000196578, -0.0000224831, ...
0.0000256455, -0.0000291772, 0.0000331128, -0.0000374889, ...
0.0000423450, -0.0000477230, 0.0000536675, -0.0000602259, ...
0.0000674483, -0.0000753879, 0.0000841011, -0.0000936473, ...
0.0001040891, -0.0001154927, 0.0001279274, -0.0001414664, ...
0.0001561864, -0.0001721678, 0.0001894950, -0.0002082563, ...
0.0002285441, -0.0002504550, 0.0002740901, -0.0002995548, ...
0.0003269591, -0.0003564181, 0.0003880516, -0.0004219848, ...
0.0004583483, -0.0004972785, 0.0005389176, -0.0005834144, ...
0.0006309244, -0.0006816100, 0.0007356418, -0.0007931984, ...
0.0008544672, -0.0009196457, 0.0009889418, -0.0010625751, ...
0.0011407779, -0.0012237969, 0.0013118941, -0.0014053497, ...
0.0015044629, -0.0016095554, 0.0017209738, -0.0018390926, ...
0.0019643187, -0.0020970954, 0.0022379079, -0.0023872894, ...
0.0025458286, -0.0027141780, 0.0028930647, -0.0030833024, ...
0.0032858064, -0.0035016112, 0.0037318922, -0.0039779922, ...
0.0042414538, -0.0045240591, 0.0048278800, -0.0051553407, ...
0.0055092966, -0.0058931364, 0.0063109132, -0.0067675156, ...
0.0072688957, -0.0078223735, 0.0084370535, -0.0091244019, ...
0.0098990619, -0.0107800330, 0.0117924146, -0.0129700600, ...
0.0143597475, -0.0160279843, 0.0180726140, -0.0206437101, ...
0.0239837549, -0.0285116499, 0.0350187401, -0.0452008792, ...
0.0634674499, -0.1059864668, 0.3182709027, 0.5000000000];

Reconstruct h with:

n=118;
h=zeros(1,(4*n)+3);
h(1:2:((2*n)+1))=h_distinct(1:(n+1));
h(end:-2:((2*n)+3))=h_distinct(1:(n+1));
h((2*n)+2)=0.5;

782

Addendum

Working for Zahradník and Vlček Equation 8 [182]

The chain rule gives:

dU

dv
= dU

dx

dx

dv

d2U

dv2 = d2U

dx2

(
dx

dv

)2
+ dU

dx

d2x

dv2

where:

dx

dv
= 4v

1− κ′2
d2x

dv2 = 4
1− κ′2

Rearranging:

x
dU

dx
= x

(
dx

dv

)−1
dU

dv
= 2v2 − 1− κ′2

4v
dU

dv(
1− x2) d2U

dx2 =
(
1− x2)(dx

dv

)−2
[
d2U

dv2 −
(
dx

dv

)−1
d2x

dv2
dU

dv

]

=
(
1− v2) (v2 − κ′2

)
4v2

[
d2U

dv2 −
1
v

dU

dv

]
Substituting into Equation N.28 gives Equation N.29.

Working for Zahradník and Vlček Table 1 [182, Appendix and Table 1]

Equations 18 to 25 are experimentally confirmed in the Octave script chebyshevU_test.m under the assumption that Ul (v) = 0
for l ≤ 0.

Working for Equation 25

Ul+3 (v) = 2vUl+2 (v)− Ul+1 (v)
= 2v (2vUl+1 (v)− Ul (v))− Ul+1 (v)
= 4v2 (2vUl (v)− Ul−1 (v))− (2vUl (v)− Ul−1 (v))− Ul+1 (v)− Ul−1 (v)
= 8v3Ul (v)− 4v2Ul−1 (v)− 2Ul+1 (v)− Ul−1 (v)

4v2Ul−1 (v) = 2v (2vUl−1 (v)− Ul−2 (v)) + 2vUl−2 (v)
= 2vUl (v)− Ul−1 + Ul−1 + 2vUl−2 (v)− Ul−3 (v) + Ul−3 (v)
= Ul+1 (v) + 2Ul−1 (v) + Ul−3 (v)

Finally,

8v3Ul (v) = Ul+3 (v) + 3Ul+1 (v) + 3Ul−1 (v) + Ul−3 (v)

Substituting Equation N.30 gives the result.

Working for Equation 23 Equation 23 is simplified by applying Equation 6.

−v
[(

1− v2) d2U2l (v)
dv2 − 3v dU2l (v)

dv

]
= 4l (l + 1) vU2l (v)

= 2l (l + 1) [U2l+1 (v) + U2l−1 (v)]

v3
[(

1− v2) d2U2l (v)
dv2 − 3v dU2l (v)

dv

]
= −4l (l + 1) v3U2l (v)

= −1
2 l (l + 1) [U2l+3 (v) + 3U2l+1 (v) + 3U2l−1 (v) + U2l−3 (v)]

783

Working for Equation 24 For the κ′2 part of Equation 24:

4v2Ul (v) = 2v (2vUl (v)− Ul−1 (v)) + 2vUl−1 (v)− Ul−2 (v) + Ul−2 (v)
= 2vUl+1 (v)− Ul (v) + 2Ul (v) + Ul−2 (v)
= Ul+2 (v) + 2Ul (v) + Ul−2 (v)

4
(
1− v2)Ul (v) = − [Ul+2 (v)− 2Ul (v) + Ul−2 (v)]

Using Equation 20:

(
1− v2) dU2l (v)

dv
=

l∑
p=0

4p
(
1− v2)U2p−1 (v)

= −
l∑

p=0
p [U2p+1 (v)− 2U2p−1 (v) + U2p−3 (v)]

= −
[

l+1∑
p=1

(p− 1)U2p−1 (v)−
l∑

p=0
2pU2p−1 (v) +

l−1∑
p=−1

(p+ 1)U2p−1 (v)
]

= − [lU2l+1 (v) + (l − 1)U2l−1 (v)− 2lU2l−1 (v)]
= (l + 1)U2l−1 (v)− lU2l+1 (v)

Similarly, for the 2v2 (1− v2) part of Equation 24:

2v2 (1− v2) dU2l (v)
dv

= 2v2
l∑

p=0
4p
(
1− v2)U2p−1 (v)

= 2v2 [(l + 1)U2l−1 (v)− lU2l+1 (v)]

= l + 1
2 [U2l+1 (v) + 2U2l−1 (v) + U2l−3 (v)]− l

2 [U2l+3 (v) + 2U2l+1 (v) + U2l−1 (v)]

Working for Equation 26 Collecting terms in U2l+3 (v) from Equation 23:

−1
2 l (l + 1)α2l

Collecting terms in U2l+3 (v) from Equation 24:

−1
2 lα2l

Collecting terms in U2l+3 (v) from Equation 25:

1
2n (n+ 2)α2l

Giving:

U2l+3 (v) :
1
2 [n (n+ 2)− l (l + 2)]α2l

Working for Equation 27 Collecting terms in U2l+1 (v) from Equation 23:

−3
2 l (l + 1)α2l + 2l (l + 1)κ′2α2l

Collecting terms in U2l+1 (v) from Equation 24:

−lκ′2α2l + 1
2 [(l + 1)− 2l]α2l

Collecting terms in U2l+1 (v) from Equation 25:

3
2n (n+ 2)α2l

Giving:

U2l+1 (v) :
1
2 [3 (n (n+ 2)− l (l + 2)) + 2l + 1]α2l + l (2l + 1)κ′2α2l

784

Working for Equation 28 Collecting terms in U2l−1 (v) from Equation 23:

−3
2 l (l + 1)α2l + 2l (l + 1)κ′2α2l

Collecting terms in U2l−1 (v) from Equation 24:

(l + 1)κ′2α2l + 1
2 [2 (l + 1)− l]α2l

Collecting terms in U2l−1 (v) from Equation 25:

3
2n (n+ 2)α2l

Giving:

U2l−1 (v) :
1
2 [3 (n (n+ 2)− l (l + 2)) + 2 (2l + 1)]α2l + (l + 1) (2l + 1)κ′2α2l

Working for Equation 29 Collecting terms in U2l−3 (v) from Equation 23:

−1
2 l (l + 1)α2l

Collecting terms in U2l−3 (v) from Equation 24:

1
2 (l + 1)α2l

Collecting terms in U2l−3 (v) from Equation 25:

1
2n (n+ 2)α2l

Giving:

U2l−3 (v) :
1
2 [n (n+ 2)− (l − 1) (l + 1)]α2l

Working for Equations 30 to 33 Changing the summation variables:
n+3∑
l=3

1
2 [n (n+ 2)− (l − 3) (l − 1)]α2l−6U2l−3 (v) . . .

+
n+2∑
l=2

{
1
2 [3 (n (n+ 2)− (l − 2) l) + 2l − 3] + (l − 2) (2l − 3)κ′2

}
α2l−4U2l−3 (v) . . .

+
n+1∑
l=1

{
1
2 [3 (n (n+ 2)− (l − 1) (l + 1)) + 2 (2l − 1)] + l (2l − 1)κ′2

}
α2l−2U2l−3 (v) . . .

+
n∑

l=0

1
2 [n (n+ 2)− (l − 1) (l + 1)]α2lU2l−3 (v)

= 0

Assuming that Ul (v) = 0 for l ≤ 0:
n+3∑
l=3

[n (n+ 2)− (l − 3) (l − 1)]α2l−6 . . .

+
n+2∑
l=2

[
3 (n (n+ 2)− (l − 2) l) + 2l − 3 + 2 (l − 2) (2l − 3)κ′2

]
α2l−4 . . .

+
n+1∑
l=2

[
3 (n (n+ 2)− (l − 1) (l + 1)) + 2 (2l − 1) + 2l (2l − 1)κ′2

]
α2l−2 . . .

+
n∑

l=2
[n (n+ 2)− (l − 1) (l + 1)]α2l

= 0

(N.31)

The recurrence is initialised by calculating α2n from the n+3 term, α2n−2 from the n+2 term and α2n−4 from the n+1 term in
Equation N.31. The remaining terms α2n−6 . . . α0 are calculated by backwards recurrence for l = n, n−1, . . . , 3. Equation N.31
is implemented in the body of Table 1.

785

Working for Equations 34 and 35 The n+ 3 term in N.31 gives:

[n (n+ 2)− l (l + 2)]α2n = 0

α2n is a free variable. Zahradník and Vlček choose α2n =
(
1− κ′2

)−n
.

Working for Equation 36 The n+ 2 term in N.31 gives:

1
2 [n (n+ 2)− (n− 1) (n+ 1)]α2n−2 +

{
1
2 [3 (n (n+ 2)− n (n+ 2)) + 2n+ 1] + n (2n+ 1)κ′2

}
α2n = 0

[n (n+ 2)− (n− 1) (n+ 1)]α2n−2 +
[
2n+ 1 + 2n (2n+ 1)κ′2

]
α2n = 0

(2n+ 1)α2n−2 +
[
2n+ 1 + 2n (2n+ 1)κ′2

]
α2n = 0

α2n−2 +
[
1 + 2nκ′2

]
α2n = 0

Working for Equation 37 The n+ 1 term in N.31 gives:

1
2 [n (n+ 2)− (n− 2)n]α2n−4 + . . .{

1
2 [3 (n (n+ 2)− (n− 1) (n+ 1)) + 2n− 1] + (n− 1) (2n− 1)κ′2

}
α2n−2 + . . .{

1
2 [3 (n (n+ 2)− n (n+ 2)) + 2 (2n+ 1)] + (n+ 1) (2n+ 1)κ′2

}
α2n = 0

2nα2n−4 +
[
4n+ 1 + (n− 1) (2n− 1)κ′2

]
α2n−2 + (2n+ 1)

[
(n+ 1)κ′2 + 1

]
α2n = 0

786

N.10 Design of equi-ripple FIR filters with Zolotarev polynomials

The Zolotarev polynomials are an extension of the Chebyshev polynomials that have found applications in the design of narrow-
band FIR filters [146, 254, 181]. Zahradník [181] shows that the Zolotarev polynomials can provide a closed-form design of
an FIR low-pass filter with an “almost” equi-ripple approximation in two separate frequency bands. Appendix D reviews the
notation for Legendre’s elliptic integrals and Jacobi’s elliptic functions.

N.10.1 The Zolotarev polynomials

Chen and Parks [254, Section II], define “a Zolotarev polynomial of degree N , with L zeros in the interval (α, β) and N − L
zeros in the interval (−1, 1). The function value oscillates between −1 and +1 in both intervals [α, β] and [−1, 1], and is larger
than unity in the interval (1, α). It has N − L + 1 extremal points of value +1 or −1 in [−1, 1] and L + 1 extremal points of
value +1 or−1 in [α, β]. The closed-form expression for a Zolotarev polynomial uses elliptic functions. It has three independent
parameters: degree N , the number of zeros L in (α, β), and the elliptic function modulus κ”. Denoting such a polynomial by
fN,L (u, κ), in parametric form [146, Equations 3 and 4]:

x =
sn2 (u, κ) + sn2 (LK

N , κ
)

sn2 (u, κ)− sn2
(

LK
N , κ

) (N.32)

fN,L (u, κ) = (−1)L

2

{H (u− LK
N , κ

)
H
(
u+ LK

N , κ
)}N

+
{
H
(
u+ LK

N , κ
)

H
(
u− LK

N , κ
)}N

 (N.33)

where κ is the elliptic modulus, K = F
(

π
2 , κ

)
and H (u, κ) is the Jacobi Eta function. The complex variable u follows the

path [254, Figure 2]:

• u ∈ [0, ıK ′] maps to x ∈ [−1, 1]

• u ∈ [ıK ′,K + ıK ′] maps to x ∈ [1, α]

• u ∈ [K + ıK ′,K] maps to x ∈ [α, β]

Vlček and Unbehauen [146] prefer the notation Zp,q (w, κ) where p counts the number of zeros to the right of the maximum, q
counts the number of zeros to the left and Vlček and Unbehauen introduce the independent variablew, related to the discrete-time
z-domain by:

w = 1
2
(
z + z−1) |z=eıωT = cosωT

The intervals x ∈ (−1, 1) ∪ (α, β) are transformed from the x-domain to the w-domain intervals (−1, ws) ∪ (wp, 1) by [146,
Equation 6]:

w = x cn2 (u0, κ)− sn2 (u0, κ) (N.34)

= sn2 (u, κ) cn2 (u0, κ) + cn2 (u, κ) sn2 (u0, κ)
sn2 (u, κ)− sn2 (u0, κ) (N.35)

where u0 = p
p+qK (κ). The inverse transformation is [254, Equation 2] [55, Section 22.6(iv)]:

u = arcsc
(
ı sc (u0, κ)

√
1 + w

1− w, κ
)

= ı arcsn
(

sc (u0, κ)
√

1 + w

1− w,
√

1− κ2

) (N.36)

The extremal values of the Zolotarev polynomial Zp,q (w, κ) of degree n = p+ q alternate between −1 and 1 p+ 1 times in the
interval (−1, ws) and q + 1 times in the interval (wp, 1).

For convenience, Zahradnik et al. [183, Equation 7] rewrite Equation N.33 as:

Zp,q (u, κ) = (−1)p cosh
{
n log

[
H (u+ u0, κ)
H (u− u0, κ)

]}

787

Alternatively, the Zolotarev polynomials can be expressed in terms of the Chebyshev polynomials of the first kind, Tn (cos Φ) =
cosnΦ [146, Equations 26 and 27]:

Zp,q (u, κ) = (−1)p
Tp+q (cos Φ (u, κ))

cos Φ (u, κ) = 1
2

[
H (u+ u0, κ)
H (u− u0, κ) + H (u− u0, κ)

H (u+ u0, κ)

]
(N.37)

Whittaker and Watson [51, Page 480] define the Jacobi Eta function as:

H (u, κ) = −ıq− 1
4 e

ıπu
2K Θ (u+ ıK ′, κ) (N.38)

where Θ (u, κ) is the Jacobi Theta function, an even function with period 2K+ ı2K ′. Chen and Parks [254, Appendix, Equation
A3] show (with confusing typesetting) that in the central lobe of the Zolotarev polynomial, for which u = σ + ıK ′ with
σ ∈ [0,K]: {

H (u+ u0, κ)
H (u− u0, κ)

}n

= (−1)p

{
Θ (σ + u0, κ)
Θ (σ − u0, κ)

}n

The maximiser of the Zolotarev polynomial in the central lobe is [254, Appendix]:

um = σm + ıK ′

where:

κ′ =
√

1− κ2

K ′ = F
(π

2 , κ
′
)

σm = arcsn
([

Z (u0, κ)
κ2 sn (u0, κ) [cn (u0, κ) dn (u0, κ) + sn (u0, κ)Z (u0, κ)]

] 1
2

, κ

) (N.39)

and Z (u, κ) is the Jacobi Zeta function. The corresponding maximum value is:

fm = (−1)p cosh
[
n log Θ (σm + u0, κ)

Θ (σm − u0, κ)

]
(N.40)

The Octave script zolotarev_vlcek_unbehauen_test.m calculatesZ5,9 (w, 0.78), shown as Figure 1 by Vlček and Unbehauen [146]
and shown here as Figure N.87.

-1 -0.5 0 0.5 1

0

2

4

6

8

10

w

A
m

pl
itu

de

Zolotarev polynomial Z5,9(w, 0.78) (Vlcek and Unbehauen) : wp = 0.6075,wm = 0.4292,ws = 0.2319

wpwmws

Figure N.87: Zolotarev polynomial Z5,9 (u, 0.78).

788

Following Levy [198, Equation 28] or Vlček and Unbehauen [145, Equations 22 and 23], Vlček and Unbehauen assert that, by
inspection, the Zolotarev polynomials, Zp,q (w, κ), satisfy the following differential equation [146, Equation 7]:(

1− w2) (w − wp) (w − ws)
(
df

dw

)2
= n2 (1− f2) (w − wm)2 (N.41)

Quoting Vlček and Zahradník [156, Section III]: “This nonlinear differential equation expresses the fact that the first derivative
Z ′p,q (w, κ) does not vanish at the points w = ±1, wp, ws, where Zp,q (w, κ) = ±1 for which the right hand side of eq. (3)
vanishes, and that w = wm is a turning point corresponding to the local extrema at which Zp,q (w, κ) ̸= ±1.” Levy [198]
and Vlček and Unbehauen [146] show the solution of this non-linear differential equation with elliptic functions. Alternatively,
differentiating Equation N.41 gives the following linear second-order differential equation [146, Equation 63]:

g2 (w)
[(

1− w2) d2f

dw2 − w
df

dw

]
−
(
1− w2) g1 (w) df

dw
+ n2g0 (w) f = 0 (N.42)

where:

g2 (w) = (w − wp) (w − ws) (w − wm)

g1 (w) = (w − wp) (w − ws)− (w − wm)
(
w − wp + ws

2

)
g0 (w) = (w − wm)3

(N.43)

This differential equation can be solved by substituting the power series:

f (w) =
n∑

m=0
bmw

m

Vlček and Unbehauen summarise the resulting recurrence relations in [146, Table IV], reproduced here (with corrections [147])
as Algorithm N.5.

The power series bm coefficients of Z5,15 (u, 0.77029) found with Algorithm N.5 are:

b_5_15 = [-0.935306, 7.261946, 197.181637, -497.153495, ...
-6876.186281, 9666.711688, 92878.149607, -82519.667919, ...

-633477.646079, 368487.201207, 2459186.249287, -937494.520569, ...
-5751547.258502, 1410434.491871, 8248725.033331, -1243195.392071, ...
-7097006.615827, 593999.697155, 3362259.347747, -118888.629814, ...
-674338.319614];

The corresponding z-domain discrete-time impulse response coefficients are:

h_5_15 = [-0.0531541684, -0.0187425987, -0.0029739578, 0.0184629608, ...
0.0320251989, 0.0269417021, 0.0032905111, -0.0262222295, ...
-0.0430236735, -0.0344479981, -0.0029979528, 0.0335763755, ...
0.0524256541, 0.0401078216, 0.0020985347, -0.0394119519, ...
-0.0587615930, -0.0430273457, -0.0007539335, 0.0427632649, ...
0.0609976102, 0.0427632649, -0.0007539335, -0.0430273457, ...
-0.0587615930, -0.0394119519, 0.0020985347, 0.0401078216, ...
0.0524256541, 0.0335763755, -0.0029979528, -0.0344479981, ...
-0.0430236735, -0.0262222295, 0.0032905111, 0.0269417021, ...
0.0320251989, 0.0184629608, -0.0029739578, -0.0187425987, ...
-0.0531541684];

Vlček and Unbehauen also show the expansion of Zp,q (w, κ) in Chebyshev polynomials of the first kind, Tm (w):

f (w) =
n∑

m=0
amTm (w)

The resulting recurrence relations are shown in Algorithm N.6 [146, Table V with corrections]r.

The Chebyshev polynomial expansion coefficients of the example shown by Vlček and Unbehauen [147, Table VI] are:

a_3_6 = [0.0985975441, 0.0979370695, -0.0986423865, -0.1934009697, ...
-0.0935059158, 0.0955182760, 0.1823184146, 0.0857438837, ...
-0.0887676563, -1.0857982595];

rThe Maxima script zolotarev_vlcek_unbehauen_table_v.max and my working by hand did not reproduce Table V of Vlček and Unbehauen [146, 147].
However, the Octave script zolotarev_vlcek_unbehauen_test.m shows that, for κ = 0.78, p = 5 and q = 9, my Algorithm N.5 and Algorithm N.6 produce, to
within round-off error, the same Zolotarev polynomial as the calculation using elliptic functions in the Octave function zolotarev_chen_parks.m.

789

Algorithm N.5 Vlček and Unbehauen’s backwards recursion for Zp,q (w) =
∑n

m=0 bmw
m (w) [146, Table IV], [147].

Require: p, q and κ

Initialisation:

n = p+ q

u0 = p
p+qK (κ)

wp = 2 cd2 (u0, κ)− 1
ws = 2 cn2 (u0, κ)− 1
wq = wp+ws

2

wm = ws + 2 sn(u0,κ) cn(u0,κ)
dn(u0,κ) Z (u0, κ)

βn = 1, βn+1 = βn+2 = βn+3 = βn+4 = 0

Body:

for m = n+ 2 down to 3 do

d1 = (m+ 2) (m+ 1)wpwswm

d2 = − (m+ 1) (m− 1)wpws − (m+ 1) (2m+ 1)wmwq

d3 = wm

(
n2w2

m −m2wpws

)
+m2 (wm − wq) + 3m (m− 1)wq

d4 = (m− 1) (m− 2) (wpws − wmwq − 1)− 3wm

[
n2wm − (m− 1)2

wq

]
d5 = (2m− 5) (m− 2) (wm − wq) + 3wm

[
n2 − (m− 2)2

]
d6 = n2 − (m− 3)2

βm−3 = 1
d6

∑5
µ=1 dµβm+3−µ

end for

Normalisation:

sn =
∑n

m=0 βm

for m = 0 to n do

bm = (−1)p βm

sn

end for

790

Algorithm N.6 Modified Vlček and Unbehauen backwards recursion for Zp,q (w) =
∑n

m=0 amTm (w) [146, Table V], [147].
Require: p, q and κ

Initialisation:

n = p+ q

u0 = p
p+qK (κ)

wp = 2 cd2 (u0, κ)− 1
ws = 2 cn2 (u0, κ)− 1
wq = wp+ws

2

wm = ws + 2 sn(u0,κ) cn(u0,κ)
dn(u0,κ) Z (u0, κ)

αn = 1, αn+1 = αn+2 = αn+3 = αn+4 = αn+5 = 0

Body:

for m = n+ 2 down to 3 do

c7 = n2 − (m− 3)2

c6 = 2
[
(m− 2) (m− 3)wp + (m− 2) (m− 3)ws +

(
(m− 2) (m− 1)− 3n2)wm + (m− 2)wq

]
c5 = 3

[
n2 − (m− 1)2

]
+ . . .

4
[
3n2w2

m − (m− 1)2
wmwp − (m− 1)2

wmws − (m− 1) (m− 2)wpws − (m− 1)wmwq

]
c4 = 4

[
m2wp +m2ws +

(
m2 − 3n2)wm

]
+ 8

[
−n2w3

m +m2wmwpws

]
c3 = 3

[
n2 − (m+ 1)2

]
+ . . .

4
[
3n2w2

m − (m+ 1)2
wmwp − (m+ 1)2

wmws − (m+ 1) (m+ 2)wpws + (m+ 1)wmwq

]
c2 = 2

[
(m+ 2) (m+ 3)wp + (m+ 2) (m+ 3)ws +

(
(m+ 2) (m+ 1)− 3n2)wm − (m+ 2)wq

]
c1 = n2 − (m+ 3)2

αm−3 = −
∑6

µ=1
cµαm+4−µ

c7

end for

Normalisation:

sn = −α0
2 +

∑n
m=1 αm

a0 = (−1)p α0
2sn

for m = 1 to n do

am = (−1)p αm

sn

end for

791

Addendum

Working for Equation N.36 Re-writing Equation N.35:

w = sn2 (u, κ) cn2 (u0, κ) + cn2 (u, κ) sn2 (u0, κ)
(1− sn2 (u0, κ)) sn2 (u, κ)− (1− sn2 (u, κ)) sn2 (u0, κ)

= sn2 (u, κ) cn2 (u0, κ) + cn2 (u, κ) sn2 (u0, κ)
cn2 (u0, κ) sn2 (u, κ)− cn2 (u, κ) sn2 (u0, κ)

= sc2 (u, κ) + sc2 (u0, κ)
sc2 (u, κ)− sc2 (u0, κ)

(N.44)

Rearranging:

− (1− w) sc2 (u, κ) = (1 + w) sc2 (u0, κ)

sc (u, κ) = ±ı sc (u0, κ)
√

1 + w

1− w

Using the Jacobi imaginary transformation [55, Table 22.6.1], sn (ıu, κ′) = ı sc (u, κ), and selecting the “positive” value:

u = ı arcsn
(

sc (u0, κ)
√

1 + w

1− w,
√

1− κ2

)

The sc (u, κ) function has a zero at u = 0, a pole at u = K, period 2K+ ı4K ′, sc (ıK ′, κ) = ı and sc (K + ıK ′, κ) = ıκ′−1 [55,
Tables 22.4.1, 22.4.2 and 22.5.1].

Substituting φs = ωsT
2 , φp = π−ωpT

2 [146, Page 726] and sinφs = sn (u0, κ) [146, Equation 82] into Equation N.44 and
recalling that wp = cosωpT , at u = K + ıK ′:

wp =
− 1

κ′2 + tan2 φs

− 1
κ′2 − tan2 φs

Rearranging:

κ′2 = cot2 φs
1− wp

1 + wp

= cot2 φs tan2 ωpT

2
= cot2 φs cot2 φp

That is, the complementary elliptic modulus, κ′ = cotφs cotφp.

Working for linearising Equation 7 [146] Rearrange Equation 7 as:

df

dw
= g
√

1− f2

where:

g (w) = n (w − wm)√
(1− w2) (w − wp) (w − ws)

Differentiating both sides:

d2f

dw2 = dg

dw

√
1− f2 − g 1

2
1√

1− f2
2f df
dw

Substituting df
dw :

d2f

dw2 = 1
g

dg

dw

df

dw
− g2f

If wq = wp+ws

2 :

1
g

dg

dw
= 1
w − wm

+ w

1− w2 −
w − wq

(w − wp) (w − ws)

792

Rearranging:

[(
1− w2) (w − wm) (w − wp) (w − ws)

] d2f

dw2 . . .

−
[(

1− w2) (w − wp) (w − ws) + w (w − wm) (w − wp) (w − ws)−
(
1− w2) (w − wm) (w − wq)

] df
dw

. . .

+ n2 (w − wm)3
f = 0

Working for Equation 73 [146] The Chebyshev polynomial of the first kind satisfies the differential equation:

(
1− w2) d2Tn (w)

dw2 − wdTn (w)
dw

+ n2Tn (w) = 0

Equation N.42 is deliberately written in a form that can be solved with an expansion of Zp,q (w) in Chebyshev polynomials of
the first kind, Tm (w):

f (w) =
n∑

m=0
amTm (w)

so that:

(
1− w2) d2f

dw2 − w
df

dw
= −

n∑
m=0

m2amTm (w)

Working for Equation 74 [146] Equation 74 uses the following properties of the Chebyshev polynomials:

dTm (w)
dw

= mUm−1 (w)(
1− w2)Um−1 (w) = wTm (w)− Tm+1 (w)

Tm−1 (w)− wTm (w) = wTm (w)− Tm+1 (w)

so that:

(
1− w2) df

dw
=

n∑
m=0

mam [Tm−1 (w)− wTm (w)]

Working for Equation 75 [146] Equation 75 results directly from substituting Equations 72, 73 and 74 into Equation 63
(shown above as Equation N.42):

−
n∑

m=0
m2amg2 (w)Tm (w)−

n∑
m=0

mamg1 (w) [Tm−1 (w)− wTm (w)] +
n∑

m=0
amn

2g0 (w)Tm (w) = 0

Working for Table V [146] Expanding g0 (w), g1 (w) and g2 (w) in Equation 75 and setting wq = wp+ws

2 :

−
n∑

m=0
m2αm [(w − wp) (w − ws) (w − wm)]Tm (w) . . .

−
n∑

m=0
mαm [(w − wp) (w − ws)− (w − wm) (w − wq)] [Tm−1 (w)− wTm (w)] . . .

+
n∑

m=0
αm

[
n2 (w − wm)3

]
Tm (w) = 0

−
n∑

m=0
m2αm

[
w3 − wpw

2 − wsw
2 − wmw

2 + wmwpw + wmwsw + wpwsw − wpwmws

]
Tm (w) . . .

−
n∑

m=0
mαm

[
w2 − wpw − wsw + wpws − w2 + wmw + wqw − wqwm

]
[Tm−1 (w)− wTm (w)] . . .

793

+
n∑

m=0
n2αm

[
w3 − 3wmw

2 + 3w2
mw − w3

m

]
Tm (w) = 0

After much algebra (shown in the Octave script zolotarev_vlcek_unbehauen_table_v_test.m) I arrived at:

n+3∑
m=3

[
n2 − (m− 3)2

]
αm−3Tm (w) . . .

+
n+2∑
m=2

2 [(m− 2) (m− 3)wp + (m− 2) (m− 3)ws . . .

+
(
(m− 2) (m− 1)− 3n2)wm + (m− 2)wq

]
αm−2Tm (w) . . .

+
n+1∑
m=1

3
[
n2 − (m− 1)2

]
+ . . .

4
[
3n2w2

m − (m− 1)2
wmwp − (m− 1)2

wmws − (m− 1) (m− 2)wpws − (m− 1)wmwq

]
αm−1Tm (w) . . .

+
n∑

m=0
4
[
m2wp +m2ws +

(
m2 − 3n2)wm

]
+ 8

[
−n2w3

m +m2wmwpws

]
αmTm (w) . . .

+
n−1∑

m=−1
3
[
n2 − (m+ 1)2

]
+ . . .

4
[
3n2w2

m − (m+ 1)2
wmwp − (m+ 1)2

wmws − (m+ 1) (m+ 2)wpws + (m+ 1)wmwq

]
αm+1Tm (w) . . .

+
n−2∑

m=−2
2
[
(m+ 2) (m+ 3)wp + (m+ 2) (m+ 3)ws +

(
(m+ 2) (m+ 1)− 3n2)wm − (m+ 2)wq

]
αm+2Tm (w) . . .

+
n−3∑

m=−3

[
n2 − (m+ 3)2

]
αm+3Tm (w) = 0

Algorithm N.6 follows by collecting terms in the Chebyshev polynomials of equal order. The recursion is initialised by setting
αn = 1. At each backwards recursion, m = n+ 2, . . . , 3, the next coefficient calculated is αm−3.

794

N.10.2 Narrow-band FIR filter design with the Zolotarev polynomials

Degree equations for the Zolotarev polynomials

If the Zolotarev polynomial is scaled to lie in the range [0, 1] and the stop-band specification is asdB
= 20 log10 as < 0:

2
1 + fm

≤ 10asdB
/20 (N.45)

Rearranging:

fm ≥ ym = 2× 10−asdB
/20 − 1 (N.46)

Recalling Equation N.40, the scaled maximum value is:

cosh
[
n log Θ (σm + u0, κ)

Θ (σm − u0, κ)

]
≥ ym (N.47)

and the stop-band degree equation is:

n ≥ arccosh ym

log Θ(σm+u0,κ)
Θ(σm−u0,κ)

Alternatively, solving for ym with λ = ex:

1
2
[
λ+ λ−1] ≥ ym (N.48)

λ2 − 2ymλ+ 1 ≥ 0 (N.49)
(N.50)

The stop-band degree equation becomes [146, Equation 85]:

n ≥
log
(
ym +

√
y2

m − 1
)

log Θ(σm+u0,κ)
Θ(σm−u0,κ)

(N.51)

Zahradník et al. [183] derive a degree equation for narrow band-pass Zolotarev polynomial FIR filters in terms of the pass-band
attenuation specification, apdB

= 20 log10 ap < 0 and the pass-band bandwidth, ∆pT = ωp2T − ωp1T . Their procedure selects
the elliptic function modulus, κ, by setting [183, Equation 13]:

Θ (σp1 + u0, κ)
Θ (σp1 − u0, κ) = Θ (σp2 + u0, κ)

Θ (σp2 − u0, κ)

The response is scaled so that the pass-band degree equation is [183, Equation 14](with correctionss):

n ≥
arccosh

(
2× 10(apdB

−asdB)/20 − 1
)

log Θ(σp1+u0,κ)
Θ(σp1−u0,κ)

Unfortunately, the pass-band bandwidth relationship usually does not hold after the elliptic function quarter-period, K (κ), is
translated to integral values of n, p and q,

The Zolotarev polynomial FIR filter design procedure of Vlček and Unbehauen

Vlček and Unbehauen [146, Section VII] give the following procedure for the design of narrow-band FIR filters based on the
Zolotarev polynomials with specified stop-band bandwidth and stop-band attenuation:

1. Specify the desired pass-band and stop-band edges at angular frequencies ωpT < ωsT , and the stop-band attenuation,
asdB

= 20 log10 as < 0

2. Evaluate the elliptic function modulus, κ, for φp = π−ωpT
2 and φs = ωsT

2 , κ′ = cotφp cotφs

sZahradnik et al. use the Jacobi Eta function, the ratio of Jacobi Eta functions is claimed to be real at wp1 and log is missing.

795

3. Use the degree equation, Equation N.51, to find the degree, n, that satisfies the attenuation requirement

fm > ym = 2× 10−asdB
/20 − 1

corresponding to the maximum of the scaled Zolotarev polynomial.

4. Determine integer values of p and q corresponding to:

q

n
K (κ) = F (φp, κ) ,

p

n
K (κ) = F (φs, κ)

5. Calculate the resulting values of wp, ws and wm:

u0 = p

n
K (κ) , uq = q

n
K (κ)

wp = cosωpT = 2 sn2 (uq, κ)− 1
ws = cosωsT = 1− 2 sn2 (u0, κ)

wm = cosωmT = ws + 2sn (u0, κ) cn (u0, κ)
dn (u0, κ) Z (u0, κ)

um = σm + ıK ′

fm = Zp,q (um, κ)

6. Perform Algorithm N.6 to find the Chebyshev polynomial coefficients, am, and convert these to the impulse response [146,
Equation 87]: a0 = hM and am = 2hM−m.

The Octave script zolotarev_vlcek_unbehauen_test.m designs an FIR filter that approximates that shown in Figure 4 of Vlček and
Unbehauen [146]. The initial specification is fp = 0.1, fs = 0.15 and asdB

= −20dB. The final filter has:

p=6 % Zeros in lower stop-band
q=17 % Zeros in upper stop-band
N=46 % Degree of FIR polynomial
k=0.770292 % Elliptic modulus
fp=0.105432 % Lower stop-band edge
fmax=0.131418 % Pass-band centre frequency
fs=0.157429 % Upper stop-band edge
delta=-21.224034 % Stop-band attenuation(dB)

The z-domain impulse reponse coefficients of the FIR filter are:

h_6_17 = [0.0295797662, 0.0123578798, 0.0011255068, -0.0142207618, ...
-0.0229948939, -0.0169353965, 0.0027813101, 0.0244417779, ...
0.0326289454, 0.0191172985, -0.0098456126, -0.0359475478, ...
-0.0404719137, -0.0177401179, 0.0193576127, 0.0466303771, ...
0.0446158675, 0.0125842442, -0.0296518673, -0.0542174707, ...
-0.0439450649, -0.0045524365, 0.0385342685, 0.1003921567, ...
0.0385342685, -0.0045524365, -0.0439450649, -0.0542174707, ...
-0.0296518673, 0.0125842442, 0.0446158675, 0.0466303771, ...
0.0193576127, -0.0177401179, -0.0404719137, -0.0359475478, ...
-0.0098456126, 0.0191172985, 0.0326289454, 0.0244417779, ...
0.0027813101, -0.0169353965, -0.0229948939, -0.0142207618, ...
0.0011255068, 0.0123578798, 0.0295797662];

Figure N.88 shows the normalised Zolotarev polynomial of the FIR filter. Figure N.89 shows the frequency response of the FIR
filter. Figure N.90 shows the zeros of the FIR filter. Note that these are all double zeros.

The Octave script zolotarev_zahradnik_degree_test.m attempts to reproduce the examples given by Zahradník et al. [183]. Fig-
ure N.91 shows the normalised Zolotarev polynomial, Z100,37 (w, 0.4), calculated with Equation 7 of Zahradník et al. The
Octave script zolotarev_zahradnik_degree_test.m checks the inverse transformation of w to u shown in Equation N.36. Both the
arcsc and arccn Octave functions accurately invert w to u over the range of the pass-band in Example 1 of Zahradník et al.. A
3rd-order polynomial fit over that range is accurate to 4 decimal places. I failed to reproduce the results of Zahradník et al. for
their Example 1 with a pass-band constraint. Figure N.92 shows a filter designed with the stop-band bandwidth and attenuation
of Zahradník et al.’s Example 2. Figure N.93 shows the main lobe of the response.

796

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

w

A
m

pl
itu

de

Normalised Zolotarev polynomial Z6,17(w, 0.77029) (Vlcek and Unbehauen)

Figure N.88: Normalised Zolotarev polynomial approximating that of Figure 4 in Vlček and Unbehauen [146].

0 0.1 0.2 0.3 0.4 0.5
-40

-30

-20

-10

0

Frequency

A
m

pl
itu

de
(d

B
)

Normalised Zolotarev polynomial Z6,17(w, 0.77029) FIR filter (Vlcek and Unbehauen) : fp=0.1054,fmax=0.1314,fs=0.1574

Figure N.89: FIR filter response approximating that of Figure 4 in Vlček and Unbehauen [146].

797

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Normalised Zolotarev polynomial Z6,17(w, 0.77029) (Vlcek and Unbehauen)

Figure N.90: Zeros of an FIR filter approximating that of Figure 4 in Vlček and Unbehauen [146].

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

w

A
m

pl
itu

de

Normalised Zolotarev polynomial Z100,37(w, 0.4) : ws1=-0.6361, wm=-0.6610, ws2=-0.6851, fmax=44.1418

Figure N.91: Normalised Zolotarev polynomial Z100,37 (w, 0.4) calculated with Equation 7 of Zahradník et al. [155].

798

0 0.1 0.2 0.3 0.4 0.5

-150

-100

-50

0

Frequency

A
m

pl
itu

de
(d

B
)

Z2043,1672(w, 0.13749049) : fp1=0.274825,fm=0.275,fp2=0.275175,asdB=-140,fmax=0.274966

Figure N.92: Normalized Zolotarev polynomial FIR filter approximating Example 2 of Zahradník et al. [155] with stop-band
constraints.

0.2748 0.2749 0.275 0.2751 0.2752
-5

-4

-3

-2

-1

0

1

Z2043,1672(w, 0.13749049) : fp1=0.274825,fm=0.275,fp2=0.275175,asdB=-140,fmax=0.274966

A
m

pl
itu

de
(d

B
)

Frequency

0.273 0.274 0.275 0.276 0.277
-140.1

-140.05

-140

-139.95

-139.9

A
m

pl
itu

de
(d

B
)

Frequency

Figure N.93: Main lobe of the response of a normalized Zolotarev polynomial FIR filter approximating Example 2 of Zahradník
et al. [155] with stop-band constraints.

799

The Zolotarev polynomial FIR filter cascade structure design procedure of Zahradník et al.

It is often convenient to express an FIR filter polynomial as the cascade product of sub-filters [236, 46, 120, 121, 257]. As I show
in the Introduction, it may be difficult to accurately determine the roots of the FIR filter polynomial and so determine the sub-
filters. For example, see Smith [120]. Zahradník, Šusta et al. [184] derive an expression for the double-roots of the normalised
Zolotarev polynomial:

Qp,q (w, κ) = 1 + Zp,q (w, κ)
1 + Zp,q (wmax, κ)

where wmax is the centre-frequency of the main lobe. Their Figure 2 shows that Qp,q (w, κ) has ⌊p
2⌋ double zeros to the right of

the maximum (u ∈ [K + ıK ′,K] and w ∈ [wp, 1]), ⌊ q
2⌋ double zeros to the left of the maximum, (u ∈ [0, ıK ′] or w ∈ [−1, ws]),

for a total of p+q−2
2 double zeros as well as:

• zeros at w = ±1 if p is odd and q is odd

• one zero at w = 1 if p is odd and q is even

• one zero at w = −1 if p is even and q is odd

• no other zeros if p is even and q is even

Recall Equation N.37:

Zp,q (u, κ) = (−1)p
Tp+q (cos Φ (u, κ))

cos Φ (u, κ) = 1
2

[
H (u+ u0, κ)
H (u− u0, κ) + H (u− u0, κ)

H (u+ u0, κ)

]
On the “vertical” sections of the path of u corresponding to the locations of the zeros of Q (w, κ), substituting u − u0 into
Equation N.38:

H (u− u0, κ) =
{
−H∗ (u+ u0, κ) u ∈ [0, ıK ′]
H∗ (u+ u0, κ) u ∈ [K + ıK ′,K]

(N.52)

where H∗ is the complex conjugate transpose of H . The Φ (u, κ) function of Equation N.37 becomes:

Φ (u, κ) =
{
−2 argH (u+ u0, κ) + π u ∈ [0, ıK ′]

2 argH (u+ u0, κ) u ∈ [K + ıK ′,K]

The double-zero locations can be found by interpolation of the multiples of π
n into 2 argH (u+ u0, κ). Figure N.94 shows the

locations of the double zeros ofQp,q (w, 0.75) for pairs of odd and even p and q [184, Figure 2]. Figure N.95 shows the locations
of the double zeros of Qp,q (w, 0.75) for pairs of odd and even p and q superimposed on 2 argH (u+ u0, 0.75), normalised to
n
π , in the regions on either side of the central lobe.

Zahradník, Šusta et al. [184, Table I] show an algorithm, reproduced below as Algorithm N.7, for the calculation of the coeffi-
cients of the expansion in Chebyshev polynomials of the first kind of the product of the factors, (w − wl), of a polynomial. They
recommend ordering the roots in ascending order of z-domain angular frequency and the m sub-filters select the roots with the
ordering ρ (l) , l = 1, . . . ,m [184, Equation 8]:

ρ (l) =
{

m+l
2 m and l both odd or both even

m−l+1
2 otherwise

In addition, they recommend normalising each sub-filter to the value at the frequency of the central lobe maximum of the overall
filter [184, Equation 14].

The Octave script zolotarevFIRcascade_test.m attempts to reproduce Zahradník, Šusta et al.’s Examples 1 and 2. As mentioned
previously, I do not understand their method of calculating the degree of the filter from the required pass-band bandwidth.
Figure N.96 reproduces Figure 4 of Zahradník, Šusta et al., illustrating their Example 1. Sub-filters 1 and 2 are identical, as
expected after examining Zahradník, Šusta et al.’s Figure 3. However, the sub-filter 1 and sub-filter 2 shown in their Figure 4
appear to have a similar shape but a different gain, the filter impulse responses shown in their Table II are all different and I do
not understand how their Equation 15 corresponds to the numbering shown in their Figure 3. I tried randomly rearranging the
roots with the Octave randperm function and found that the range of the responses of the resulting sub-filters was far greater.

Figure N.97 shows the double-zero locations near ±1 and the central lobe of Q2159,540 (w, 0.16238959) for Zahradník, Šusta et
al.’s Example 2 [184]. Figure N.98 attempts to reproduce Zahradník, Šusta et al.s Figure 5 showing Q2159,540 (w, 0.16238959)
with 3 sub-filters. Algorithm N.7, the calculation of the coefficients of the Chebyshev polynomials of the first kind, is imple-
mented with the MPFR [1] library in the Octave octfile roots2T.cc.

800

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

q=5 and p=7

Q
7,

5(
w

,0
.7

5)

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

q=4 and p=7

Q
7,

4(
w

,0
.7

5)

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

q=5 and p=8

Q
8,

5(
w

,0
.7

5)

w
-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

q=4 and p=8

Q
8,

4(
w

,0
.7

5)

w

Figure N.94: Double-zero locations of Qp,q (w, 0.75) [184, Figure 2].

-1 -0.5 0 0.5 1

-8
-6
-4
-2
0
2
4

q=5 and p=7

2a
rg

H
(u

+
u

0,
0.

75
)(

12
/π

)

-1 -0.5 0 0.5 1

-8
-6
-4
-2
0
2
4

q=4 and p=7

2a
rg

H
(u

+
u

0,
0.

75
)(

11
/π

)

-1 -0.5 0 0.5 1

-8
-6
-4
-2
0
2
4

q=5 and p=8

2a
rg

H
(u

+
u

0,
0.

75
)(

13
/π

)

w
-1 -0.5 0 0.5 1

-8
-6
-4
-2
0
2
4

q=4 and p=8

2a
rg

H
(u

+
u

0,
0.

75
)(

12
/π

)

w

Figure N.95: Double-zero locations of Qp,q (w, 0.75) superimposed on 2 argH (u+ u0, 0.75) normalised to n
π .

801

Algorithm N.7 Recursion of Zahradník, Šusta et al. for the calculation of the scaled coefficients of the expansion, in Chebyshev
polynomials of the first kind, of the product of the n factors, (w − wm), of a polynomial [184, Table I].
Require: w0, . . . , wn−1

Initialisation:

α
(0)
0 = −w0, α(0)

1 = 1

Body:

for m = 1 to n− 1 do

α
(m−1)
m+1 = 0

α
(m)
0 = α

(m−1)
1 − 2wmα

(m−1)
0

α
(m)
1 = α

(m−1)
2 + 2α(m−1)

0 − 2wmα
(m−1)
1

for l = 2 to m do

α
(m)
l = α

(m−1)
l−1 + α

(m−1)
l+1 − 2wmα

(m−1)
l

end for

α
(m)
m+1 = 1

end for

Output:

ak = α
(n)
k k = 0, . . . , n

0
0.5

1
1.5

2

Subfilter m=2

0
1
2
3
4
5

Subfilter m=3

0
0.2
0.4
0.6
0.8

1

Partial cascade m=2,3

0
0.5

1
1.5

2

Subfilter m=1

0
0.5

1
1.5

2

Partial cascade m=2,3,1

0 0.1 0.2 0.3 0.4 0.5
0
5

10
15
20

Subfilter m=4

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

0
0.2
0.4
0.6
0.8

1

Full cascade m=2,3,1,4

Frequency

Figure N.96: Amplitude responses of the 4 sub-filters and the partial cascades of the sub-filters of a normalised Zolotarev band-
pass filter with zero-phase response Q22,49 (w, 0.46850107) [184, Figure 4].

802

-1 -1 -1 -0.9999 -0.9999 -0.9999
0

2e-05
4e-05
6e-05
8e-05

0.0001

Q2159,540(w, 0.16238959)

A
m

pl
itu

de

-0.811 -0.81 -0.809 -0.808 -0.807
0

0.2
0.4
0.6
0.8

1

A
m

pl
itu

de

0.9999 0.9999 0.9999 1 1 1
0

2e-05
4e-05
6e-05
8e-05

0.0001

A
m

pl
itu

de

w

Figure N.97: Detailed view of the double-zero locations of Q2159,540 (w, 0.16238959) near ±1 and the central lobe for Zahrad-
ník, Šusta et al.’s Example 2 [184].

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

20
Subfilter m=1

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

20
Subfilter m=2

A
m

pl
itu

de
(d

B
)

0 0.1 0.2 0.3 0.4 0.5
-100

-80

-60

-40

-20

0

20
Subfilter m=3

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-100

-80

-60

-40

-20

0

20
Cascade of subfilters 1, 2 and 3

A
m

pl
itu

de
(d

B
)

Frequency

Figure N.98: Amplitude responses of the 3 sub-filters cascade of the sub-filters of a normalised Zolotarev band-pass filter with
zero-phase response Q2159,540 (w, 0.16238959) [184, Figure 5].

803

Addendum

Working for Equation N.52 Substituting u = −u0 + ıyK ′, where y ∈ [0, 1], into Equation N.38:

H∗ (−u0 + ıyK ′, κ) = ıq−
1
4 e

ıπ(u0+ıyK′)
2K Θ (−u0 − ıyK ′ − ıK ′, κ)

= −H (u0 + ıyK ′, κ)

Substituting u = K − u0 + ıyK ′, where y ∈ [0, 1], into Equation N.38:

H∗ (K − u0 + ıyK ′, κ) = ıq−
1
4 e

ıπ(−K+u0+ıyK′)
2K Θ (K − u0 − ıyK ′ − ıK ′, κ)

= −ıq− 1
4 e

ıπ(K+u0+ıyK′)
2K Θ (−K − u0 − ıyK ′ − ıK ′, κ)

= H (K + u0 + ıyK ′, κ)

Working for Algorithm N.7 This is an application of the recurrence relations of the Chebyshev polynomials of the first kind:

T0 (w) = 1
T1 (w) = w

Tn+1 (w) = 2wTn (w)− Tn−1 (w)

For the first zero (dropping the argument, w, of T0 etc.):

(w − w0) = α
(0)
1 T1 + α

(0)
0 T0

so that α(0)
1 = 1 and α(0)

0 = −w0. Multiplying by the second zero:

(w − w1)
[
α

(0)
1 T1 + α

(0)
0 T0

]
= α

(0)
1
2 (2wT1 − T0) + α

(0)
1
2 T0 + α

(0)
0 wT0 − w1α

(0)
1 T1 − w1α

(0)
0 T0

= α
(0)
1
T2

2 +
(

2α(0)
0 − 2w1α

(0)
1

) T1

2 +
(
α

(0)
1 − 2w1α

(0)
0

) T0

2

so that α(1)
2 = 1, α(1)

1 = 2α(0)
0 − 2w1α

(0)
1 and α(1)

0 = α
(0)
1 − 2w1α

(0)
0 . For the third zero, ignoring the scaling by 2:

(w − w2)
[
α

(1)
2 T2 + α

(1)
1 T1 + α

(1)
0 T0

]
= α

(1)
2
2 (2wT2 − T1) + α

(1)
2
2 T1 + α

(1)
1
2 (2wT1 − T0) + α

(1)
1
2 T0 + α

(1)
0 wT0 . . .

− w2α
(1)
2 T2 − w2α

(1)
1 T1 − w2α

(1)
0 T0

= α
(1)
2
T3

2 +
(
α

(1)
1 − 2w2α

(1)
2

) T2

2 . . .

+
(
α

(1)
2 + 2α(1)

0 − 2w2α
(1)
1

) T1

2 +
(
α

(1)
1 − 2w2α

(1)
0

) T0

2

In general, for m = 1, 2, . . . :

(w − wm)
m∑

l=0
α

(m−1)
l Tl =

m∑
l=1

α
(m−1)
l

2 (2wTl − Tl−1) +
m∑

l=1

α
(m−1)
l

2 Tl−1 + α
(m−1)
0 wT0 −

m∑
l=0

wmα
(m−1)
l Tl

=
m∑

l=1
α

(m−1)
l

Tl+1

2 +
m∑

l=1
α

(m−1)
l

Tl−1

2 + 2α(m−1)
0

T1

2 −
m∑

l=0
2wmα

(m−1)
l

Tl

2

=
m+1∑
l=2

α
(m−1)
l−1

Tl

2 +
m−1∑
l=0

α
(m−1)
l+1

Tl

2 + 2α(m−1)
0

T1

2 −
m∑

l=0
2wmα

(m−1)
l

Tl

2

= α(m−1)
m

Tm+1

2 + α
(m−1)
m−1

Tm

2 +
m−1∑
l=2

α
(m−1)
l−1

Tl

2 . . .

+
m−1∑
l=2

α
(m−1)
l+1

Tl

2 + α
(m−1)
2

T1

2 + α
(m−1)
1

T0

2 + 2α(m−1)
0

T1

2 . . .

804

− 2wmα
(m−1)
m

Tm

2 −
m−1∑
l=2

2wmα
(m−1)
l

Tl

2 − 2wmα
(m−1)
1

T1

2 − 2wmα
(m−1)
0

T0

2

= α(m−1)
m

Tm+1

2 +
[
α

(m−1)
m−1 − 2wmα

(m−1)
m

] Tm

2 . . .

+
m−1∑
l=2

[
α

(m−1)
l−1 + α

(m−1)
l+1 − 2wmα

(m−1)
l

] Tl

2 . . .

+
[
α

(m−1)
2 + 2α(m−1)

0 − 2wmα
(m−1)
1

] T1

2 +
[
α

(m−1)
1 − 2wmα

(m−1)
0

] T0

2

805

N.10.3 Almost equi-ripple low-pass FIR filter design with the Zolotarev polynomials

Vlček and Zahradník [155, 156] describe the use of modified Zolotarev polynomials to design “almost equi-ripple” low-pass FIR
filters. They assume a solution of the form

√
1− w2Sp,q (w, κ)t and use Sp,q (w, κ) as the generating polynomial of a low-pass

FIR filteru:

Sp,q (w, κ) =
n∑

m=0
a+

mUm (w)

S (w) =
ˆ
Sp,q (w, κ) dw

Q (w) = S (w)−N1

N2 −N1

where Um (w) is the m’th Chebyshev polynomial of the second kind, Q (w) is the zero-phase transfer function of the FIR filter
and the normalising constants N1 and N2 are:

N1 =
{
S (w = −1) for q even

S
(
w = cos nπ

n+1

)
for q odd

N2 =
{
S (w = 1) for p even

S
(
w = cos π

n+1

)
for p odd

The frequency response of a symmetric FIR filter of length 2n+ 3 is:

H (ω) =
2n+2∑
m=0

hme
−ımωT

where the impulse response, hm = h2n+2−m , m = 0, . . . , n. The zero-phase frequency response, Q (ω), is related to the
frequency response, H (ω), by:

H (ω) = e−ı(n+1)ωT

[
hn+1 +

n∑
m=0

hme
−ı[m−(n+1)]ωT +

2n+2∑
m=n+2

hme
−ı[m−(n+1)]ωT

]

= e−ı(n+1)ωT

[
hn+1 +

n∑
m=0

hme
−ı[m−(n+1)]ωT +

n∑
m=0

h2n+2−me
−ı[2n+2−m−(n+1)]ωT

]

= e−ı(n+1)ωT

[
hn+1 +

n∑
m=0

hme
−ı[m−(n+1)]ωT +

n∑
m=0

h2n+2−me
ı[m−(n+1)]ωT

]

= e−ı(n+1)ωT

[
hn+1 + 2

n∑
m=0

hm cos [(n+ 1)−m]ωT
]

= e−ı(n+1)ωTQ (ω)

Vlček and Zahradník [155, Tables 4 and 5] provide an algorithm for calculating the 2 (p+ q) + 3 coefficients of the impulse
response of the FIR filter, reproduced here (with altered normalisation) as Algorithm N.8. I have combined Vlček and Zahradník’s
Tables 4 and 5 because the normalisation step in Table 4 normalises the a+ coefficients as if they are coefficients of d

dwTm (w)
rather than Um (w).

tSee Riblet [81], “If one uses x = − cos θ for a frequency variable instead of ω, ... the problem of designing for equal-ripple performance reduces to finding
even and odd polynomials Pn (x) so that Pn (x) /

√
1− x2 oscillates between ±1 exactly n + 1 times in a prescribed interval −1 < −xc ≤ x ≤ xc < 1. ...

Pn (x) is given then by 2Pn (x) =
(

1 +
√

1− x2
c

)
Tn

(
x

xc

)
−
(

1−
√

1− x2
c

)
Tn−2

(
x

xc

)
”

uThe normalisation is shown in Vlček and Zahradník [155, 156] as:

Q (w) = −N1 +
1

N2 −N1
S (w)

806

Algorithm N.8 Vlček and Zahradník’s algorithm for the evaluation of the impulse response, h (m), of an “almost equi-ripple”
low-pass FIR filter [155, Tables 4 and 5].
Require: p, q and κ

Initialisation:

n = p+ q

u0 = 2p+1
2n+2K (κ)

wp = 2 cd2 (u0, κ)− 1
ws = 2 cn2 (u0, κ)− 1
wq = wp+ws

2

wm = ws + 2 sn(u0,κ) cn(u0,κ)
dn(u0,κ) Z (u0, κ)

αn = 1, αn+1 = αn+2 = αn+3 = αn+4 = αn+5 = 0

Body:

for m = n+ 2 down to 3 do

8c1 = n (n+ 2)− (m+ 3) (m+ 5)
4c2 = 3wm [n (n+ 2)− (m+ 2) (m+ 4)] + (m+ 3) (2m+ 7) (wm − wq)

8c3 = 3 [n (n+ 2)− (m+ 1) (m+ 3)] + 12wm

[
(n+ 1)2

wm − (m+ 2)2
wq

]
. . .

−4 (m+ 2) (m+ 3) (wpws − wmwq)

2c4 = 3
[
(n+ 1)2

wm − (m+ 1)2
wq

]
− (m+ 1)2 (wm − wq) . . .

+2wm

[
(n+ 1)2

w2
m − (m+ 1)2

wpws

]
8c5 = 3 [n (n+ 2)− (m− 1) (m+ 1)] + 12wm

[
(n+ 1)2

wm −m2wq

]
. . .

−4m (m− 1) (wpws − wmwq)
4c6 = 3wm [n (n+ 2)− (m− 2)m] + (m− 1) (2m− 3) (wm − wq)
8c7 = n (n+ 2)− (m− 3) (m− 1)

αm−3 = 1
c7

∑6
l=1 (−1)l

clαm+4−l

end for

Normalisation:

sn =
∑n

m=0 (m+ 1)αm

for m = 0 to n do

a+
m = (−1)p (n+ 1) αm

sn

end for

Integration:

for m = 0 to n do

am+1 = a+
m

m+1

end for

Impulse response:

hn+1 = − N1
N2−N1

for m = 1 to n+ 1 do

hn+1±m = 1
2

am

N2−N1

end for
.

807

Vlček and Zahradník [155, Section 7] provide the following design procedure:

1. Specify the minimum attenuation in the stop-band, asdB
= 20 log10 as < 0. Specify the pass-band frequency ωpT and the

stop-band frequency ωsT . The maximum width of the transition band is ∆ωT = (ωs − ωp)T .

2. Calculate the degree, n = p+ q, of the generating polynomial, Sp,q (w), using the approximationv:

(ξ1n+ ξ2) ∆ωT
π

+ ξ3 + ξ4

(n+ ξ5)ξ6
= asdB

where ξ1 = −14.02925485, ξ2 = −32.86119410, ξ3 = −5.80117336, ξ4 = 2.99564719, ξ5 = −21.24188066 and
ξ6 = 0.28632078.

3. Determine integer values p = ⌊n (ωs+ωp)T
2π ⌉, q = n− p

4. Calculate the elliptic function modulus κ =
√

1−
(

1−κ̂
1+κ̂

)2
, where κ̂ is given by the approximation:

κ̂ =
{[
χ1 + χ2

(p+ χ3)χ4

]
n+ χ5p+ χ6

}
wp + χ7 + χ8

(p+ χ9)χ10 + 1
(n+ χ11p+ χ12)χ13p+χ14

for wp = cos π−∆ωT
2 and χ1 = −0.00452871, χ2 = 0.51350112, χ3 = 2.56407699, χ4 = 1.12297611, χ5 =

0.01473844, χ6 = 0.14824220, χ7 = 0.00245539, χ8 = 0.52499043, χ9 = 0.75104615, χ10 = 1.29448910, χ11 =
−1.06038228, χ12 = 0.64247743, χ13 = −0.00932499, χ14 = 1.88486768.

5. Perform Algorithm N.8 to find the impulse response, hm.

The Octave script zolotarev_vlcek_zahradnik_test.m reproduces Vlček and Zahradník’s Figures 1 to 4 [155], illustrating the
design of of an almost equi-ripple FIR filter with p = 4, q = 11 and κ = 0.75. Figure N.99 shows the iso-extremal function,√

1− w2S4,11 (w, 0.75), Figure N.100 shows the generating function, Figure N.101 shows zero-phase transfer function and
Figure N.102 shows the amplitude frequency response. The coefficients of the expansion of the zero-phase response in Chebyshev
polynomials of the first kind found with Algorithm N.8 [155, Table 4] are:

a_4_11 = [0.3018151112, 0.4512145672, 0.2822759289, 0.0868799820, ...
-0.0561809419, -0.1053948923, -0.0720513180, -0.0045415003, ...
0.0453863810, 0.0518476231, 0.0229242778, -0.0132284961, ...
-0.0312378770, -0.0240752981, -0.0030110098, 0.0144231969, ...
0.0529542655];

The corresponding z-domain discrete-time impulse response coefficients are:

h_4_11 = [0.0264771327, 0.0072115984, -0.0015055049, -0.0120376491, ...
-0.0156189385, -0.0066142480, 0.0114621389, 0.0259238116, ...
0.0226931905, -0.0022707502, -0.0360256590, -0.0526974461, ...
-0.0280904709, 0.0434399910, 0.1411379644, 0.2256072836, ...
0.3018151112, 0.2256072836, 0.1411379644, 0.0434399910, ...
-0.0280904709, -0.0526974461, -0.0360256590, -0.0022707502, ...
0.0226931905, 0.0259238116, 0.0114621389, -0.0066142480, ...
-0.0156189385, -0.0120376491, -0.0015055049, 0.0072115984, ...
0.0264771327];

The Octave script zolotarev_vlcek_zahradnik_test.m reproduces Vlček and Zahradník’s Figure 5, shown here as Figure N.103.

Finally, the Octave script zolotarev_vlcek_zahradnik_test.m follows the procedure of Vlček and Zahradník to design a low-pass
FIR filter with asdB

= −120, fp = 0.15 and fs = 0.175 [155, Section 8]. For this filter n = 162, p = 53, q = 109 and the filter
length is 327. The value of the elliptic modulus calculated in the script, κ = 0.5605516759, differs slightly from that reported by
Vlček and Zahradník, κ = 0.55830966. This may be due to round-off error in the given values of χ. The frequency response of
the filter is shown in Figure N.104.

vI found that, for a filter with asdB = −100, fp = 0.24 and fs = 0.25, the degree equation of Vlček and Zahradník [155, Equation 23] grossly
over-estimates the required n as n = 336 when n = 198 is sufficient.

808

-1 -0.5 0 0.5 1

0

2

4

6

w

A
m

pl
itu

de

Function (1− w2)1/2S4,11(u, 0.75)

Figure N.99: Iso-extremal function
√

1− w2S4,11 (w, 0.75), corresponding to Figure 1 of Vlček and Zahradník [155], p = 4,
q = 11, κ = 0.75.

-1 -0.5 0 0.5 1
-10

-5

0

5

10

w

A
m

pl
itu

de

Generating function S4,11(u, 0.75)

Figure N.100: FIR filter generating function corresponding to Figure 2 of Vlček and Zahradník [155], p = 4, q = 11, κ = 0.75.

809

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

A
m

pl
itu

de

Zero-phase transfer function Q4,11(u, 0.75)

Figure N.101: FIR filter zero-phase response corresponding to Figure 3 of Vlček and Zahradník [155], p = 4, q = 11, κ = 0.75.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Frequency

A
m

pl
itu

de

Transfer function (Vlcek and Zahradnik) : p=4,q=11,k=0.75

Figure N.102: FIR filter amplitude response corresponding to Figure 4 of Vlček and Zahradník [155], p = 4, q = 11, κ = 0.75.

810

0 0.1 0.2 0.3 0.4 0.5
-0.08

-0.06

-0.04

-0.02

0

0.02

Transfer function (Vlcek and Zahradnik) : p=100, q=300, k=0.25

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-46

-44

-42

-40

-38

-36

Figure N.103: FIR filter amplitude response corresponding to Figure 5 of Vlček and Zahradník [155], p = 100, q = 300,
κ = 0.25.

0 0.1 0.2 0.3 0.4 0.5
-1e-05

-8e-06

-6e-06

-4e-06

-2e-06

0

2e-06

Transfer function (Vlcek and Zahradnik) : asdB=-120, fp=0.150, fs=0.175

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-130

-128

-126

-124

-122

-120

-118

Figure N.104: FIR filter amplitude response of a low-pass FIR filter with asdB
= −120, fp = 0.15 and fs = 0.175 designed

with the procedure of Vlček and Zahradník [155, Section 8].

811

-1 -0.5 0 0.5 1
-2

0

2

4

6

8

(1− w2)1/2S4,11(u, 0.75) and Z4,11(u, 0.75)

A
m

pl
itu

de
(1− w2)1/2S4,11(u, 0.75)

Z4,11(u, 0.75)

-1 -0.5 0 0.5 1
-10

-5

0

5

10

S4,11(u, 0.75) and Z4,11(u, 0.75)/(1− w2)1/2

A
m

pl
itu

de

w

S4,11(u, 0.75)

Z4,11(u, 0.75)/(1 − w2)1/2

Figure N.105: Comparison of the iso-extremal function,
√

1− w2S4,11 (w, 0.75), the Zolotarev polynomial, Z4,11 (w, 0.75),
calculated by the Chebyshev expansion by Vlček and Unbehauen [146], the generating function, S4,11 (w, 0.75), of Vlček and
Zahradník [155] and the modified Zolotarev polynomial, Z4,11 (w, 0.75) /

√
1− w2.

Addendum

I can successfully design filters with Table 4 of Vlček and Zahradník [155]. On the other hand, I find that the generating
function, Sp,q (w, κ), calculated by Table 4, does not satisfy their Equation 17. Figure N.105, created by the Octave script
zolotarev_vlcek_zahradnik_test.m, compares the Zolotarev polynomial, Z4,11 (w, 0.75), found by direct calculation [254], the
modified Zolotarev polynomial, Z4,11 (w, 0.75) /

√
1− w2, the function,

√
1− w2S4,11 (w, 0.75), and the generating polynomial

S4,11 (w, 0.75).

I am not sure what Vlček and Zahradník [155, p.747] mean by “the second solution of (14) in the form
√

1− w2Sp,q (w, κ)”.
Initially, I assumed that they are referring to the possibility of a second, linearly independent solution of Equation N.42w. How-
ever, after examining Figure N.99 [155, Figure 1], it is clear that

√
1− w2Sp,q (w, κ) is not a solution of Equation N.41, as

it is zero rather than ±1 at w = ±1, as shown for Z5,9 (w, 0.78) in Figure N.87. Vlček and Zahradník’s Table 4 shows that

the main lobe edge is modified to u0 = p+ 1
2

n+1K (κ). This suggests that the n2 term in Equation N.42 should be replaced by
(n+ 1)2. The Maxima script zolotarev_vlcek_zahradnik_test_table_4.max substitutes

√
1− w2f (w) into Equation N.42 with

this modification. The resulting differential equation isx:

g2 (w)
[(

1− w2) d2f

dw2 − 3w df

dw

]
− g1 (w)

(
1− w2) df

dw
+
[
(n+ 1)2

g0 (w) + wg1 (w)− g2 (w)
]
f = 0 (N.53)

The Octave script zolotarev_vlcek_zahradnik_test.m shows that the Sp,q (w, κ) function calculated by Table 4 of Vlček and
Zahradník satisfies this differential equation.

The Chebyshev polynomials of the second kind, Um (w), satisfy the differential equation:(
1− w2) d2Um (w)

dw2 − 3wdUm (w)
dw

+m (m+ 2)Um (w) = 0

Differentiating Um (w) gives: (
1− w2) dUm (w)

dw
= (m+ 2)wUm (w)− (m+ 1)Um+1 (w)

wFor example, see Morse and Feshbach [172, Section 5.2].
xConsistent with Equation N.43 rather than following the changes in notation from Vlček and Unbehauen [146, Equation 64] to Vlček and Unbehauen [155,

Equation 15].

812

The Chebyshev polynomials of the second kind obey the following relations:

2wUm (w) = Um+1 (w) + Um−1 (w)
4w2Um (w) = Um+2 (w) + 2Um (w) + Um−2 (w)
8w3Um (w) = Um+3 (w) + 3Um+1 (w) + 3Um−1 (w) + Um−3 (w)

...

The linear differential equation for Sp,q (w, κ) can be solved by substituting an expansion in Chebyshev polynomials of the
second kind:

Sp,q (w) =
n∑

m=0
a+

mUm (w)

so that:

− g2 (w)
n∑

m=0
m (m+ 2) a+

mUm (x) . . .

− g1 (w)
n∑

m=0
a+

m [(m+ 2)wUm (w)− (m+ 1)Um+1 (w)] . . .

+
[
(n+ 1)2

g0 (w) + wg1 (w)− g2 (w)
] n∑

m=0
a+

mUm (w) = 0

(N.54)

The Maxima script zolotarev_vlcek_zahradnik_table_4.max calculates the recurrence relations from Equation N.54. The results
agree with Table 4 of Vlček and Zahradník [155] when inserted into the Octave function zolotarev_vlcek_zahradnik.m.

813

N.11 Design of FIR filters as a tapped cascade of sub-filters

This chapter describes the design of FIR filters as a series cascade of sub-filters. See, for example, Saramäki [236], Shiung et
al. [46], Smith [120] or Lim and Liu [257]. The cascade connection permits an improved response and/or reduced complexity by
partition of the FIR filter or the use of fewer multipliers.

Saramäki [236] describes a the design of a tapped cascade of identical sub-filters by “mapping a prototype filter into a com-
posite filter by means of a frequency travsformation. The transformation determines the sub-filter, whereas the prototype filter
determines the tap coefficients.” He claims that his proposed approach results in an overall filter order that is approximately
30% higher than the order, L, of the correponding mini-max direct-form FIR filter but has approximately

√
2.6L multipliers.

Saramäki [236, Section V] gives experimental results for the effect of the number of sub-filters on performance measures such
as overall filter order, number of distinct multipliers, number of delay elements, round-off error and coefficient sensitivity.

N.11.1 Transformations of linear-phase FIR filters

The transfer function, H (Z), of a linear-phase FIR filter with impulse response hn of length 2N +1, and symmetry hN−n = hn

can be expressed in terms of the zero-phase transfer function, H̃0 (Z), as:

H̃0 (Z) = z−NH (Z)

= hN +
N∑

n=1
hN−n

[
Zn + Z−n

]

This can be re-written as:

H̃0 (v) = hN +
N∑

n=1
2hN−nTn (v)

=
N∑

n=0
anv

n

where v = 1
2
(
Z + Z−1) and Tn (v) are the Chebychev polynomials of the first kind, defined by T (cos θ) = cosnθ. In the

following, H̃0 (v) is also called the prototype filter.

H̃0 (v) can be converted to another transfer function by substitution of a zero-phase sub-filter, v = H̄M (z), where:

HM (z) =
2M∑
r=0

h̄rz
−r

H̄M (z) = zMHM (z)

=
[
h̄M +

M∑
r=0

h̄M−r

(
zr + z−r

)]

The overall zero-phase transfer function is then:

H0 (z) =
N∑

n=0
an

[
H̄M (z)

]n
(N.55)

This is an order NM polynomial in 1
2
(
z + z−1) with a corresponding impulse response of length 2NM + 1.

Implementations of transformed FIR filters

Saramäki [236, Figure 1] shows several implementations of Equation N.55. The first is [236, Figure 1a and Equation 6]:

H (z) = z−NMH0 (z)

=
N∑

n=0
anz
−(N−n)M [HM (z)]n

(N.56)

814

An alternative implementation is derived from the recursion relation for Chebychev polynomials of the first kind:

T0 (x) = 1
T1 (x) = x

...
Tn (x) = 2xTn−1 (x)− Tn−2 (x)

Substitution gives [236, Figure 1c and Equation 9]:

H (z) = hNz
−NMG0 (z) +

N∑
n=1

2hN−nz
−(N−n)MGn (z)

Gn (z) = z−nMTn

(
zMHM (z)

)
The transfer functions Gn (z) can be implemented recursively as:

G0 (z) = 1
G1 (z) = HM (z)
Gn (z) = 2HM (z)Gn−1 (z)− z−2MGn−2 (x)

Frequency domain relations

Setting Z = eıΩ and z = eıω , the zero-phase frequency responses of the prototype filter, H̃0 (Z), and transformed filter, H0 (z),
are:

H̃0
(
eıΩ) =

N∑
n=0

an [cos Ω]n

H0 (eıω) =
N∑

n=0
an [PM (ω)]n

where the zero-phase frequency response of the sub-filter, HM (z), is:

PM (ω) = h̄M +
M∑

r=1
2h̄M−r cos rω

H̃0
(
eıΩ) and H0 (eıω) are related by:

Ω = gM (ω) = arccosPM (ω)

If 0 ≤ gM (ω) ≤ π and 0 ≤ ω ≤ π this transformation preserves the amplitude characteristics of H̃0
(
eıΩ) and distorts the

frequency axis [236, Figure 2].

N.11.2 Frequency-domain constraints on the prototype and sub-filter

Specifications Based on a Normalized Prototype Filter

Let the specifications of H0 (eıω) in the pass-bands, Ip, and stop-bands, Is, be:

1− δp ≤ H0 (eıω) ≤ 1 + δp ω ∈ Ip

−δs ≤ H0 (eıω) ≤ δs ω ∈ Is

(N.57)

The specifications for the prototype filter, H̃0
(
eıΩ), are:

1− δp ≤ H̃0
(
eıΩ) ≤ 1 + δp 0 ≤ Ω ≤ Ωp

−δs ≤ H̃0
(
eıΩ) ≤ δs Ωs ≤ Ω ≤ π

(N.58)

815

The requirements for gM (ω) are:

0 ≤ gM (ω) ≤ Ωp for ω ∈ Ip

Ωs ≤ gM (ω) ≤ π for ω ∈ Is

The requirements for the zero-phase response of the sub-filter are:

cos Ωp ≤ PM (ω) ≤ 1 for ω ∈ Ip

−1 ≤ PM (ω) ≤ cos Ωs for ω ∈ Is

(N.59)

For fixed values of Ωp, and Ωs, both the prototype filter and the sub-filter can be designed using minimax FIR design software.
Saramäki calls this type of specification “normalised-prototype-filter-based”(NPFB).

General specifications

The same overall frequency response can be obtained by replacing the sub-filter, HM (z), with:

ĤM (z) = AHM (z) +Bz−M

which has the zero-phase response:

P̂M (ω) = APM (ω) +B (N.60)

The overall zero-phase frequency response becomes:

Ĥ0 (eıω) =
N∑

n=0
ân

[
P̂M (ω)

]n

which corresponds to a frequency transformation:

x = A cos Ω +B (N.61)

The prototype frequency response becomes:

Ĥ0 (x) = H̃0 (eıω)|x=A cos Ω+B =
N∑

n=0
ânx

n

The zero-phase frequency response is obtained from Ĥ0 (x) by the substitution x = 1
2
(
z + z−1). Likewise, the prototype filter

frequency response is obtained by the substitution x = cos Ω. H0 (eıω) and Ĥ0 (x) are related by x = P̂M (ω). If A > 0, then
Equation N.61 maps the pass-band, [0,Ωp], and the stop-band, [Ωs, π], of the Ω-plane onto the x-plane regions [xp1, xp2] and
[xs1, xs2], respectively, where:

xp1 = A cos Ωp +B

xp2 = A+B

xs1 = −A+B

xs2 = A cos Ωs +B

(N.62)

If H̃0
(
eıΩ) satisfies Equation N.58, then 1 − δp ≤ H̃0 (x) ≤ 1 + δp on [xp1, xp2] and −δs ≤ H̃0 (x) ≤ δs on [xs1, xs2] [236,

Figure 3]. Similarly, if PM satisfies Equation N.59, then the new sub-filter frequency response P̂M (ω) is within the limits xp1
and xp2 on Ip and within the limits xs1 and xs2 on Is. The simultaneous specifications for the prototype filter and sub-filter
are [236, Figure 4]:

1− δp ≤ Ĥ0 (x) ≤ 1 + δp for x ∈ [xp1, xp2]
δs ≤ Ĥ0 (x) ≤ δs for x ∈ [xs1, xs2]

xp1 ≤ P̂M (ω) ≤ xp2 for ω ∈ Ip

xs1 ≤ P̂M (ω) ≤ xs2 for ω ∈ Is

(N.63)

The design of the sub-filter P̂M (ω) can be performed by standard FIR filter design algorithms. The design of the prototype filter,
Ĥ0 (x) can be performed by using the transformation of Equation N.61 to map the problem to the Ω-plane, designing the filter
to meet the specifications of Equation N.58, then mapping the result back to the x-plane.

816

Specifications based on the normalised sub-filter

For the special case of xp1 = 1− δ̂p, xp2 = 1+ δ̂p, xs1 = −δ̂s and xs2 = δ̂s, Saramäki refers to the “normalised-sub-filter-based”
(NFSB) specifications:

1− δp ≤ Ĥ0 (x) ≤ 1 + δp for x ∈
[
1− δ̂p, 1 + δ̂p

]
δs ≤ Ĥ0 (x) ≤ δs for x ∈

[
−δ̂s, δ̂s

]
1− δ̂p ≤ P̂M (ω) ≤ 1 + δ̂p for ω ∈ Ip

−δ̂s ≤ P̂M (ω) ≤ δ̂s for ω ∈ Is

(N.64)

The NPFB and NSFB specifications are related by the transformation of Equation N.61 and the subsitution of Equation N.62
with xp2 − xs1 and xp2 + xs1 giving:

A = 1 + δ̂p + δ̂s

2

B = 1 + δ̂p − δ̂s

2

cos Ωp and cos Ωs are related to δ̂p and δ̂p by the relative proportions:

1− cos Ωp

2 = 2δ̂p

1 + δ̂p + δ̂s

1 + cos Ωs

2 = 2δ̂s

1 + δ̂p + δ̂s

so that:

cos Ωp = 1 + δ̂s − 3δ̂p

1 + δ̂p + δ̂s

cos Ωs = 3δ̂s − δ̂p − 1
1 + δ̂p + δ̂s

Alternatively, given cos Ωp and cos Ωs:[
3 + cos Ωp −1 + cos Ωp

1 + cos Ωs −3 + cos Ωs

] [
δ̂p

δ̂s

]
=
[

1− cos Ωp

−1− cos Ωs

]

N.11.3 Filter design

Saramäki [236, Section IV] considers four separate design problems.

Approximation Problem I

Given the composite filter specifications of Equation N.57 and N , the number of sub-filters, find the tap coefficients and the
sub-filter such that the sub-filter order 2M is minimised.

Saramäki suggests that this approximation problem may be solved by:

1. Given the prototype filter order, 2N , find the minimum sub-filter order, 2M , which is required by the overall filter to meet
the specification of Equation N.57. This can be done by choosing the prototype filter pass-band edge, Ωp as the unknown
and, for each Ωp finding the prototype filter with the minimum Ωs that satisfies Equation N.58.

2. Find the coefficients of the sub-filter of the resulting order 2M and the coefficients of the prototype filter of the given order
2N to minimise the absolute value of the error function on Ip ∪ Is.

Minimising Ωs maximises the allowable variation of PM (ω) on Is and, consequently, the minimum required sub-filter order to
meet Equation N.58. The solution is obtained by reducing Ωs until the given ripple ratio δp

δs
attains the specified maximum value.

Alternatively, the Selesnik-Burrus modification to the Hofstetter low-pass filter design method, shown in Section N.5.2, finds the
filter that minimises Ωs for the given Ωp, δp and δs.

817

Approximation Problem II

Given the composite filter specifications of Equation N.57 and the sub-filter order 2M , find the tap coefficients and the sub-filter
such that N , the number of sub-filters, is minimised.

Saramäki suggests this approximation problem may be solved by:

1. Given the NPFB specifications of Equations N.59 and N.58, increase N until, at least at one extraripple solution of the
prototype sub-filter, the given sub-filter order, 2M , is large enough to meet the specification of Equation N.59. Denote
by Ω(i)

p and Ω(i)
s , i = 1, 2, . . . , r, the pass-band and stop-band edge angles of those extra-ripple solutions at which the

sub-filter meets the criteria. At this point, the minimum number of sub-filters is known and both the prototype filter and
sub-filter orders 2N and 2M are known.

2. Given the NSFB specifications of Equation N.64, consider the ripple ratio k = δ̂p

δ̂s
as a primary unknown. Find the value

of k near each of the points

k
(i)
0 = 1− cos Ω(i)

p

1 + cos Ω(i)
s

, i = 1, . . . , r

that minimises the passband ripple, δp, of Ĥ0 (x) for the given ripple ratio δp

δs
. Select the resulting value of k(i)

0 giving the
smallest pass-band ripple.

Prescribed Subfilter

The sub-filter may be determined in advance, perhaps to reduce hardware requirements. In this case, Saramäki suggests that the
tap coefficients be optimised to reduce the number of sub-filters, N , by:

1. Determine the maximum and minimum values of the sub-filter frequency response P̂M (ω) on Ip, denoted by xp1 and xp2.
Similarly, determine the maximum and minimum values xs1 and xs2 on Is.

2. Determine Ĥ0 (x) to satisfy the specifications of Equation N.63 with the minimum value of N :

(a) Determine A and B and then Ωp and Ωs from Equation N.62.

(b) Design the prototype filter of minimum even-order 2N to meet the specification of Equation N.58.

(c) Transform the resulting frequency response to the x-plane with Equation N.61.

Prescribed tap coefficients

Saramäki suggests that if the prototype frequency response, Ĥ0 (x) is given:

1. Determine the regions Xp and Xs where 1− δp ≤ Ĥ0 (x) ≤ 1 + δp and δs ≤ Ĥ0 (x) ≤ δs, respectively. Let xp1 and xp2
(xs1 and xs2) denote the maximum (minimum) values of Xp (Xs).

2. Find the minimum even-order sub-filter to satisfy the specification of Equation N.63.

818

N.11.4 Filter design examples

Approximation Problem I low-pass filter example

Saramäki’s Approximation Problem I assumes that the prototype filter order, 2N , or number of sub-filters, N , is given. First,
given the prototype filter pass-band edge, Ωp, search for the minimum prototype filter transition width, ∆Ω, that satisfies the
amplitude specifications, δp and δs. Next, search for the minimum sub-filter order, 2M , that, given Ωp and ∆Ω, satisfies the
overall filter frequency specifications ω ∈ Ip and ω ∈ Ip. The Octave script saramakiFIRcascade_ApproxI_lowpass_test.m
attempts to reproduce the design shown in Saramäki’s Figure 5 [236, Figure 5]y. In this script, both searches are made with
the Octave function selesnickFIRsymmetric_lowpass, an implementation of Hofstetter’s low-pass filter design method with the
Selesnik-Burrus modification shown in Section N.5.2. Table N.1 shows the specifications and derived parameters for this example
of Approximation Problem I. The minimum sub-filter order found is M = 23 and the overall filter impulse response length is
2NM + 1 = 277. Figure N.106 compares the minimum sub-filter order, 2M , and the minimum prototype filter transition width,
∆Ω, found with selesnickFIRsymmetric_lowpass. Figure N.107 is a plot, similar to that of Saramäki’s Figure 6, showing the
mapping of the prototype filter to the sub-filter and the overall response. Figure N.108 shows the pass-band and stop-band of the
filter.

N 6
fp 0.1375
fs 0.15
δp 0.01
δs 0.001

M 23
2NM + 1 277
Ωp/2π 0.146000
Ωs/2π 0.338541
A 0.637756
B 0.487266
δ̂p 0.125022
δ̂s 0.150490

Table N.1: Parameters of Saramäki FIR cascade Approximation Problem I example filter.

The N + 1 distinct coefficients of the prototype filter are:

hN = [0.0107774477, 0.0177655796, -0.0238617114, -0.0700664677, ...
0.0371535282, 0.3045732560, 0.4573167353]';

The N + 1 tap coefficients, an in Equation N.56, are:

aN = [0.3137313609, 1.2072011137, 0.9183896108, -1.2711549242, ...
-1.4164223584, 0.5684985464, 0.6897566509];

The M + 1 distinct coefficients of the sub-filter are:

hM = [0.0349913571, 0.1139326345, -0.0329200706, -0.0100592129, ...
-0.0267514167, -0.0120584706, 0.0100933358, 0.0284182665, ...
0.0262381556, 0.0024703229, -0.0273071240, -0.0398277551, ...

-0.0215731935, 0.0186827541, 0.0524233219, 0.0497981852, ...
0.0028464710, -0.0626863843, -0.0973752026, -0.0565442512, ...
0.0694019272, 0.2424103979, 0.3919484265, -0.3131049496]';

yThe plot shown in Saramäki’s Figure 6 has the same filter parameters except for N = 7.

819

0 0.05 0.1 0.15 0.2 0.25
40

50

60

70

80

90

Minimum transition-width and sub-filter order : N=6,fp=0.1375,fs=0.15,δp=0.01,δs=0.001

M
in

im
um

su
b-

fil
te

ro
rd

er
(2

M
)

0 0.05 0.1 0.15 0.2 0.25

0.16

0.18

0.2

0.22

0.24

Tr
an

si
tio

n
w

id
th

(∆
Ω

/2
π

)

Pass-band edge(Ωp/2π)

Figure N.106: Comparison of the minimum sub-filter order, 2M , and the minimum prototype filter transition width, ∆Ω, found
with selesnickFIRsymmetric_lowpass [236, Figure 5].

-60 -40 -20 0
0

0.1

0.2

0.3

0.4

Prototype filter : N=6,δp=0.01,δs=0.001

Fr
eq

ue
nc

y(
Ω

/2
π

)

Amplitude (dB)
0 0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

Sub-filter : M=23,Fp=0.146,Fs=0.338541

0 0.1 0.2 0.3 0.4

-60

-40

-20

0

Overall cascaded filter : fp=0.1375,fs=0.15

A
m

pl
itu

de
(d

B
)

Frequency(ω/2π)

Figure N.107: Approximation problem I solution mapping the prototype filter to the sub-filter and the overall response.

820

0 0.1 0.2 0.3 0.4 0.5
0.98

0.99

1

1.01

1.02

Saramaki FIR cascade low-pass Approx. I : N=6,M=23,fp=0.1375,fs=0.15,δp=0.01,δs=0.001

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.108: Detailed view of the pass-band and stop-band response of the Approximation Problem I low-pass filter example.

821

Approximation Problem II multi-band filter example

Saramäki’s Approximation Problem II assumes that the sub-filter order, 2M , is given. The Octave script saramakiFIRcas-
cade_ApproxII_multiband_test.m attempts to reproduce Saramäki’s multi-band example [236, Figure 17 and Section VI]. Ta-
ble N.2 shows the specifications and derived parameters for this example of Approximation Problem II.

M 25
fsu1 0.0625
fpl1 0.075
fpu1 0.125
fsl2 0.1375
fsu2 0.2375
fpl2 0.25
fpu2 0.4
fsl3 0.4125
δp 0.01
δs 0.001

N 6
2NM + 1 301
K (Ws/Wp) 0.838000
E (RMS error) 0.003856
Ωp/2π 0.145947
Ωs/2π 0.339365
ΩsN/2π 0.338367
A 0.636811
B 0.487942
δ̂p 0.135959
δ̂s 0.141037

Table N.2: Parameters of Saramäki FIR cascade Approximation Problem II multi-band example filter.

The script sets the ratio of stop-band to pass-band weights K = Ws

Wp
and calls the Octave function mcclellanFIRsymmetric to

design an order 2M = 50 multi-band sub-filter that satisfies the frequency specifications, ωsu1 etc., of the filter pass-bands and
stop-bands. If the sub-filter is feasible then the script next searches for the minimum order 2N prototype filter that satisfies the
overall filter δp and δs amplitude response ripple specifications. The script does this by calling the Octave function selesnick-
FIRsymmetric_lowpass with fixed prototype filter pass-band edge frequency, Ωp at 1 − δp, and increasing N until the resulting
prototype filter stop-band edge frequency, ΩsN , satisfies the value of Ωs corresponding to the stop-band ripple of the sub-filter.
A final design is selected from the set of feasible designs by choosing the design with the lowest RMS error in the amplitude
response. The sub-filter order is given as 2M = 50. The minimum prototype filter order found is 2N = 12 and the overall
filter impulse response length is 2NM + 1 = 301. Figure N.109 is a plot, similar to that of Saramäki’s Figure 17, showing the
mapping of the prototype filter to the sub-filter and the overall response. Figure N.110 shows the pass-band and stop-band of the
filter.

The N + 1 distinct coefficients of the prototype filter are:

hN = [0.0108151088, 0.0177369180, -0.0239519611, -0.0700472296, ...
0.0373113899, 0.3045551067, 0.4571405151]';

The N + 1 tap coefficients, an in Equation N.56, are:

aN = [0.3129835955, 1.2067627712, 0.9218208532, -1.2698545571, ...
-1.4214818200, 0.5675813761, 0.6921669615];

The M + 1 distinct coefficients of the sub-filter are:

hM = [0.0387992748, 0.0340758453, 0.0666153212, -0.0563330856, ...
-0.0901452151, 0.0304951584, -0.0471249545, 0.0082373858, ...
-0.0481509242, 0.0254690581, 0.0214454822, -0.0595864252, ...
-0.0073808648, 0.0235659319, 0.1153460758, 0.1064478219, ...
-0.0027298992, 0.1310680361, -0.0288847206, -0.1033224269, ...
-0.2393709560, -0.2025373728, 0.2770127253, -0.1806058042, ...
-0.0554313449, -0.0464020739]';

822

-60 -40 -20 0
0

0.1

0.2

0.3

0.4

0.5

Prototype filter : M=25,N=6,δp=0.01,δs=0.001

Fr
eq

ue
nc

y(
Ω

/2
π

)

Amplitude (dB)
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

Sub-filter : M=25,Fp=0.146,Fs=0.339

0 0.1 0.2 0.3 0.4 0.5

-60

-40

-20

0

Overall cascaded filter : M=25,N=6

A
m

pl
itu

de
(d

B
)

Frequency(ω/2π)

Figure N.109: Approximation problem II solution mapping the prototype filter to the sub-filter and the overall response.

0 0.1 0.2 0.3 0.4 0.5
0.98

0.99

1

1.01

1.02

Saramaki FIR cascade multi-band Approx. II : M=25,N=6

A
m

pl
itu

de

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.002

-0.001

0

0.001

0.002

Figure N.110: Detailed view of the pass-band and stop-band response of the Approximation Problem II multi-band filter example.

823

Appendix O

Application of the Kalman-Yakubovic̆-Popov
lemma to digital filter design

O.1 The continuous-time KYP lemma

The Kalman-Yakubovic̆-Popov (KYP) lemma [195] is a fundamental result from the theory of control systems. The continuous
time KYP states that, for a state-variable system with A ∈ Cn×n, B ∈ Cn×m and (A,B) controllable, the frequency domain
inequality(FDI): [

(ıωI −A)−1
B

I

]∗
Θ
[

(ıωI −A)−1
B

I

]
< 0 ω ∈ R ∪ {∞} (O.1)

(whereM∗ means complex conjugate transpose ofM) holds if-and-only-if the following linear matrix inequality(LMI) is feasible
for a solution P ∈ Hn, the set of Hermitian n× n matrixes:[

A B
I 0

]∗ [0 P
P 0

] [
A B
I 0

]
+ Θ ≺ 0 (O.2)

or: [
A∗P + PA PB

B∗P 0

]
+ Θ ≺ 0 (O.3)

For the purposes of filter design, the lemma states that an infinite dimension frequency response constraint is equivalent to a
constraint on the coefficients of the state variable description. If H (ω) = C (ıωI −A)−1

B + D is the transfer function of the
filter, then we can write:

Θ =
[
C D
0 I

]∗
Π
[
C D
0 I

]
(O.4)

For example, if

Π =
[
I 0
0 −ε2I

]
(O.5)

then the corresponding frequency domain constraint is |H (ω)|2 ≤ ε2 for all ω. If the state-space description,
[
A B
C D

]
, is

known, then a feasible solution of Equation O.3 with this Π also shows ε. Similarly, if

Π =
[

0 −I
−I 2εI

]
(O.6)

and a feasible solution for ε exists, then 1
2
[
H (ω) +H (ω)∗

]
≤ ε for all ωa.

Iwasaki, Meinsma and Fu [241] extend the continuous time KYP lemma to restricted frequency regions. In addition, the KYP
lemma has been generalised to discrete time state variable systems over restricted frequency regions [60, 230, 232, 233, 241, 62].
In the remainder of this section I follow the discussion of a finite-frequency continuous-time KYP lemma described by Iwasaki,
Meinsma and Minyue Fu [241].

aFor example, see the Octave script yalmip_kyp_epsilon_test.m .

824

O.1.1 A generalised S-procedure

The S-procedureb is the basis of proofs of the KYP lemma. Iwasaki, Meinsma and Minyue Fu [241, Section 1] first define a set,
G, of vectors, ζ, and matrixes, Si, such that:

G := {ζ ∈ Cn : ζ ̸= 0, ζ∗Skζ ≤ 0,∀k = 1, . . . ,m}

Then, assuming Θ, Sk ∈ Hn, according to Iwasaki et al., the “classical” version of the S-procedure considers the following
statements:

ζ†Θζ < 0, ∀ζ ∈ G (O.7)

∃τk ∈ R such that τk > 0 and Θ ≺
m∑

k=1
τkSk (O.8)

The S-procedure replaces the multiple constraints of Equation O.7 with the single linear constraint of Equation O.8. The latter
condition is easier to satisfy as it is a search for the scalar multipliers, τk, satisfying convex constraints. Iwasaki et al. comment
that “In general, the S-procedure on Cn is conservative, i.e. Equation O.8 is only sufficient for Equation O.7 and may not be
necessary“c.

Iwasaki et al. [241, Equation 4] generalise the S-procedure by re-defining G:

G := {ζ ∈ Cn : ζ ̸= 0, ζ∗Skζ ≤ 0,∀S ∈ S}

where:

S :=
{

m∑
k=1

τkSk : τk > 0,∀k = 1, . . . ,m
}

In the following, Iwasaki et al. show the conditions on S for which the S-procedure is “exact” or “non-conservative” (i.e.:
Equation O.8 is necessary and sufficient for Equation O.7).

First, Iwasaki et al. define loss-less sets [241, Section 2]:

Definition 1: S ∈ Hn×n is said to be loss-less if:

1. S is convex

2. S ∈ S ⇒ τS ∈ S,∀τ > 0

3. For each non-zero matrix H ∈ Cn×n such that

H = H∗ ⪰ 0, trace (SH) ≤ 0,∀S ∈ S

there exist vectors ζk ∈ Cn, k = 1, . . . , r such that

H =
r∑

k=1
ζkζ
∗
k and ζ∗kSζk ≤ 0,∀S ∈ S

where r is the rank of H .

and give an alternative version of the separating hyperplane theoremd:

Lemma 1 : Let X be a convex subset of Cm, and F : X → Cn×n be a Hermitian-valued affine function, then the following
statements are equivalent:

1. The set {x : x ∈ X , F (x) < 0} is empty.

2. ∃ non-zero H = H∗ ⪰ 0 such that trace (F (x)H) ≥ 0,∀x ∈ X .

bAlso see Section B.7.3
cIn this context, the logical statement S → N means that N is necessary for S and that S is sufficient for N.
dSee Section B.7.2.

825

Iwasaki et al. [241, Theorem 1] now prove that their generalised S-procedure is exact if S is loss-less:

Theorem 1 (Generalised S-procedure) : Let a Hermitian matrix, Θ, and a subset, S, of the Hermitian matrixes be given.
Suppose S is loss-less, then the following statements are equivalent:

1. ζ∗Θζ < 0,∀ζ ∈ G := {ζ ∈ Cn : ζ ̸= 0, ζ∗Skζ ≤ 0,∀S ∈ S}.

2. There exists S ∈ S such that Θ ≺ S.

Proof : The first statement follows from the second. The converse is proved by contradiction. Assume that there is no S ∈ S
such that Θ ≺ S. Then, from Lemma 1, there is a non-zero matrix, H , such that:

H = H∗ ⪰ 0, trace ((Θ− S)H) ≥ 0, ∀S ∈ S

Since S is lossless, from the second property of Definition 1:

trace (SH) ≤ 0,∀S ∈ S, trace (ΘH) ≥ 0

The first condition implies the existence of vectors ζk so that:

trace (ΘH) =
r∑

k=1
ζ∗kΘζk ≥ 0

Hence there exists ζk so that ζ∗kΘζ ≥ 0. Noting that ζk ∈ G, the first statement does not hold.

O.1.2 A finite-frequency continuous-time KYP lemma

Iwasaki et al. [241, Section 3] now define the set G as:

G :=
{[

f
g

]
∈ C2n : f = ıωg, ω ∈ R, |ω| ≤ ω0

}
where ω0 is a given real scalar. Iwasaki et al. [241, Lemma 2] prove the following lemmae:

Lemma 2 : Let a real scalar ω0 and complex vectors f and g be given, then the following statements are equivalent:

1. There exists a real scalar ω such that f = ıωg, |w| ≤ ω0.

2.
[
f
g

]∗ [
Q P
P −ω2

0Q

] [
f
g

]
≤ 0,∀P,Q ∈ H and Q ≻ 0

Proof : Suppose the first statement holds. Then:[
f
g

]∗ [
Q P
P −ω2Q

] [
f
g

]
=
(
ω2 − ω2

0
)

(g∗Qg) ≤ 0

so that the second statement holds. Conversely, if the second statement holds, then:

trace
(
ff∗ − ω2

0gg
∗)Q+ trace (gf∗ + fg∗)P ≤ 0

holds for all P = P ∗ and Q = Q∗ ≻ 0. This implies

ff∗ − ω2
0gg
∗ ⪯ 0

gf∗ + fg∗ ≤ 0

Iwasaki et al. claim that the first statement now follows from Lemma III.4 of Meinsma et al. [59].

eFrom Meinsma et al. [59]:
Lemma III.4 (Three Little Lemmas) : Let f , g be two column vectors of the same dimension.

1. (f − g) (f − g)∗ is Hermitian and ⪰ 0 if-and-only-if g = δf for some δ ∈ [−1, 1].
2. The Hermitian part of (f − g) (f − g)∗ is ⪰ 0 if-and-only-if g = δf for some δ ∈ C with |δ| ≤ 1.

3. ℜ [trace (f − g) (f − g)∗] = ∥f∥2 − ∥g∥2. Hence ℜ [trace (f − g) (f − g)∗] ≥ 0 if-and-only-if g = ∆f for some matrix ∆ with ∥∆∥ ≤ 1.

826

Next, Iwasaki et al. [241, Lemma 3,Section 5] prove the following lemma:

Lemma 3 : Let a scalar ω0 > 0 and a matrix F ∈ C2n×k be given. Define a subset of Hermitian matrixes by:

S :=
{
F ∗
[
Q P
P −ω2

0Q

]
F : P = P ∗, Q = Q∗ ≻ 0

}
Then the set S is loss-less.

Iwasaki et al. [241, Theorem 2] now state a KYP lemma generalised to a finite frequency domain:

Theorem 2 : Let a scalar ω0 > 0 and matrixes A ∈ Cn×n and B ∈ Cn×m and a Hermitian matrix Θ ∈ C(n+m)×(n+m) be
given. Assume that A has no eigenvalues on the imaginary axis, then the following statements are equivalent:

1. This finite frequency condition holds:[
(ıωI −A)−1

B
I

]∗
Θ
[

(ıωI −A)−1
B

I

]
< 0,∀|ω| ≤ ω0

2. There exist Hermitian matrixes P,Q ∈ Cn×n such that Q ≻ 0 and[
A B
I 0

]∗ [−Q P
P ω2

0Q

] [
A B
I 0

]
+ Θ ≺ 0

If matrixes A, B and Θ are real, then the equivalence still holds when restricting P and Q to be real.

Proof : The first statement holds if-and-only-if

ζ∗Θζ < 0,∀ζ ∈ G

where

G :=
{[

x
u

]
∈ Cn+m : u ̸= 0, ıωx = Ax+Bu for some ω ∈ R, |ω| ≤ ω0

}
Defining [

f
g

]
:= F

[
x
u

]
, F :=

[
A B
I 0

]
and applying Lemma 2, the set G can be characterised as

G = {ζ ̸= 0 : ζ∗Sζ ≤ 0,∀S ∈ S}

where

S :=
{
F ∗
[
Q P
P −ω2

0Q

]
F : P = P ∗, Q = Q∗ ≻ 0

}
From Lemma 3, the set S is loss-less and hence the S-procedure in Theorem 1 yields statements (1)⇔ (2).

To prove the real case result, assume that there exist complex Hermitian matrixes P and Q satisfying the first statement.
Then:

(M + ıN) = (M + ıN)∗ ≻ 0⇔
[
M −N
N M

]
=
[
M −N
N M

]⊤
≻ 0

holds for any real square matrixes M and N , one can show that the real parts of P and Q also satisfy the statement.

Iwasaki et al. [241] prove two corollaries to Theorem 2. The first shows how to extend Theorem 2 to an arbitrary finite frequency

827

interval by a change of variables. For a bandpass response ω1 ≤ ω ≤ ω2 define a new variable ω̂, such that |ω̂| ≤ ωm where:

ωm = ω2 − ω1

2
ωc = ω1 + ω2

2
ω̂ = ω − ωc

ıωI = ıω̂I − Â
Â = A− ıωcI

The LMI becomes: [
A B
I 0

]∗ [−Q P + ıωcQ
P − ıωcQ −ω1ω2Q

] [
A B
I 0

]
+ Θ ≺ 0

This can be seen by multiplying out the LMI:[
Â B
I 0

]∗ [−Q P
P ω2

mQ

] [
Â B
I 0

]
= ...[

−Â∗QÂ+ PÂ+ Â∗P + ω2
mQ −Â∗QB + PB

−B∗QÂ+B∗P −B∗QB

]
= ...[

− (A− ıωcI)∗Q (A− ıωcI) + P (A− ıωcI) + (A− ıωcI)∗ P + ω2
mQ − (A− ıωcI)∗QB + PB

−B∗Q (A− ıωcI) +B∗P −B∗QB

]
= ...[

−A∗QA+A∗ (P + ıωcQ) + (P − ıωcQ)A+
(
ω2

m − ω2
c

)
Q −A∗QB + (P − ıωcQ)B

−B∗QA+B∗ (P + ıωcQ) −B∗QB

]

The second corollary shows how to express the Linear Matrix Inequality (LMI) of Theorem 2 in terms of real matrixes that
represent the real and imaginary parts of P and Q.

828

O.2 Iwasaki and Hara’s generalised KYP lemma for discrete-time systems

Iwasaki and Hara [231] prove a generalised KYP lemma for discrete-time systems by first making a frequency transformation in
the complex plane from the unit-circle to the imaginary axis and then applying the continuous-time KYP lemma.

Cheng [38] shows proofs of the discrete- and continuous-time KYP lemmas by the properties of the dual problems.

O.2.1 Frequency transformations in the complex plane

Iwasaki and Hara [231, Section 2.1] review transformations of frequency variables in the complex plane.

The quadratic function σ : C×H2×2 → R is defined as:

σ (λ,Π) :=
[
λ
I

]∗
Π
[
λ
I

]

Note that

σ

(
s,

[
0 1
1 0

])
= 0

implies s∗ + s = 0 or s ∈ ıR. Similarly,

σ

(
z,

[
1 0
0 −1

])
= 0

implies z∗z = 1 or z = eıϕ.

A frequency variable transformation T : C→ C is defined by

T (s) := b− ds
cs− a

M :=
[
a b
c d

]
where M ∈ C2×2 and s ∈ C. The following lemma shows how T transforms a region of the complex plane:

Lemma 1 [231, Lemma 1]: Given Ω, Σ ∈ H2×2 and M ∈ C2×2, define:

S := {s ∈ C : σ (s,Ω) = 0, σ (s,Σ) ≥ 0}
Λ := {λ ∈ C : σ (λ,M∗ΩM) = 0, σ (λ,M∗ΣM) ≥ 0}

then:

{λ ∈ C : λ ∈ Λ, cλ+ d ̸= 0} = {T (s) ∈ C : s ∈ S, cs ̸= a}

The lemma is proved for arbitrary Ω by multiplying out σ (λ,M∗ΩM). For the right-hand side:

M

[
λ
1

]
=
[
aλ+ b
cλ+ d

]

Dividing by cλ+ d and solving for s gives λ = T (s).

The following lemma gives a state space formula for systems obtained through the frequency transformation T of continuous-
time systems:

829

Lemma 2 [231, Lemma 2]: Let A ∈ Cn×n, B ∈ Cn×m, M ∈ C2×2 be given. Suppose M is non-singular and A has no
eigenvalues, λ, such that:

σ

(
λ,M∗

[
0 1
1 0

]
M

)
= 0

then det (dI + cA) ̸= 0 and the following matrixes are well defined:[
A B
C D

]
:=
[

(bI + aA) Γ (ad− bc) ΓB
Γ −cΓB

]
Γ := (dI + cA)−1

In this case, we have:

det (sI −A) ̸= 0, for all s ∈ ıR
(A,B) controllable ⇒ (A,B) controllable

Moreover, for any s ∈ ıR such that cs ̸= a, both T (s) and (T (s) I −A)−1 exist and

(T (s) I −A)−1
B = C (sI −A)−1 B +D

The final result can be justified as follows. Firstly:

(T (s) I −A) =
[
b− ds
cs− a

I −A
]

= 1
cs− a

[(b− ds) I − (cs− a)A]

= 1
cs− a

[bI − dsI − csA+ aA]

= 1
cs− a

[(bI + aA)− s (dI + cA)]

= 1
cs− a

[(bI + aA) Γ− sI] Γ−1

Then:

(sI −A) C−1 (T (s) I −A)−1
B = B + (sI −A) C−1D

[sI − (bI + aA) Γ] Γ−1 (cs− a) Γ [(bI + aA) Γ− sI]−1
B = (ad− bc) ΓB − [sI − (bI + aA) Γ] Γ−1cΓB

− (cs− a) = (ad− bc) Γ− c [sI − (bI + aA) Γ]
− (cs− a) (dI + cA) = (ad− bc) I − cs (dI + cA) + c (bI + aA)

−cdsI + adI − c2sA+ acA = adI − bcI − cdsI − c2sA+ bcI + acA

O.2.2 A generalised discrete-time KYP lemma

Iwasaki and Hara [231, Section 2.2] prove the following generalised KYP lemma for discrete-time state variable systems:

Theorem 1 [231, Section 2.2]: Let complex matrixes A, B, Θ = Θ∗ and (Φ,Ψ) ∈ Ω be given where

Ω :={
(Φ,Ψ) : there exists α, β ∈ R,M ∈ C2×2 such that:

Φ = M∗
[

0 α
α 0

]
M, where α det (M) ̸= 0,

Ψ = M∗
[
−1 β
β 1

]
M

}

(O.9)

830

Define

Λ := {λ ∈ C : σ (λ,Φ) = 0, σ (λ,Ψ) ≥ 0} (O.10)

Suppose (A,B) is controllable and that A has no eigenvalues, λ, such that σ (λ,Φ) = 0. Then the following statements are
equivalent:

1. The following frequency domain condition holds for all λ ∈ Λ:[
(λI −A)−1

B
I

]∗
Θ
[

(λI −A)−1
B

I

]
≤ 0 (O.11)

2. There exist Hermitian matrixes P and Q ⪰ 0 such that:[
A B
I 0

]∗
L (P,Q)

[
A B
I 0

]
+ Θ ⪯ 0 (O.12)

where L (P,Q) = Φ⊗ P + Ψ⊗Q.

Proof : Equation O.11 holds for all λ ∈ Λ such that cλ+ d ̸= 0. By Lemma 1, the condition is equivalent to:[
(T (s) I −A)−1

B
I

]∗
Θ
[

(T (s) I −A)−1
B

I

]
≤ 0

for all s ∈ S such that cs ̸= a where:

S := {ıω : ω ∈ R, |ω| ≤ 1}

From Lemma 2: [
C (sI −A)−1 B +D

I

]∗
Θ
[
C (sI −A)−1 B +D

I

]
≤ 0

where: [
C (sI −A)−1 B +D

I

]
=
[
C D
0 I

] [
(sI −A)−1 B

I

]

Lemma 2 also implies thatA has no eigenvalues on ıR and that (A,B) is controllable. The continuous time finite frequency
KYP lemma implies that this condition is equivalent to the existence of Hermitian matrixes X and Q ⪰ 0 such that:[

A B
I 0

]∗ [−Q X
X Q

] [
A B
I 0

]
+
[
C D
0 I

]∗
Θ
[
C D
0 I

]
⪯ 0

The result follows by noting that:[
A B
I 0

] [
C D
0 I

]−1
=
[
aI bI
cI dI

] [
A B
I 0

]
= (M ⊗ I)

[
A B
I 0

]
where: [

C D
0 I

]−1
=
[

Γ−1 cΓB
0 I

]
and: [

aI bI
cI dI

]∗ [−Q X
X Q

] [
aI bI
cI dI

]
= (Φ⊗ P + Ψ⊗Q)

with:

P := X − βQ
α

831

The Octave script yalmip_kyp_check_iir_lowpass_test.m uses the generalised KYP lemma to check the frequency response of
various implementations of an elliptic low-pass filter.

The Octave script schurOneMPAlatticeDoublyPipelined2Abcd_kyp_symbolic_test.m shows the KYP lemma for an IIR filter im-
plemented as the combination of parallel doubly pipelined all pass one multiplier Schur lattice filters.

Characterisation of Ω

Iwasaki and Hara [231, Section 2.3] next consider the choice of α, β and M such that (Φ,Ψ) ∈ Ω. First they state the following
lemmas:

Lemma 3: Let N ∈ C2×2 and γ ∈ R be given such that det (N) ̸= 0. Then:

N∗
[

0 1
1 0

]
N =

[
0 γ
γ 0

]
holds if-and-only-if N ∈Nγ , where:

Nγ :=
{
J∗FJeıω : F ∈ R2×2, ω ∈ R,det (F) = γ

}
J :=

[
1 0
0 ı

]

Proof : Choose an arbitrary F =
[
p q
r s

]
, substitute and multiply out.

Lemma 4: Let Φ ∈ H be given such that det (Φ) < 0. Then the set of all α ∈ R and M ∈ C2×2 such that:

Φ = M∗
[

0 α
α 0

]
M

is parameterised by

M = NK, N ∈Nγ

where γ := 1
α and K is an arbirary matrix satisfying

Φ = K∗
[

0 1
1 0

]
K (O.13)

Lemma 5: Given Υ ∈ H, there exists β, γ ∈ R and N ∈Nγ , such that γ ̸= 0 and

N∗
[
−1 β
β 1

]
N = Υ

if-and-only-if Υ ∈ Υ := {Υ ∈ H : det (ℜ [JΥJ∗]) < 0}.

Proof : For the previously defined F and γ, multiplying out gives det (ℜ [JΥJ∗]) = −βγ2

Lemma 6: Let Φ,Ψ ∈ H, then (Φ,Ψ) ∈ Ω if-and-only-if:

det (Φ) ≤ 0, det (Ψo) ≤ 0

hold where:

Ψo :=ℜ
[
(JK)−∗Ψ (JK)−1

]

832

where K is an arbitrary matrix as in Equation O.13.

Proof : Note that, by Lemma 4, det (Φ) is negative if (Φ,Ψ) ∈ Ω and there exist β, γ ∈ R and N ∈ Nγ such that γ ̸= 0
and:

Ψ = (NK)∗
[
−1 β
β 1

]
(NK)

From Lemma 5, this condition is equivalent to K−∗ΨK−1 ∈ Υ.

Frequency restrictions for discrete-time filters

See Iwasaki and Hara [231, Section 3.2]. The Octave script kyp_symbolic_frequency_transformation_test.m uses the symbolic
package to confirm the following transformations of a frequency interval on the unit-circle to the imaginary axisf.

The discrete-time frequency variable z = eıω can be characterised byg:

Φ =
[

1 0
0 −1

]
σ (z,Φ) := z∗z − 1 = 0

(O.14)

and K can be chosen as:

K = 1√
2

[
1 −1
1 1

]
with:

Φo =
[

0 1
1 0

]

Low-pass The low frequency condition is :

Λdl := {eıω : ω ∈ R, |ω| ≤ ωl}

where |ω| ≤ ωl if-and-only-if z + z∗ ≥ 2 cosωl and we choose:

γ = 2 cosωl

Ψ =
[

0 1
1 −γ

]
In this case:

Ψo = 1
2

[
−2− γ 0

0 2− γ

]
and det (Ψo) < 0 if-and-only-if |γ| < 2 or 0 < ωl < π. The state space condition is:

L (P,Q) =
[
P Q
Q −P − γQ

]

High-pass The high frequency condition is :

Λdh := {eıω : ω ∈ R, ωh ≤ |ω| ≤ π}

where:

γ := 2 cosωh

fSection O.3.1 extends these results to the union of frequency intervals.
gI do not know why Iwasaki and Hara [231, p.3831] use −Φ for the low-pass and band-pass cases of L (P, Q). The only constraint on P is that it be

Hermitian. Experiments with the Octave script directFIRnonsymmetric_kyp_lowpass_test.m confirmed that Φ and −Φ produce the same filters.

833

Ψ =
[

0 −1
−1 γ

]
Ψo = 1

2

[
2 + γ 0

0 γ − 2

]
Again det (Ψo) < 0 if-and-only-if |γ| < 2 or 0 < ωh < π and the state space condition is:

L (P,Q) =
[

P −Q
−Q −P + γQ

]

Band-pass The middle frequency condition is :

Λdm := {eıω : ω ∈ R, ω1 ≤ |ω| ≤ ω2}

Alternatively:

|ω − ωc| ≤ ωm or cos (ω − ωc) ≥ cosωm

where 0 ≤ ω ≤ π and:

ωc := ω2 + ω1

2
ωm := ω2 − ω1

2
This condition can be rewritten as σ (eıω,Ψ) ≥ 0 withh:

γ := 2 cosωm

Ψ :=
[

0 eıωc

e−ıωc −γ

]
Ψo =

[
− cosωc − cosωm sinωc

sinωc cosωc − cosωm

]

In this case det (Ψo) = − sin2 ωm ≤ 0. The state space condition is:

L (P,Q) =
[

P eıωcQ
e−ıωcQ −P − γQ

]

Gain and phase

See Iwasaki and Hara [231, Section 3.1]. The gain and phase of the filter transfer function, H (λ) := C (λI −A)−1
B +D, are

determined by the choice of the Θ matrix in Equation O.11. As for Equation O.4:

Θ =
[
C D
0 I

]∗
Π
[
C D
0 I

]
(O.15)

Equation O.11 now becomes: [
H (λ)
I

]∗
Π
[
H (λ)
I

]
≤ 0

For example, if |H (λ)| ≤ ε:

Π =
[
I 0
0 −ε2I

]

Linearising the generalised discrete-time KYP lemma

The expansion of Θ in Equation O.15 is bi-linear in the C and D state variable matrixes. Iwasaki and Hara [232, Section VII,
p.52] add a lemma:

hNote the correction to Ψo, demonstrated in the Octave script kyp_symbolic_frequency_transformation_test.m.

834

Lemma 8: For a transfer function H (λ) = C (λI −A)−1
B + D, with m inputs and p outputs, σ (H (λ) ,Π) ≤ 0 for all

λ ∈ Λ holds if-and-only-if there exist Hermitian matrices P and Q ⪰ 0 such that[
Γ (P,Q,A,B,C,D) [C D]∗Π∗11

Π11 [C D] −Π∗11

]
⪯ 0 (O.16)

holds, where the matrix Π ∈ Hm+p is such that

Π =
[

Π11 Π12
Π∗12 Π22

]
, Π11 ∈ Hp and Π11 ⪰ 0

and

Γ (P,Q,A,B,C,D) =
[
A B
I 0

]∗
(Φ⊗ P + Ψ⊗Q)

[
A B
I 0

]
+
[

0 C∗Π12
Π∗12C D∗Π12 + Π∗12D + Π22

]

This lemma follows from the generalised discrete-time KYP theorem shown in Section O.2.2. Multiplying out Θ:

Θ =
[
C D
0 I

]∗
Π
[
C D
0 I

]
=
[
C∗ 0
D∗ I

] [
Π11 Π12
Π∗12 Π22

] [
C D
0 I

]
=
[

C∗Π11 C∗Π12
D∗Π11 + Π∗12 D∗Π12 + Π22

] [
C D
0 I

]
=
[

C∗Π11C C∗Π12 + C∗Π11D
Π∗12C +D∗Π11C D∗Π11D +D∗Π12 + Π∗12D + Π22

]
=
[

0 C∗Π12
Π∗12C D∗Π12 + Π∗12D + Π22

]
+
[
C∗Π11C C∗Π11D
D∗Π11C D∗Π11D

]
=
[

0 C∗Π12
Π∗12C D∗Π12 + Π∗12D + Π22

]
+
[
C D

]∗Π11
[
C D

]
If Π ∈ Hp, Π11 is invertible, and Π11 ⪰ 0 then the lemma is demonstrated by applying the Schur complementi to:

Γ (P,Q,A,B,C,D)−
(
Π11

[
C D

])∗ (−Π−∗11
) (

Π11
[
C D

])
⪯ 0

O.2.3 Examples of FIR filter design with the generalised KYP lemma

The Octave script directFIRnonsymmetric_kyp_lowpass_alternate_test.m experiments with various combinations of constraints
and objective functions. I concluded that the best approach is to optimise with an empty objective function and amplitude
constraints found by trial and error.

Preliminaries

Frequency response The frequency response of an order n single-input-single-output FIR filter is:

H (ω) =
n∑

k=0
hke
−ıkω

State variable description For direct-form FIR filter implementations, theA andB matrixes are constant representations of the
successive delays and the C and D matrixes represent the impulse response response coefficients. The state variable description
is:

[
A B
C D

]
=

[

0(n−1)×1 In−1
0 01×(n−1)

] [
0(n−1)×1

1

]
[
hn . . . hd −∆ . . . h1

]
[h0]

where the desired pass band delay is d samples and the desired amplitude response is ∆ = 1 in the pass-band and ∆ = 0
otherwise.

iSee Appendix B.6.2

835

Squared error calculation The Octave function directFIRnonsymmetricEsqPW.m calculates the piece-wise weighted mean-
squared-error of the response of a non-symmetric FIR filter. Naturally, this function also applies to symmetric FIR filters. In
this case the state transition matrix A has the same order and structure for symmetric and non-symmetric direct FIR filters. The
function is described in Section N.2.

Amplitude constraints The desired response errors for each filter frequency band are encoded in the corresponding Π matrix.
For example, see Equation O.5. For a low-pass filter, the pass-band and stop-band errors are:

|H (eıω)2 −HD (eıω)|2 ≤ ε2
p 0 ≤ |ω| ≤ ωp ≤ π

|H (eıω)|2 ≤ ε2
s 0 ≤ ωs ≤ |ω| ≤ π

where εp and εs are the pass-band and stop-band errors and ωp and ωs are the pass-band and stop-band edge angular frequencies
respectively. If the desired filter pass-band delay is d samples then a constraint on the maximum pass-band response error is:

|H (eıω)− e−ıdω|2 ≤ ε2
z 0 ≤ |ω| ≤ ωp ≤ π

This constraint is implemented by modifying the C state variable matrix to subtract the response of a delayed input signal from
the response of the desired filter.

A constraint on the maximum pass-band amplitude is:

|H (eıω)|2 ≤ A2
p 0 ≤ |ω| ≤ ωp ≤ π

An additional specification prevents over-shoot in the transition band:

|H (eıω)|2 ≤ A2
t 0 ≤ ωp ≤ |ω| ≤ ωs ≤ π

Alternatively, apply an overall maximum amplitude constraint:

|H (eıω)|2 ≤ A2
max 0 ≤ |ω| ≤ π

The Octave script yalmip_kyp_lowpass_test.m demonstrates each of these amplitude constraints.

The minimum passband amplitude constraint for a single-input single-output filter, |H (ω)| ≥ A2
pl, cannot use Equation O.16

because it requires Π11 ⪰ 0 and in this case Π11 = −1. The Octave script yalmip_kyp_lowpass_test.m uses Equation O.12 to
check the minimum pass-band amplitude response of an FIR filter.

SDP constraints Assuming Ψ11 = 0, Ψ∗21 = Ψ12, Π11 = 1 and Π21 = Π12 = 0, then for each frequency band response
constraint: [

A B
I 0

]∗ [
P Ψ12Q

Ψ∗12Q −P + Ψ22Q

] [
A B
I 0

]
+
[
C D

]∗ [1 0
0 Π22

] [
C D

]
⪯ 0 (O.17)

where P , Q are Hermitian and Q ⪰ 0. For an FIR filter, the unknown variables are P , Q, C and D. Pipeleers and Vande-
berghe [60] show that if the A, B and Θ matrixes are real valued then the P and Q matrixes can be constrained to be real and
symmetric.

Solving the generalised KYP lemma with a rank-1 constraint Equation O.17 has the form Γ + X ⪯ 0 and the FIR filter
coefficients are represented by the rank-1 matrix X =

[
C D

]⊤ [
C D

]
.

The Octave script yalmip_kyp_lmirank_lowpass_test.m calls the YALMIP [106, 99] lmirank [211, 199] solver to design a sym-
metric low-pass FIR filter with a rank-1 SDP constraint. After running on my PC for 1276 minutes the script had performed 694
iterations and was still converging very slowly.

Similarly, the Octave script yalmip_kyp_moment_lowpass_test.m calls the YALMIP moment solver with a rank-1 constraint on
the minimum pass-band amplitude. This script requires an enormous amount of memory and CPU time to design a symmetric
6-th order low-pass FIR filter.

Kheirandishfard et al. [152, 153, 154] describe a successive approximation algorithm that relaxes rank-1 constraints to LMIs.
The Octave script yalmip_parabolic_convex_bmi_test.m shows some examples of this approach.

836

Design of a symmetric low pass FIR filter

The Octave script directFIRsymmetric_kyp_lowpass_test.m designs a symmetric FIR low-pass filter with YALMIP [106, 99] and
SeDuMi. The YALMIP objective is empty. The YALMIP constraints for each frequency band are Equation O.16 with Q ⪰ 0.
The C matrix of the state variable description for the pass-band constraint is modified to subtract a signal delayed by M samples.

The filter specification is:

M=27 % Filter order is 2*M
fap=0.15 % Amplitude pass band edge
fas=0.2 % Amplitude stop band edge
Esq_z=8.1241e-06 % Squared pass band error from delay
Esq_s=1e-05 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 7.231e-06 and the actual maximum stop-band squared-amplitude is ε2

s = 9.1713e-06 . The resulting FIR impulse response
is:

h = [-0.0016663125, -0.0005569569, 0.0015609653, 0.0026312600, ...
0.0006608913, -0.0030961277, -0.0042912485, -0.0002069004, ...
0.0057854413, 0.0064118212, -0.0011565221, -0.0099072345, ...
-0.0088172400, 0.0040467024, 0.0159839114, 0.0112961708, ...
-0.0095006723, -0.0250744643, -0.0136006681, 0.0197719320, ...
0.0400835388, 0.0154766519, -0.0421443472, -0.0730442956, ...

-0.0166990048, 0.1272992063, 0.2831703033, 0.3504662325, ...
0.2831703033, 0.1272992063, -0.0166990048, -0.0730442956, ...

-0.0421443472, 0.0154766519, 0.0400835388, 0.0197719320, ...
-0.0136006681, -0.0250744643, -0.0095006723, 0.0112961708, ...
0.0159839114, 0.0040467024, -0.0088172400, -0.0099072345, ...

-0.0011565221, 0.0064118212, 0.0057854413, -0.0002069004, ...
-0.0042912485, -0.0030961277, 0.0006608913, 0.0026312600, ...
0.0015609653, -0.0005569569, -0.0016663125];

Figure O.1 shows the amplitude response. The filter satisfies the constraints with no numerical problems.

For comparison, Figure O.2 shows a similar filter response designed by the mcclellanFIRsymmetric function described in Sec-
tion N.5.3. The filter specification is:

M=27 % Filter order is 2*M
fap=0.15 % Amplitude pass band edge
fas=0.2 % Amplitude stop band edge
K=1 % Stop band weight
nplot=1000 % Number of frequency grid points in [0,0.5]

The distinct coefficients of the resulting FIR impulse response are:

hM = [-0.0018633756, -0.0002139049, 0.0018111824, 0.0028130119, ...
0.0007334626, -0.0030552469, -0.0041338503, 0.0000887765, ...
0.0060387798, 0.0064314682, -0.0013291704, -0.0100048502, ...
-0.0086422499, 0.0043759605, 0.0161393443, 0.0111171873, ...
-0.0097989762, -0.0251216717, -0.0132991064, 0.0201144849, ...
0.0400884282, 0.0151356005, -0.0424406434, -0.0729432755, ...
-0.0162996088, 0.1275552885, 0.2829933607, 0.3500575486]';

837

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

N=54,d=27,fap=0.15,Esq_z=8.1241e-06,fas=0.20,Esq_s=1e-05

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-55

-50

-45

-40

Figure O.1: Amplitude response of a symmetric FIR low pass filter designed with the KYP lemma. See Iwasaki and Hara [232,
Section VII.B.2, pp. 53-55].

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

McClellan lowpass FIR: M=27,fap=0.15,fas=0.2,K=1,rho=-0.00263836

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-60

-55

-50

-45

-40

Figure O.2: Amplitude response of a symmetric FIR low pass filter designed with the Parks-McClellan algorithm.

838

Design of a non-symmetric low pass FIR filter with given pass band delay

As an example, Iwasaki and Hara [232, Section VII.B.2, pp. 53-55] describe the design of a low-pass FIR filter with order
N = 30 and a nominal pass-band group delay of d = 10 samples, ωp = 0.3π and ωs = 0.4π, εs = 0.01. They optimised
the zero-phase pass-band sqared-error, |H (ω) − e−jωd|2 < ε2

z and found ε2
z = 0.0569j. The Octave script directFIRnonsym-

metric_kyp_lowpass_test.m designs a similar filter with YALMIP [106, 99] and SeDuMi. The YALMIP objective is empty. The
YALMIP constraints for each frequency band are Equation O.16 with Q ⪰ 0k. The C matrix of the state variable description for
the pass-band constraint is modified to subtract a signal delayed by d samples.

The filter specification is:

N=30 % FIR filter order
d=10 % Nominal FIR filter delay
fap=0.15 % Amplitude pass band edge
fas=0.2 % Amplitude stop band edge
Esq_z=0.00567 % Squared pass band error from delay
Esq_s=0.0001 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay

is ε2
z = 0.00566258 and the actual maximum stop-band squared-amplitude is ε2

s = 0.00009970 . The resulting FIR impulse
response is:

h = [-0.0008739628, 0.0164442967, 0.0341368296, 0.0365351166, ...
0.0084233754, -0.0378224961, -0.0579627953, -0.0056519543, ...
0.1223672254, 0.2670300828, 0.3399958593, 0.2893246897, ...
0.1434323887, -0.0075528889, -0.0800716260, -0.0574366632, ...
0.0079436071, 0.0474642917, 0.0335721892, -0.0077203383, ...
-0.0322780202, -0.0213933925, 0.0069364396, 0.0226280730, ...
0.0139426422, -0.0057591371, -0.0160689036, -0.0099024981, ...
0.0033706187, 0.0105515144, 0.0110751172];

Figure O.3 shows the amplitude and group delay response. The filter satisfies the constraints with no numerical problems.

Design of a non-symmetric FIR band pass filter with given pass band delay

The Octave script directFIRnonsymmetric_kyp_bandpass_test.m uses the generalised KYP lemma of Iwasaki and Hara to design
a band pass FIR filter with YALMIP and SeDuMi. The YALMIP objective is empty. The YALMIP constraints for each frequency
band are Equation O.16 with Q ⪰ 0. The C matrix of the state variable description for the pass-band constraint is modified to
subtract a signal delayed by d samples. The filter specification is:

N=30 % FIR filter order
d=10 % Nominal FIR filter delay
fasl=0.1 % Amplitude stop band lower edge
fapl=0.175 % Amplitude pass band lower edge
fapu=0.225 % Amplitude pass band upper edge
fasu=0.3 % Amplitude stop band upper edge
Esq_z=4.67e-05 % Squared amplitude pass band - delay error
Esq_s=0.0001 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 0.00004622 . The resulting FIR impulse response is:

jThis is probably a typo and should read, in my notation, ε2
z = 0.00569. I suspect that Iwasaki and Hara made ε2

z a YALMIP SDP variable with the
constraint ε2

z ≤ 0.00569 and an empty objective.
kThe Octave script directFIRnonsymmetric_kyp_lowpass_alternate_test.m experiments with constraints on ε2

z or ε2
s , with an empty objective or with the

objective set to the sum of the pass-band squared-error. It seems that it is best to optimise with an empty objective and with fixed constraints on εz and εs

found by trial-and-error. Konopacki and Mościńska [97, Equation 5] show an estimate of the attenuation of a low-pass non-symmetric FIR filter when the
pass and stop band errors are equal. For the example of Iwasaki and Hara the estimated stop-band attenuation is 42dB. For comparison, the Octave script
directFIRnonsymmetric_socp_slb_lowpass_test.m, described in Section N.4.2, designs a similar filter using SOCP PCLS optimisation.

839

0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

A
m

pl
itu

de
(d

B
)

N=30,d=10,fap=0.15,fas=0.20,Esq_z= 0.00567,Esq_s= 0.0001

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

0 0.1 0.2 0.3 0.4 0.5
9

9.5

10

10.5

11

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.3: Amplitude response of a non-symmetric FIR low pass filter designed with the KYP lemma. See Iwasaki and
Hara [232, Section VII.B.2, pp. 53-55].

h = [-0.0104143949, -0.0023682483, 0.0032719791, -0.0069032395, ...
0.0099100648, 0.0630395379, 0.0323190391, -0.1185517528, ...
-0.1553404297, 0.0708049785, 0.2578895336, 0.0833677118, ...
-0.2119296948, -0.1909550140, 0.0609505534, 0.1436758056, ...
0.0264655996, -0.0289757088, 0.0074300619, -0.0125615250, ...
-0.0581536028, -0.0188770460, 0.0442642640, 0.0320711422, ...
-0.0079897003, -0.0077190647, 0.0013262161, -0.0103678247, ...
-0.0123694529, 0.0037079875, 0.0107180320];

As shown in Section N.1, the complementary FIR lattice reflection coefficients are:

k = [0.99984130, 0.99993213, 0.99949924, 0.99898912, ...
0.99993604, 0.99892181, 0.99994837, 0.99999003, ...
0.99905269, 0.99976686, 0.98961334, 0.99761968, ...
0.99052500, 0.99134934, 0.99977155, 0.99984184, ...
0.99807139, 0.96873149, 0.91782544, 0.98563404, ...
0.80792756, 0.98751343, 0.92625402, 0.97087760, ...
0.99752953, 0.99617962, 0.99997130, 0.99995415, ...
0.99985791, 0.99995704, -0.01731041]';

kc = [-0.01781495, -0.01165050, 0.03164275, 0.04495269, ...
-0.01131020, -0.04642426, -0.01016108, -0.00446454, ...
-0.04351701, 0.02159226, 0.14375481, 0.06895637, ...
-0.13733253, -0.13124968, 0.02137398, -0.01778461, ...
-0.06207655, 0.24811145, 0.39698420, -0.16889507, ...
-0.58928181, -0.15753485, 0.37689985, 0.23957604, ...
-0.07024833, -0.08732797, -0.00757643, -0.00957607, ...
-0.01685723, 0.00926906, 0.99985016]';

Figure O.4 shows the amplitude, phase and group delay responses. The pass band phase error shown is adjusted for the nominal
delay.

840

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

A
m

pl
itu

de
(d

B
)

N=30,d=10,fasu=0.100,fapl=0.175,fapu=0.225,fasu=0.300,Esq_z=0.00004670,Esq_s=0.0001

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.03

-0.02

-0.01

0

0 0.1 0.2 0.3 0.4 0.5
-0.004
-0.002

0
0.002
0.004

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
9.8
10

10.2
10.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.4: Amplitude, phase and group delay responses of a non-symmetric FIR band pass filter designed with the KYP lemma.
The pass band phase error shown is adjusted for the nominal delay.

Design of a non-symmetric FIR band pass Hilbert filter with given pass band delay

The Octave script directFIRnonsymmetric_kyp_bandpass_hilbert_test.m uses the generalised KYP lemma of Iwasaki and Hara
to design a band pass FIR Hilbert filter with with YALMIP and SeDuMi. The YALMIP objective is empty. The YALMIP
constraints for each frequency band are Equation O.16 with Q ⪰ 0. The C matrix of the state variable description for the
pass-band constraint is modified to subtract a signal delayed by d samples. The filter specification is:

N=40 % FIR filter order
d=10 % Nominal FIR filter delay
fasl=0.1 % Amplitude stop band lower edge
fapl=0.175 % Amplitude pass band lower edge
fapu=0.225 % Amplitude pass band upper edge
fasu=0.3 % Amplitude stop band upper edge
Esq_z=2.351e-05 % Squared amplitude pass band - delay error
Esq_s=0.0001 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 0.00002318 . The resulting FIR impulse response is:

h = [0.0015805498, -0.0120066884, -0.0035827587, -0.0030951814, ...
-0.0242644072, -0.0002086174, 0.0909872565, 0.0836755824, ...
-0.1115995219, -0.2218415718, 0.0001074005, 0.2672488756, ...
0.1622363410, -0.1479375956, -0.1976107417, 0.0002255810, ...
0.0852731996, 0.0175125952, 0.0124236579, 0.0542103352, ...
-0.0003322636, -0.0751000458, -0.0396066354, 0.0281585726, ...
0.0228068395, 0.0000754434, 0.0147524619, 0.0148131467, ...
-0.0168256666, -0.0238054300, 0.0001435084, 0.0093521191, ...
0.0013350321, 0.0019242884, 0.0056596380, -0.0001113898, ...
-0.0049750072, -0.0018590103, 0.0008309413, -0.0001250316, ...
0.0001739622];

Figure O.5 shows the amplitude, phase and group delay responses. The pass band phase shown is adjusted for the nominal delay.

841

0 0.1 0.2 0.3 0.4 0.5
-50

-45

-40

-35

-30

A
m

pl
itu

de
(d

B
)

N=40,d=10,fasu=0.100,fapl=0.175,fapu=0.225,fasu=0.300,Esq_z=0.00002351,Esq_s=0.0001

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.03

-0.02

-0.01

0

0 0.1 0.2 0.3 0.4 0.5
1.498
1.499

1.5
1.501
1.502

Ph
as

e(
ra

d.
/π

)

0 0.1 0.2 0.3 0.4 0.5
9.6
9.8
10

10.2
10.4

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.5: Amplitude, phase and delay responses of a non-symmetric FIR band pass Hilbert filter designed with the KYP
lemma. The pass band phase shown is adjusted for the nominal delay.

Design of a non-symmetric high pass FIR filter with given pass band delay

The Octave script directFIRnonsymmetric_kyp_highpass_test.m designs a high-pass filter with YALMIP and SeDuMi. The
YALMIP objective is empty. The YALMIP constraints for each frequency band are Equation O.16 with Q ⪰ 0. The C matrix
of the state variable description for the pass-band constraint is modified to subtract a signal delayed by d samples. The filter
specification is:

N=30 % FIR filter order
d=10 % Nominal FIR filter delay
fas=0.15 % Amplitude stop band edge
fap=0.2 % Amplitude pass band edge
Esq_max=1 % Maximum overall squared amplitude
Esq_z=0.00558 % Squared amplitude pass band error from delay
Esq_s=0.0001 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 0.00557280 . The resulting FIR impulse response is:

h = [-0.0045825352, 0.0366768451, -0.0153827183, -0.0294813114, ...
-0.0162397525, 0.0277250218, 0.0611649083, 0.0216628149, ...
-0.1115244180, -0.2636171081, 0.6221374979, -0.2922988982, ...
-0.1264764867, 0.0268274527, 0.0839883189, 0.0416028249, ...
-0.0269685198, -0.0480611381, -0.0142322338, 0.0132827072, ...
0.0414623810, 0.0065629447, -0.0258400656, -0.0203958772, ...
0.0025293169, 0.0177805595, 0.0121693140, -0.0046190103, ...
-0.0178807973, -0.0014015693, 0.0133257264];

Figure O.6 shows the amplitude and delay responses.

842

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

A
m

pl
itu

de
(d

B
)

N=30,d=10,fap=0.20,fas=0.15,Esq_z=0.00558000,Esq_s=0.0001

0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5
8

9

10

11

12

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.6: Amplitude response of a non-symmetric FIR high pass filter designed with the KYP lemma.

843

O.2.4 Rantzer’s transformation of the KYP lemma from discrete-time to continuous-time

Rantzer [10, Proof of Theorem 2] shows an alternative transformation of the KYP lemma from discrete-time to continuous-time
by parameterising the unit circle with (1 + ıω) / (1− ıω) rather than eıω . Multiplying out:[

1 + ıω

1− ıω I −A
]
x = Bu

[ıω (A+ I)− (A− I)]x+ ıωB = Bu[
ıωI − (A− I) (A+ I)−1

]
(A+ I)x+ ıωB = Bu[

ıωI − (A− I) (A+ I)−1
]

(Ix+Ax+Bu) =
[
I − (A− I) (A+ I)−1

]
Bu[

ıωI − (A− I) (A+ I)−1
]

(Ix+Ax+Bu) = [(A+ I)− (A− I)] (A+ I)−1
Bu[

ıωI − (A− I) (A+ I)−1
]

(Ix+Ax+Bu) = 2 (A+ I)−1
Bu

Rantzer introduces:

Â = (A− I) (A+ I)−1

B̂ = 2 (A+ I)−1
B

x̂ = Ix+Ax+Bu

S =
[

(A+ I)−1 − (A+ I)−1
B

0 I

]
Θ̂ = S⊤ΘS
P̂ = P/2

The corresponding frequency domain condition is:[(
ıωI − Â

)−1
B̂

I

]∗
Θ̂
[(

ıωI − Â
)−1

B̂

I

]
≤ 0

which the continuous-time KYP lemma tells us is equivalent to:[
Â⊤P̂ + P̂ Â P̂ B̂

B̂⊤P̂ 0

]
+ Θ̂ ⪯ 0

for some symmetric real P̂ . Multiplying by
[
A+ I B

0 I

]
on the right and its transpose on the left gives:

[
A+ I B

0 I

]⊤ [
Â⊤P̂ + P̂ Â P̂ B̂

B̂⊤P̂ 0

] [
A+ I B

0 I

]
+
[
A+ I B

0 I

]⊤
S⊤ΘS

[
A+ I B

0 I

]
⪯ 0 (A+ I)⊤

(
Â⊤P̂ + P̂ Â

)
(A+ I)⊤ P̂ B̂

B⊤
(
Â⊤P̂ + P̂ Â

)
+ B̂⊤P̂ B⊤P̂ B̂

[A+ I B
0 I

]
+ · · ·

[
A+ I B

0 I

]⊤ [(A+ I)−1 − (A+ I)−1
B

0 I

]⊤
Θ
[

(A+ I)−1 − (A+ I)−1
B

0 I

] [
A+ I B

0 I

]
⪯ 0 (A+ I)⊤

(
Â⊤P̂ + P̂ Â

)
(A+ I) (A+ I)⊤

(
Â⊤P̂ + P̂ Â

)
B + (A+ I)⊤ P̂ B̂

B⊤
(
Â⊤P̂ + P̂ Â

)
(A+ I) + B̂⊤P̂ (A+ I) B⊤

(
Â⊤P̂ + P̂ Â

)
B + B̂⊤P̂B +B⊤P̂ B̂

+ Θ ⪯ 0

[
(A− I)⊤ P̂ (A+ I) + (A+ I)⊤ P̂ (A− I) (A− I)⊤ P̂B + 1

2 (A+ I)⊤ P̂ (A+ I) B̂
1
2 B̂
⊤ (A+ I)⊤ P̂ (A+ I) +B⊤P̂ (A− I) 1

2 B̂
⊤ (A+ I)⊤ P̂B + 1

2B
⊤P̂ (A+ 1) B̂

]
+ Θ ⪯ 0[

2A⊤P̂A− 2P̂ 2A⊤P̂B
2B⊤P̂A 2B⊤P̂B

]
+ Θ ⪯ 0[

A⊤PA− P A⊤PB
B⊤PA B⊤PB

]
+ Θ ⪯ 0

I experiment with this conversion in the Octave script yalmip_kyp_rantzer_test.m and find that SeDuMi calculates P ≈ −2P̂ .

844

O.2.5 Finsler’s lemma transformation of the generalised KYP lemma

Ren et al. [206, Lemma 3] write Finsler’s lemma in LMI form as:

Lemma: Let P = P⊤ and matrix A such that A⊥A = 0 then the following statements are equivalent:

1. A⊥P
(
A⊥
)⊤ ≺ 0

2. There exists a matrix X satisfying P +AX +X⊤A⊤ ≺ 0

Ren et al. [206, Theorem 3] apply Finsler’s Lemma to the generalised KYP lemma matrix inequality shown in Equation O.12:

Theorem: Matrixes P ∈ Hn, Q ∈ Hn, Q ⪰ 0 and X ∈ Cn×n, Y ∈ Cn×n, Z ∈ Cm×n exist such that: L (P,Q) 0 0
0 −ε2Im 0
0 0 Ip

+ UV + V ∗U∗ ⪯ 0 (O.18)

where we assume that Π =
[
Ip 0
0 −ε2Im

]
and define U =

[
−In A B 0

0 C D −Im

]∗
, V =

X 0
Y 0
Z 0
0 Ip

∗

.

Recall that the state-variable system of equations has n states,m inputs and p outputs so thatA ∈ Cn×n,B ∈ Cn×m, C ∈ Cp×n,
D ∈ Cp×m, P ∈ Cn×n, Q ∈ Cn×n, L (P,Q) ∈ C2n×2n, Θ ∈ C(n+m)×(n+m), Π ∈ C(p+m)×(p+m), Π11 ∈ Cp×p and
Π22 ∈ Cm×m.

Ren et al. rewrite Equation O.12 as: A B
In 0
0 Im

∗{[L (P,Q) 0
0 0m

]
+
[

0n 0
0 Θ

]} A B
In 0
0 Im

 ⪯ 0

and define Ũ⊥ =

 A B
In 0
0 Im

∗ , Ũ =
[
−In A B

]∗
, Ṽ =

[
X∗ Y ∗ Z∗

]
.

Applying Finsler’s lemma: [
L (P,Q) 0

0 0m

]
+
[

0n 0
0 Θ

]
+ Ũ Ṽ + Ṽ ∗Ũ∗ ⪯ 0

where:

Ũ Ṽ =

 −In

A∗

B∗

 [X∗ Y ∗ Z∗
]

=

 −X∗ −Y ∗ −Z∗
A∗X∗ A∗Y ∗ A∗Z∗

B∗X∗ B∗Y ∗ B∗Z∗

Also: [

0n 0
0 Θ

]
=
[

0n 0
0

[
C D

]∗
Ip

[
C D

]]+
[

02n 0
0 −ε2Im

]
Apply the Schur complement to:[

Ũ Ṽ + Ṽ ∗Ũ∗ 0
0 0p

]
+
[

0n 0
0

[
C D

]∗
Ip

[
C D

]]

845

so that:
−X∗ −Y ∗ −Z∗ 0
A∗X∗ A∗Y ∗ A∗Z∗ C∗

B∗X∗ B∗Y ∗ B∗Z∗ D∗

0 0 0 −Ip

+

−X XA XB 0
−Y Y A Y B 0
−Z ZA ZB 0
0 C D −Ip

+
[

02n+m 0
0 Ip

]
= UV + V ∗U∗ +

[
02n+m 0

0 Ip

]

The Octave script yalmip_kyp_finsler_test.m checks Equation O.18.

The Octave script directFIRnonsymmetric_kyp_finsler_lowpass_test.m repeats the filter design of Section O.2.3 with the Finsler
transformation of the generalised KYP lemma.

O.2.6 The dual of the KYP lemma

Wallin, Vandeberghe and others note that solution of the KYP lemma by Equation O.3 is an O
(
n6) complexity problem, that

solving the dual problem reduces this to O
(
n4) and that exploiting the structure of the dual problem can reduce the complexity

further to O
(
n3) [27, 127, 205, 204, 38].

The adjoint of the discrete-time KYP linear mapping

Cheng [38] shows proofs of the continuous-time and discrete-time KYP lemmas by duality. He begins by reviewing the definition
of the adjoint of the linear mapping of a hermitian matrix. The inner product defined on the Hilbert space of n × n Hermitian
matrixes, Hn, isl:

⟨A,B⟩ = trace (A∗B) = trace (AB)

Also:

... given two Hilbert spaces V and W and a linear mapping A : V → W , the adjoint mapping of A, denoted
Aadj , is a linear mapping from W to V such that

∀x ∈ V, y ∈W, ⟨A (x) , y⟩W = ⟨x,Aadj (y)⟩V

The linear mapping associated with the discrete-time KYP lemma is D : Hn → Hn+m:

D (P) =
[
A∗PA− P A∗PB
B∗PA B∗PB

]
(O.19)

The adjoint mapping, Dadj : Hn+m → Hn, is:

Dadj (Z) = AZ11A
∗ − Z11 +BZ∗12A

∗ +AZ12B
∗ +BZ22B

∗

where

Z =
[
Z11 Z12
Z∗12 Z22

]
This follows from the definition of the inner product:

⟨D (P) , Z⟩ = trace (D (P)Z)

= trace
([

A∗PA− P A∗PB
B∗PA B∗PB

] [
Z11 Z12
Z∗12 Z22

])
= trace

([
A∗PAZ11 − PZ11 +A∗PBZ∗12 · · ·

· · · B∗PAZ12 +B∗PBZ22

])
= trace (PAZ11A

∗ − PZ11 + PBZ∗12A
∗ + PAZ12B

∗ + PBZ22B
∗)

= ⟨P,Dadj (Z)⟩

and the following properties of trace:

trace (A+B) = trace (A) + trace (B)
trace (AB) = trace

(
A⊤B

)
= trace

(
AB⊤

)
= trace

(
B⊤A

)
= trace

(
BA⊤

)
trace (ABCD) = trace (BCDA) = trace (CDAB) = trace (DABC)

trace (ABC) = trace
(

(ABC)⊤
)

= trace (CBA)
lSee Section B.2

846

The dual of the discrete-time KYP lemma

Cheng proves the following dual of the discrete-time KYP lemma with the linear mapping shown in Equation O.19:

Proposition 2 [38, Section 3.5]: There exists Z ∈ Hn+m such that:

Z =
[
Z11 Z12
Z∗12 Z22

]
≺ 0

AZ11A
∗ − Z11 +BZ∗12A

∗ +AZ12B
∗ +BZ22B

∗ = 0
trace (ΘZ) ≤ 0

Here Θ is as in Equation O.15. The Octave script yalmip_kyp_dual_test.m calls YALMIP to check the dual of the KYP lemma for
the maximum amplitude of a low-pass FIR filter designed with the Octave remez function. Unfortunately, in this script, SeDuMi
fails for the KYP lemma linear mapping of Equation O.19 but the SDPT3 solver succeeds. However, SeDuMi does solve the
dual mapping and solves the primal problem when the YALMIP ’dualize’ option is set.

The dual of the generalised discrete-time KYP lemma

Seungil and Doyle [222] prove the generalised discrete-time KYP lemma by the dual of the Lagrangian of Equation O.12.

847

O.3 Generalisation of the KYP lemma to the union of disjoint frequency intervals

Pipeleers, Iwasaki and Hara [62] describe the generalisation of the KYP lemma to the union of disjoint frequency intervals.

O.3.1 Union of frequency intervals

Pipeleers, Iwasaki and Hara generalise Λ (Φ,Ψ), to a union of l ∈ N curves with Hermitian matrixes Φ,Ψ ∈ Hl+1 and a
mapping Ll (λ) : C→ Cl+1 defined as:

L0 (λ) = 1

Ll (λ) =
[
λl, λl−1, · · · , λ, 1

]⊤
so that:

Λ (Φ,Ψ) =
{
λ ∈ C : Ll (λ)∗ ΦLl (λ) = 0, Ll (λ)∗ΨLl (λ) ≥ 0

}
If Λ (Φ,Ψ) is unbounded then it is extended with

Ll (∞) = [1 01,l]⊤

In addition, Pipeleers et al. define

Ll (λ)F =
[
1, λ1, · · · , λl

]⊤
Pipeleers et al. make the following two assumptions about the matrixes Φ and Ψ.

Assumption 1: The matrixes Φ and Ψ can be decomposed as

Φ = T ∗ΦoT, Ψ = T ∗ΨoT (O.20)

where

Φo =
[

0 1
1 0

]
, Ψo =

[
α β
β γ

]
where α < 0 < γ or 0 ≤ α ≤ γ (O.21)

for some matrix T ∈ C2×(l+1) with full row rank and some α, β, γ ∈ R.

For each s ∈ Λ (Φo,Ψo), the l-th degree polynomial in λ

[1 − s] T Ll (λ) = 0, for s ̸=∞
[0 1] T Ll (λ) = 0, for s =∞

(O.22)

has l distinct roots grouped in the setRT (s).

Assumption 2: When l ≥ 2 we assume that there exists a Hermitian matrix R ∈ Hl such that:

Ll−1 (λ)∗R Ll−1 (λ) > 0 for all λ ∈ Λ (Φ,Ψ)
Ll−1 (λp)∗R Ll−1 (λq) = 0 for all λp, λq ∈ RT (s) , p ̸= q, for all s ∈ Λ (Φo,Ψo)

Assumption 2 implies that R ≻ 0. Assumption 1 allows a large variety of curves in C but only the union of segments of a circle
or straight line has been found to also comply with Assumption 2. The similarity transformation, T , defines a mapping between
the curves Λ (Φ,Ψ) and a segment of the imaginary axis corresponding to Λ (Φo,Ψo). Each s ∈ Λ (Φo,Ψo) is mapped onto the
l roots grouped inRT (s) ⊂ Λ (Φ,Ψ), while all λ ∈ RT (s) are mapped into the same s:

s =
{

[1 0] T Ll(λ)
[0 1] T Ll(λ) = t1(λ)

t2(λ) if t2 (λ) ̸= 0
∞ otherwise

848

The similarity transformation can be reformulated as:

1− st2 (λ)
t1 (λ) = 0

The curve Λ (Φ,Ψ) corresponds to the set of complex numbers λ that solve this root locus equation for some s ∈ Λ (Φo,Ψo).
As for every such s the roots inRT (s) must be distinct, only root locuses without branching points are allowed.

For l = 1 the curves, Λ (ϕ, ψ), correspond to the single non-empty and non-singular segments of a circle or line considered
in the generalised KYP lemma of Iwasaki and Hara [232] described in Section O.2.2. If, in addition, Φ = 0, then the curve
corresponds to the entire circle or line and the original KYP lemma.

Union of frequency intervals on the real axis

Pipeleers, Iwasaki and Hara [62, Section 3] describe the construction of the matrixes Φ,Ψ and R over a union of segments
of the real axis. Subsequently, the extension of this mapping to the unit circle in the complex plane is obtained by a Möbius
transformation.

Here Tr defines a bijective mapping between s ∈ Λ (Φ0,Ψ0) and κ ∈ Λ (Φr,Ψr) and T̃ maps each κ into l roots λk ∈ [αk, βk].

Firstly, on the real axis Φr and Ψr are defined by:

Λ (Φr,Ψr) = {λ ∈ R : L∗1 (λ) ΦrL1 (λ) = 0 , L∗1 (λ) ΨrL1 (λ) ≥ 0} = R+ ∪ {∞}

In this case Pipeleers et al. use:

Φr =
[

0 ı
−ı 0

]
, Ψr =

[
0 1
1 0

]
so that:

L∗1 (λ) ΦrL1 (λ) =
[
λ 1

] [0 ı
−ı 0

] [
λ
1

]
= 0

and:

L∗1 (λ) ΨrL1 (λ) =
[
λ 1

] [0 1
1 0

] [
λ
1

]
= 2λ > 0

For l ∈ N, the matrix Jl ∈ R2l×(l+1) is defined as:

Jl =
[

Il 0l,1
0l,1 Il

]

Lemma [62, Lemma 3.1] : Let 2l scalars αk, βk ∈ R ∪ {∞}, k ∈ Nl, be given that satisfy

α1 < β1 < α2 < · · · < βl−1 < αl < βl

Let the vectors a, b ∈ Rl+1 be defined by:

l∏
k=1

(λ− αk) = a⊤Ll (λ)

l∏
k=1

(λ− βk) = b⊤Ll (λ)

where (λ− α1) = 1 for α1 = −∞ and (λ− βl) = −1 for βl =∞ and set T̃ = [−a b]⊤. Then the matrixes Φ,Ψ ∈ Hl+1:

Φ = T̃ ∗ΦrT̃

Ψ = T̃ ∗ΨrT̃

849

satisfy Assumptions 1 and 2, and

Λ (Φ,Ψ) =
l⋃

k=1
[αk, βk]

In particular, a matrix R ∈ Sl satisfying Assumption 2 is given by the unique solution of:

Φ = J∗l (Φr ⊗R) Jl

Ll−1 (λ)∗RLl−1 (λ) > 0, ∀λ ∈ R

Pipeleers et al. prove this lemma by defining a mapping between κ ∈ Λ (Φr,Ψr) = R+ ∪ {∞} and λ ∈ Λ (Φ,Ψ) where every
κ is mapped onto the l roots of: [

1 −κ
]
T̃Ll (λ) = −a⊤Ll (λ)− κb⊤Ll (λ) = 0

For κ =∞ this reads as b⊤Ll (λ) = 0. Hence, Λ (Φ,Ψ) corresponds to the root-locus plotm of:

b⊤Ll (λ)
a⊤Ll (λ)

Pipeleers et al. [62, Figure 2] illustrate this lemma as a transformation

1− s ıκ+ ı

κ− 1 = 0

from s ∈ [−ı, ı] to κ ∈ R+ ∪ {∞} followed by a transformation

1 + κ

∏l
k=1 (λ− βk)∏l
k=1 (λ− αk)

= 0

from κ to the l distinct roots λk ∈ [αk, βk].

Pipeleers et al. state that the following similarity transformation shows that Assumption 1 is satisfied:

Φr = T ∗r ΦoTr, Ψr = T ∗r ΨoTr (O.23)

with:

Tr = 1√
2

[
1 −1
ı ı

]
, Ψo =

[
−1 0

0 1

]
(O.24)

and T = TrT̃ . Here Tr defines a bijective mapping between s ∈ Λ (Φ0,Ψ0) and κ ∈ Λ (Φr,Ψr) and T̃ maps each κ into l roots
λk ∈ [αk, βk].

The first part of the Octave script kyp_complex_curve_union_test.m shows the mapping of the segment of the imaginary axis,
s ∈ [−ı, ı], to a union of segments of the real axis λ ∈ [αk, βk]. The real parts of the roots of[

1 0
]
T − s

[
0 1

]
T = 0

are plotted against ℑs. In each case the imaginary part of the roots is 0. Figure O.7 shows the plot of the root locus when the
intervals are represented by:

alpha_m1 = [-0.75, -0.25, 0.25, 0.75];

beta_m1 = [-0.60, -0.10, 0.40, 0.90];

Figure O.8 shows the plot of the root locus when the intervals are represented by:

alpha_m2 = [-Inf, -0.60, -0.10, 0.40];

beta_m2 = [-0.75, -0.25, 0.25, Inf];

mIf the closed-loop transfer function of a feedback control system is:

G (s)
1 + G (s) H (s)

, G (s) H (s) = K
(s− z1) . . . (s− zm)
(s− p1) . . . (s− pn)

then the root-locus plot consists of the roots of the characteristic equation 1 + G (s) H (s) = 0 for any value of K.

850

-1 -0.5 0 0.5 1
-2

-1

0

1

2

Imaginary part of s

R
ea

lp
ar

to
fr

oo
ts

Figure O.7: Test of Assumption 1 for an interval on the imaginary s axis mapped to a union of intervals on the real axis.

-1 -0.5 0 0.5 1
-2

-1

0

1

2

Imaginary part of s

R
ea

lp
ar

to
fr

oo
ts

Figure O.8: Test of Assumption 1 for an interval on the imaginary s axis mapped to a union of intervals on the real axis with±∞
endpoints.

Union of frequency intervals on a circle or line

Pipeleers et al. [62, pp. 3627-3629] [61, p. 3915] consider the union of l non-empty, non-singleton, non-intersecting segments
Λ (Φ,Ψk), k ∈ Nl on an arbitrary circle or line Λ (Φ, 0). They use a Möbius transform that maps Λ (Φ, 0) to the real axis,

851

Λ (Φr, 0), and every segment Λ (Φ,Ψk) into an interval [αk, βk] with αk < βk. For distinct points z1, z2, z3 ∈ C ∪ {∞}, the
Möbius transform

µ (λ) = (λ− z1) (z2 − z3)
(λ− z3) (z2 − z1) (O.25)

maps {z1, z2, z3} onto {0, 1,∞} and the circle or line through z1, z2, z3 onto the real axis. With any distinct set of points
z1, z2, z3 ⊂ Λ (Φ, 0) , z3 /∈

⋃l
k=1 Λ (Φ,Ψk), this transformation satisfies the requirements. Let Φ̂, Ψ̂ ∈ Hl+1 and R̂ ∈ Hl be the

result of applying the Lemma [62, Lemma 3.1] to the image of
⋃l

k=1 Λ (Φ,Ψk) under the Möbius transformation. In addition,
set

M =
[
z2 − z3 −z1 (z2 − z3)
z2 − z1 −z3 (z2 − z1)

]
=
[
M1
M2

]
and for k ∈ N define the matrix Mk ∈ R(k+1)×(k+1) as:

Mk =

convk (M1)

conv
(
convk−1 (M1) ,M2

)
...

convk (M2)

Then Φ,Ψ ∈ Hl+1 and R ∈ Hl defined by

Φ = M∗
l Φ̂M l

Ψ = M∗
l Ψ̂M l

R = M∗
l−1R̂M l−1

satisfy Λ (Φ,Ψ) =
⋃l

k=1 Λ (Φ,Ψk) and Φ = J∗l ((M∗ΦrM)⊗R) Jl.

Pipeleers et al. Example 1 : Union of two continuous time frequency intervals Pipeleers, Iwasaki and Hara [62, Example
1] show an example of the union of two continuous time frequency intervals on the imaginary axis:

Λ (Φ,Ψ) = {λ = ıω : ω ∈ [α1, β1] ∪ [α2, β2]}

with −∞ < α1 < β1 < α2 < β2 <∞. A Möbius transform µ (λ) that maps the imaginary axis to the real axis is given by:

µ (λ) = −ıλ → M =
[
−ı 0

0 1

]
which is a Möbius transformation with z1 = 0, z2 = ı, z3 =∞. As stated above:

T̃ =
[
−1 ıα1 + ıα2 α1α2

1 −ıβ1 − ıβ2 −β1β2

]
Φ = T̃ ∗ΦrT̃

Ψ = T̃ ∗ΨrT̃

R̂ =
[
β1 + β2 − α1 − α2 α1α2 − β1β2
α1α2 − β1β2 β1β2 (α1 + α2)− α1α2 (β1 + β2)

]
R = M∗R̂M

Pipeleers et al. Example 2 : Union of two discrete time frequency intervals Pipeleers, Iwasaki and Hara [62, Example 2]
show an example of the union of two discrete time frequency intervals on the unit circle (see Equation O.14):

Λ (Φ,Ψ) =
{
λ = eıθ : θ ∈ [η1, ζ1] ∪ [η2, ζ2]

}
with −π < η1 < ζ1 < η2 < ζ2 < π. A Möbius transform that maps the unit circle to the real axis is:

µ (λ) = −ıλ− 1
λ+ 1 → M =

[
−ı ı

1 1

]
with z1 = 1, z2 = ı, z3 = −1 and where the two discrete time frequency intervals are mapped into the real axis intervals[
αk = µ (eıηk) , βk = µ

(
eıζk

)]
. The corresponding Φ and Ψ matrixes are:

Φ = T̃ ∗
[

0 ıc
−ıc̄ 0

]
T̃

852

Ψ = T̃ ∗
[

0 c
c̄ 0

]
T̃

where:

c = (1 + ıα1) (1 + ıα2) (1− ıβ1) (1− ıβ2)

T̃ =
[
−1 eıη1 + eıη2 −eıη1eıη2

1 −eıζ1 − eıζ2 eıζ1eıζ2

]

The third part of the Octave script kyp_complex_curve_union_test.m shows the mapping of a union of segments of the unit circle
to a union of segments of the real axis λ ∈ [αk, βk]. The angles of the roots of[

1 0
]
T − s

[
0 1

]
T = 0

are plotted against ℑs. Recall that we are first mapping the imaginary axis to the real axis so that T = TrT̃ . In each case the
magnitude of the roots is 1. Figure O.9 shows the plot of the root locus when the intervals are represented by:

eta = [0.10, 0.35];

zeta = [0.15, 0.45];

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Imaginary part of s

A
ng

le
of

ro
ot

s
(r

ad
.)

Figure O.9: Test of Assumption 1 for an interval on the unit circle mapped to a union of intervals on the real axis.

The fourth part of the Octave script kyp_complex_curve_union_test.m shows the mapping of a union of segments of the unit
circle to a union of segments of the real axis λ ∈ [αk, βk] when the upper limit of one segment on the real axis is βl =∞. In this
case I use Φ̂, Ψ̂ and R̂. The angles of the roots of[

1 0
]
T − s

[
0 1

]
T = 0

are plotted against ℑs. In each case the magnitude of the roots is 1. Figure O.10 shows the plot of the root locus when the
intervals are represented by:

eta = [0.10, 1.00];

zeta = [0.15, 3.14];

853

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

Imaginary part of s

A
ng

le
of

ro
ot

s
(r

ad
.)

Figure O.10: Test of Assumption 1 for an interval on the unit circle mapped to a union of intervals on the real axis when βl =∞.

O.3.2 Generalised KYP lemma over a union of frequency intervals

Pipeleers, Iwasaki and Hara [62] show the following preliminary definitions. For A ∈ Cn×n, B ∈ Cn×m and l ∈ N, define
Fl (A,B) ∈ C(l+1)n×(n+ml):

Fl (A,B) =

Al Al−1B Al−2B · · · B
Al−1 Al−2B · · · B 0
.
A B 0 . . . 0
I 0 0

Similarly, define Gl (A,B) ∈ C(n+m)×(n+ml)n:

Gl (A,B) =
(
Il ⊗

[
In

0m,n

]) [
Fl−1 (A,B) 0nl,m

]
+
(
Il ⊗

[
0n,m

Im

]) [
0ml,n Fl−1 (0m,m, Im)

]
For example:

G2 (A,B) =

A B 0n,m

0m,n 0m,m Im

In 0n,m 0n,m

0m,n Im 0m,m

In addition, for λ ∈ C, define the set NA,B (λ) as:

NA,B (λ) =
{

(x, u) ∈ Cn × Cm : (λI −A)x = Bu for λ ̸=∞
{0} × Cm for λ =∞

Note that if det (λI −A) ̸= 0, every element of NA,B (λ) is of the form:[
(λI −A)−1

B
I

]
u

nPipeleers et al. [62, Equation 2.8] show the last term as Fl (0m,m, Im).

854

for some u ∈ Cm.

Firstly, Pipeleers et al. prove the following two Lemmas:

Lemma 2.3 [62, Lemma 2.3 and Appendix A]: Let matrixes A ∈ Cn×n, B ∈ Cn×m and T ∈ C2×(l+1), be given, and
assume B has full column rank and T full row rank. In addition, let s ∈ C ∪ {∞} be given and assume that the l roots λk,
k ∈ Nl, inRT (s) are all distinct. Then a vector z ∈ Cn+ml satisfies

([1 − s]⊗ In) (T ⊗ In)Flz = 0 for s ̸=∞
([0 1]⊗ In) (T ⊗ In)Flz = 0 for s =∞

(O.26)

if-and-only-if it can be decomposed as

z =
l∑

k=1

[
xk

Ll−1 (λk)F ⊗ uk

]
with (xk, uk) ∈ NA,B (λk) for all k ∈ Nl.

The proof of Lemma 2.3 proceeds by elaborating each Flzk recursively from the bottom row to the top row and recalling the
definition of Ll (∞):

Fl

[
xk

Ll−1 (λk)⊗ uk

]
= Ll (λk)⊗ χ (xk, uk)

where

χ (xk, uk) =
{
xk if λ ̸=∞
Buk if λ =∞

As λk are the l roots of Equation O.22, each zk satisfies Equation O.26 and so does z =
∑l

k=1 zk.

Lemma 2.4 [62, Lemma 2.4 and Appendix B]: Let Φo,Ψo ∈ H2 of the form shown in Equation O.21 be given, as well as
X,Y ∈ Cn×m. Then

[
X Y

]
(Φo ⊗ Im)

[
X∗

Y ∗

]
= 0

[
X Y

]
(Ψo ⊗ Im)

[
X∗

Y ∗

]
⪰ 0

(O.27)

hold if-and-only-if X and Y can be factored as

X = W diag (s1, . . . , sm)V ∗

Y = WV ∗
(O.28)

with some W ∈ Cn×m, unitary V ∈ Cm×m and sk ∈ Λ (Φo,Ψo) for all k ∈ Nm.

Pipeleers et al. [62, Appendix B] show a construction for W and V . The equality is equivalent to

XY ∗ + Y X∗ = −XY ∗ − Y X∗

(X + Y) (X + Y)∗ = (X − Y) (X − Y)∗

so that X + Y and X − Y have the same left singular vectors and singular values

X + Y = PΣQ∗1
X − Y = PΣQ∗2

where P ∈ Cn×n is unitary, Q1, Q2 ∈ Cm×m are unitary and Σ ∈ Rn×m is diagonal. The matrix Q∗1Q2 is unitary and can be
factorised as V diag (σk)V ∗ with |σk| = 1 for k = 1, . . . ,m. Define W = Y V and sk = (1 + σk) / (1− σk). If σk = eıωk

855

then the sk = ı cotan ωk

2 result from a mapping of the unit circle to the imaginary axis in the complex plane. Expanding
Equation O.27 and substituting Equation O.28o

XY ∗ + Y X∗ = W diag (sk)V ∗VW ∗ +WV ∗V diag (sk)∗ V ∗W ∗ = diag (sk + s∗k) = 0
αXX∗ + γY Y ∗ = αW diag (sk)V ∗V diag (sk)∗W ∗ + γWV ∗VW ∗ = α diag

(
|sk|2

)
+ γ ⪰ 0

Pipeleers et al. now prove the following generalised KYP lemma for non-strict inequalitiesp:

Theorem [62, Theorem 2.2, Appendix C]: Let Hermitian matrixes Φ, Ψ ∈ Hl+1 and Θ ∈ Hm+n, and matrixes A ∈ Cn×n

and B ∈ Cn×m, be given, with B of full column rank and (A,B) controllable. Suppose Φ and Ψ satisfy Assumptions 1 and
2, and let R ∈ Hl be a matrix satisfying Assumption 2. Then the following statements are equivalent:

1. The inequality: [
x
u

]∗
Θ
[
x
u

]
≤ 0

holds for all (x, u) ∈ NA,B (λ)

2. There exist P,Q ∈ Hn that satisfy Q ⪰ 0 and

Fl (A,B)∗ (Φ⊗ P + Ψ⊗Q)Fl (A,B) +Gl (A,B)∗ (R⊗Θ)Gl (A,B) ⪯ 0

The terms in
[
C D

]
are linearised by applying the Schur complement to R⊗Θ:

R⊗Θ = R⊗
([

C D
0 I

]∗ [Π11 Π12
Π∗12 Π22

] [
C D
0 I

])
= R⊗

[
0 C∗Π12

Π∗12C D∗Π12 + Π∗12D + Π22

]
+R⊗

([
C D

]∗Π11
[
C D

])
= R⊗

[
0 C∗Π12

Π∗12C D∗Π12 + Π∗12D + Π22

]
+
(
I2 ⊗

[
C D

])∗ (R⊗Π11)
(
I2 ⊗

[
C D

])
where I have made repeated use of the mixed product rule, (A⊗B) (C ⊗D) = (AC)⊗ (BD). If R⊗Π11 ⪰ 0 then the Schur
complement includes − (R⊗Π11)−1.

O.3.3 Examples of FIR filter design with the generalised KYP lemma extended to the union of
disjoint frequency bands

Design of a symmetric band pass FIR filter with the union of the upper and lower stop bands

The Octave script directFIRsymmetric_kyp_union_bandpass_test.m uses Pipeleer et al.’s generalised KYP lemma to design a
band pass FIR filter with a specification similar to that of their example [62, Figure 4]. The stop band LMI is expressed as the
union of the upper and lower stop band frequency intervals:

[η1, ζ1] ∪ [η2, ζ2] = 2π [−fasl, fasl] ∪ 2π [fasu, 1− fasu]

The Möbius transformation from the unit circle to the real axis is chosen as z1 = 1, z2 = ı, z3 = −ı. In the pass band the filter
response is compared to a nominal delay. In the stop band |H (ω)|2 ≤ ε2

s.

The filter specification is:
oFor sk ∈ Λ (Φo, Φo) defined in Equation O.10 and Φo and Ψo defined in Equation O.21[

s∗
k 1

]
Φo

[
sk

1

]
= s∗

k + sk = 0[
s∗

k 1
]

Ψo

[
sk

1

]
= αsks∗

k + βsk + βs∗
k + γ = α|sk|2 + γ ≥ 0

pThe Octave script yalmip_kyp_check_iir_bandpass_test.m uses the generalised KYP lemma to check the response of a parallel all-pass one-multiplier Schur
lattice filter designed by the Octave script schurOneMPAlattice_socp_slb_bandpass_delay_test.m. The filter is intended to have a pass-band phase that is an
integer multiple of π plus the nominal pass-band phase shift so that the pass-band response may be compared to a delay of an integral number of samples.

856

N=30 % FIR filter order
d=15 % Nominal FIR filter delay
fasl=0.05 % Amplitude stop band lower edge
fapl=0.15 % Amplitude pass band lower edge
fapu=0.25 % Amplitude pass band upper edge
fasu=0.35 % Amplitude stop band upper edge
Esq_max=1.005 % Maximum squared amplitude
Esq_z=6.97225e-07 % Squared amplitude pass band - delay error
Esq_s=2.5e-05 % Squared amplitude stop band error

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 5.09462e-07 . I did not achieve the pass-band error of εz = 2.5e-4 specified by Pipeleers et al.. The resulting FIR impulse

response is:

h = [-0.0034839695, -0.0003592293, -0.0043641593, -0.0112517525, ...
0.0043018203, 0.0105170057, -0.0028407625, 0.0292538842, ...
0.0492568177, -0.0166214335, -0.0188211131, 0.0207530855, ...
-0.1441413531, -0.2431499798, 0.1187484767, 0.4225485257, ...
0.1187484767, -0.2431499798, -0.1441413531, 0.0207530855, ...
-0.0188211131, -0.0166214335, 0.0492568177, 0.0292538842, ...
-0.0028407625, 0.0105170057, 0.0043018203, -0.0112517525, ...
-0.0043641593, -0.0003592293, -0.0034839695];

Figure O.11 shows the stop band and pass band amplitude responses.

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

KYP symmetric FIR band pass filter: N=30,d=15,fasl=0.05,fapl=0.15,fapu=0.25,fasu=0.35

A
m

pl
itu

de
(d

B
)

Frequency
0 0.1 0.2 0.3 0.4 0.5

-0.01

-0.005

0

0.005

0.01

Figure O.11: Stop band and pass band amplitude responses of a symmetric FIR band pass filter designed with the generalised
KYP lemma over a union of stop band regions.

Design of a non-symmetric band pass FIR filter with the union of the upper and lower stop bands

The Octave script directFIRnonsymmetric_kyp_union_bandpass_test.m uses Pipeleer et al.’s generalised KYP lemma to design
a non-symmetric band pass FIR filter. The Möbius transformation from the unit circle to the real axis is chosen as z1 =
1, z2 = ı, z3 = −ı (see Equation O.25). In the pass band the filter response is compared to a nominal delay. In the stop band
|H (ω)|2 ≤ ε2

s. The filter specification is:

857

N=40 % FIR filter order
d=16 % Nominal FIR filter delay
fasl=0.1 % Amplitude stop band lower edge
fapl=0.175 % Amplitude pass band lower edge
fapu=0.225 % Amplitude pass band upper edge
fasu=0.3 % Amplitude stop band upper edge
Esq_max=1.05 % Maximum squared amplitude
Esq_z=1e-06 % Squared amplitude pass band - delay error
Esq_s=0.0001 % Squared amplitude stop band error

The resulting FIR impulse response is:

h = [0.0013632645, 0.0022335917, -0.0002767357, 0.0046002267, ...
0.0090332904, -0.0062651251, -0.0210712899, -0.0048452416, ...
0.0091097793, -0.0074584534, 0.0115576550, 0.0775167609, ...
0.0372321044, -0.1393050276, -0.1730310888, 0.0786134723, ...
0.2684974324, 0.0824048925, -0.2041650324, -0.1762236110, ...
0.0520761361, 0.1176136604, 0.0212375028, -0.0136525957, ...
0.0139318625, -0.0134420220, -0.0501748668, -0.0147547375, ...
0.0308529904, 0.0198922501, -0.0024833509, 0.0019097685, ...
0.0023300276, -0.0108088687, -0.0097969336, 0.0032323910, ...
0.0055850420, 0.0005626893, 0.0007256611, 0.0018957491, ...
-0.0012853422];

The value of ε2
z was found by trial-and-error. The actual maximum squared-error in the pass-band compared with a pure delay is

ε2
z = 0.00000074 .

Figure O.12 shows the amplitude, phase and delay responses. The pass band phase error is adjusted for the nominal delay.
Figure O.13 shows the zeros of the transfer function.

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

A
m

pl
itu

de
(d

B
)

KYP non-symmetric band-pass FIR filter : N=40,d=16,fasl=0.1,fapl=0.175,fapu=0.225,fasu=0.3

0 0.1 0.2 0.3 0.4 0.5
-0.02

-0.01

0

0.01

0.02

0 0.1 0.2 0.3 0.4 0.5
-0.0004
-0.0002

0
0.0002
0.0004

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
15.9

15.95
16

16.05
16.1

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.12: Amplitude, phase error and delay responses of a non-symmetric FIR band pass filter designed with the generalised
KYP lemma over a union of stop band regions. The pass band phase error is adjusted for the nominal delay.

858

-2 -1.5 -1 -0.5 0 0.5 1

-1

0

1

KYP non-symmetric band-pass FIR filter : N=40,d=16,fasl=0.1,fapl=0.175,fapu=0.225,fasu=0.3

Figure O.13: Zeros of a non-symmetric FIR band pass filter designed with the generalised KYP lemma over a union of stop band
regions.

Design of a non-symmetric band pass FIR filter with the union of multiple pass bands and stop bands

The Octave script directFIRnonsymmetric_kyp_union_double_bandpass_test.m uses Pipeleer et al.’s generalised KYP lemma
to design a non-symmetric band pass FIR filter with the union of two pass bands and the union of three stop bands. The filter
amplitude response is similar to that of the symmetric FIR filter shown in Figure N.47.

In the pass band the filter response is compared to a nominal delay. In the stop band |H (ω)|2 ≤ ε2
s. The filter specification is:

eps=1e-08 % SeDuMi eps
N=48 % FIR filter order
d=20 % Nominal FIR filter delay
fasu1=0.1 % Amplitude first stop band upper edge
fapl1=0.15 % Amplitude first pass band lower edge
fapu1=0.2 % Amplitude first pass band upper edge
fasl2=0.25 % Amplitude second stop band lower edge
fasu2=0.3 % Amplitude second stop band upper edge
fapl2=0.35 % Amplitude second pass band lower edge
fapu2=0.4 % Amplitude second pass band upper edge
fasl3=0.45 % Amplitude third stop band lower edge
Esq_z=5e-05 % Squared amplitude pass band - delay error
Esq_s=8e-05 % Squared amplitude stop band error

In the pass bands, the Möbius transformation from the unit circle to the real axis is chosen as z1 = 1, z2 = ı, z3 = −ı. In the stop
bands each of these zs is rotated by π (fsl2 − fpu1) radians so that z3 is not in a stop band. The resulting FIR impulse response
is:

h = [0.0018088129, -0.0005644017, -0.0042202266, -0.0019642761, ...
-0.0142528443, 0.0196273600, 0.0148855944, -0.0076759554, ...
0.0031585995, -0.0139680485, 0.0003407463, -0.0263455542, ...
0.0066789470, -0.0281535959, 0.0743812868, 0.1474408094, ...
-0.1690011610, -0.0418364085, -0.1062561199, -0.0479753724, ...
0.3961296066, -0.0506779858, -0.1101679246, -0.0514657403, ...

859

-0.2107403021, 0.1924977961, 0.1038472941, -0.0474329605, ...
0.0083495607, -0.0345404905, -0.0006140319, -0.0230581790, ...
0.0046233406, -0.0210907900, 0.0354595837, 0.0497068393, ...
-0.0406462473, -0.0079624307, -0.0043193281, -0.0019158787, ...
0.0011412831, 0.0010375580, 0.0027916478, 0.0029770507, ...
0.0123698291, -0.0121434706, -0.0072648536, 0.0046576928, ...
-0.0002034042];

Figure O.14 shows the amplitude, phase and group delay responses. The pass band phase error is adjusted for the nominal delay.
The actual maximum squared-error in the pass-band compared with a pure delay is ε2

z = 0.00003565 .

0 0.1 0.2 0.3 0.4 0.5
-0.04

-0.02

0

0.02

0.04

A
m

pl
itu

de
(d

B
)

KYP non-symmetric double pass-band FIR filter : N=48,d=20,fapl1=0.15,fapu1=0.2,fapl2=0.35,fapu2=0.4

0 0.1 0.2 0.3 0.4 0.5
-60

-55

-50

-45

-40

0 0.1 0.2 0.3 0.4 0.5
-0.002
-0.001

0
0.001
0.002

Ph
as

e
er

ro
r(

ra
d.

/π
)

0 0.1 0.2 0.3 0.4 0.5
-0.002
-0.001
0
0.001
0.002

0 0.1 0.2 0.3 0.4 0.5
19.8
19.9

20
20.1

Frequency

D
el

ay
(s

am
pl

es
)

0 0.1 0.2 0.3 0.4 0.5
19.8
19.9
20
20.1

Figure O.14: Amplitude, phase and group delay responses of a non-symmetric FIR band pass filter designed with the generalised
KYP lemma with multiple pass and stop bands.

SeDuMi fails with a “Run into numerical problems” warning with the default eps=1e-9 so it is increased in the YALMIP options.
YALMIP still warns about numerical problems. This warning is removed by setting the YALMIP constraints as :

Constraints=[F_plu<=-sedumi_eps,Q_plu>=0,F_slmu<=-sedumi_eps,Q_slmu>=0];

The resulting filter frequency response is acceptable. These numerical problems occurred for all combinations of N and d that I
tried.

860

O.4 Design of one-multiplier Schur lattice filters with the KYP lemma

This section considers the use of the KYP lemma to design IIR filters implemented as the parallel combination of two all-pass
one-multiplier Schur lattice filters. The matrix inequality part of the KYP lemma shown in Equation O.12 is not linear in the state
transition matrix, A, coefficients and the design problem requires the solution of bilinear matrix inequality (BMI) constraints.
The design of robust feedback control systems has motivated much research into the solution of BMI constraints derived from
the KYP lemma. See, for example, Van Antwerp and Braatz [93] or Dinh et al. [192, Section 1]. The solution of an optimisation
problem with BMI constraints can be obtained as the limit of a sequence of upper bounding convex (or LMI) problems. Duffin
and Peterson [197, p.533] describe the solution of a “geometric program” by a sequence of “upper-bound inequality posynomial”
constraints. Marks and Wright [28] demonstrated the convergence of a “sequence of approximating convex programs”. Dinh
et al. [192, 48] “decompose the bilinear mapping as a difference between two positive semidefinite convex mappings. At each
iteration of the algorithm the concave part is linearized, leading to a convex subproblem”. Lee and Hu [133], Warner and
Scruggs [49], Sebe [160] and Ren et al. [206] each show an alternative method of convex upper approximation to the BMI
constraint.

O.4.1 Preliminaries

Positive-semi-definite convex mappings

Suppose the mapping A : Rn → Sp is represented by A (x) ∈ Sp, the set of symmetric p × p matrixes. A (x) is said to be
psd-convex on a convex set, C ⊆ Rn, if, for t ∈ [0, 1] and x, y ∈ C:

A (tx+ [1− t] y) ⪯ tA (x) + [1− t]A (y)
Similarly, −A (x) is psd-concave. The first-order linearised approximation at x = xi + ∆x of a psd-convex mapping A repre-
sented by A (x) satisfies [212, Section 3.1.3]:

A (xi) +∇A (xi) ∆x ⪯ A (x) , for all x ∈ C

Schur complement of a psd-convex mapping

Dinh et al. [192, Section 3.1] define a Schur psd-convex mapping as F : Rp×q ×Sp → Sp given by F (X,Y) = XQ−1X⊤−Y ,
where Q ∈ Sp

++, the set of symmetric, positive definite, p × p matrixes. They show the following lemma, used to transform a
Schur psd-convex constraint into an LMI constraint [192, Lemma 3.2]:

Lemma 3.2 [192]:

1. Suppose that A ∈ Sn. Then:

BB⊤ −A ⪯ 0 ⇐⇒
[

A B
B⊤ I

]
⪰ 0 (O.29)

2. Suppose that A ∈ Sn and D ⪰ 0 then:

[
A−BB⊤ C

C⊤ D

]
⪰ 0 ⇐⇒

 A B C
B⊤ I 0
C⊤ 0 D

 ⪰ 0 (O.30)

Problem statement

This section considers the following optimisation problem with bilinear matrix inequality constraints [133, Equation 1]:

minimise f (z)
subject to z ∈ C

F (z) = C +D (z) + He (A (x)B (y)) ⪯ 0

where z⊤ =
[
x⊤, y⊤

]
∈ Rn, He (X) = X +X⊤, f : Rn → R is convex, C ⊂ Rn is convex and closed, a feasible initial point,

x0 ∈ C, is known, C is a constant matrix and D, A and B are matrixesq that are linear in the coefficients, x, y and z and F (z)
qHere A, B, C and D are not filter state-variable matrixes.

861

represents Equation O.18.

At the m’th iteration, Lee and Hu [133, Equation 4] partially linearise F (z) at z = zm + ∆z where z⊤m =
[
x⊤m, y

⊤
m

]
as follows:

F (z) ≈ F (zm) +∇F (zm) ∆z + He (∆A∆B) ⪯ 0 (O.31)

where, for convenience, ∆A = ∇A (xm) ∆x. Equation O.31 retains the bilinear terms in ∆z . The linear part of Equation O.31
is:

∇F (zm) ∆z ≈ ∆D + He (A (xm) ∆B) + He (∆AB (ym))

O.4.2 Sequential approximation of BMI constraints

This section describes methods of finding a sequence of convex upper approximations to the bilinear terms at the zm of each
iteration of Equation O.31.

Dinh et al. psd-convex-concave optimisation with BMI constraints

Dinh et al. [192, Lemma 3.1] decompose the bilinear formX⊤Y +Y ⊤X into a difference of convex and concave mappings[189]:

Lemma 3.1 [192]:

1. The mappings f (X) := X⊤X and g (X) := XX⊤ are psd-convex on Rm×n. The mapping f (X) := X−1 is
psd-convex on Sp

++.

2. The bilinear matrix form X⊤Y +Y ⊤X can be represented as a psd-convex-concave mapping in at least three forms:

X⊤Y + Y ⊤X = (X + Y)⊤ (X + Y)−
(
X⊤X + Y ⊤Y

)
(O.32a)

=
(
X⊤X + Y ⊤Y

)
− (X − Y)⊤ (X − Y) (O.32b)

= 1
2

[
(X + Y)⊤ (X + Y)− (X − Y)⊤ (X − Y)

]
(O.32c)

Dinh et al. [192, Sections 3.2 and 4] consider the following convex optimisation problem:

minimise f (x)
subject to x ∈ C

G (x)−H (x) ⪯ 0

where f : Rn → R is convex, C ⊆ Rn is a non-empty, closed, convex set and G (x) and H (x) are psd-convex.

Dinh et al. linearise the optimisation problem as follows:

minimise fm (x) := f (x) + ρm∥Qm∆x∥2
2

subject to x ∈ C
G (x)−H (xm)−∇H (xm) ∆x ⪯ 0

(O.33)

where the linearised concave part is an upper approximation:

−H (x) ⪯ −H (xm)−∇H (xm) ∆x, for all x ∈ C

and the convex part is linearised by applying Equation O.29.

Given a feasible initial point, x0, and initial ρ0 > 0 and Q0 ∈ Sn
+, Dinh et al. [192, Algorithm 1] suggest repeatedly solving

Equation O.33 for xi+1 until a termination condition is met. If necessary, ρm and Qm are updated at each step. Dinh et al. [192,
Section 5] show examples in which they apply the Schur complement to the psd-convex-linearised-concave decomposition of
Equation O.32c.

862

Lee and Hu sequential convex upper-approximation with BMI constraints

Lee and Hu [133, Lemma 2] prove the following lemmar:

Lemma 2 [133]: Let D and E be real matrixes of appropriate dimensions. Then, for any S ∈ Sn
++:

DE + E⊤D⊤ ⪯ DSD⊤ + E⊤S−1E (O.34)

Proof : Expand
(
D⊤ − S−1E

)⊤
S
(
D⊤ − S−1E

)
⪰ 0.

Lee and Hu [133, Equation 5] apply this lemma to the partially linearised bilinear mapping of Equation O.31s:

F (z) ⪯ F (zm) +∇F (zm) ∆z + ∆A (∆x)S∆A (∆x)⊤ + ∆B (∆y)⊤ S−1∆B (∆y) ⪯ 0

and, applying the Schur complement as shown in Equation O.30, obtain the following symmetric linear matrix inequality: F (zm) +∇F (zm) ∆z ∗ ∗
∆A (∆z)⊤ −S−1 ∗
∆B (∆z) 0 −S

 ⪯ 0

where I omit the symmetric components. Further, Dinh et al. [192, Lemma 3.1] show that S−1 is psd-convex and, consequently,
Lee and Hu [133, Lemma 3] prove the following lemma:

Lemma 3 [133]: Suppose that S : Rn → Sp is a linear mapping defined as S (x) =
∑n

l=1 xlSl, where Sl ∈ Sp is symmetric
and real. If S (x) ≻ 0 and S (y) ≻ 0, then −S (y)−1 ⪯ −2S (x)−1 + S (x)−1

S (y)S (x)−1.

Proof : Linearise −S (y)−1 around x and apply the matrix identities SS−1 = I and dS
dxS

−1 + S dS−1

dx = 0.

After replacing the psd-concave mapping, −S−1, with its upper approximation linearised around Sm and scaling by the con-
gruence transformation diag [I, Sm, I], the upper approximation to F (z) near z = zm is the LMI constraint [133, Equation
8]: F (zm) +∇F (zm) ∆z ∗ ∗

Sm∆A (∆z)⊤ −2Sm + S ∗
∆B (∆z) 0 −S

 ⪯ 0 (O.35)

Lee and Hu [133, Algorithm 1] propose a sequential approximation algorithm with the “regularised” objective function f (z) +
ρ
2∥∆z∥2 and the LMI constraint of Equation O.35 and S0 = In, c1I ⪯ S ⪯ c2I , −2Sm + S ⪯ −c3I with ρ > 0, c2 > c1 > 0,
c3 > 0. Lee and Hu [133, Section 5] provide an example with values for ρ, c1, c2 and c3.

Lee and Hu [133, Remark 2] compare their method to the difference of convex functions (DC) method of Dinh et al.:

In fact, a more general psd-convex-concave mapping can be derived by introducing the auxiliary matrix, S,
as follows: X⊤Y + Y ⊤X = X⊤SX + Y ⊤S−1Y −

(
X − S−1Y

)⊤
S
(
X − S−1Y

)
. Note that the last term

−
(
X − S−1Y

)⊤
S
(
X − S−1Y

)
is concave in X and Y . If we set S to be a constant, i.e. S = I , and linearize

the last term
(
X − S−1Y

)⊤
S
(
X − S−1Y

)
with respect to (X,Y) at the point (X,Y) = (Xm, Ym), then the over

approximation of the DC programming method is obtained. Instead, if we drop the last term and linearize S−1 at
S = Sm, then the over approximation of the proposed Algorithm 1 is obtained. From the interpretation it is not easy
to claim which approximation is better than the other. Since the last term is entirely dropped in Algorithm 1, it can
be seen as a less accurate one in general. However, the auxiliary matrix S can be adjusted as a decision variable of
the convex subproblem, the over approximation can be tightened at each iteration.

rSee [212, Section 3.6].
sThis is similar to overbounding the constraint by ignoring the second term in Equation O.32b.

863

O.4.3 Design of Schur lattice filters with BMI constraints derived from the KYP lemma

In this Section I apply the successive convex optimisation to the design of filters implemented as the parallel combination of the
doubly pipelined all-pass one-multiplier Schur lattice filters described in Section 5.6.5t. The filters are assumed to have a single
input and a single output. For such filters, the state transition matrix, A, is:

A (k) = A0 +
N∑

l=1
klAl

where k =
[
k1 . . . kN

]
are the Schur lattice filter reflection coefficients, A ∈ Rn×n and the A0, . . . , AN matrixes and the

state-variable B, C and D matrixes are constant. After applying Finsler’s transformation to the KYP lemma matrix inequality of
Equation O.12, as shown in Section O.2.5, the optimisation problem is:

minimise E (k)2

subject to − 1 < k < 1
P,Q ∈ Sn and Q ⪰ 0
Equation O.18

where E2 (k) is the filter squared error at k = km + ∆z:

E2 (km + ∆k) ≈ E2 (km) +∇E2 (km)⊤∆k + 1
2∆⊤k∇2

E2 (km) ∆k

Assume that k0 is a known feasible initial point. Set ∆z = vec (∆k,∆ε2 ,∆P ,∆Q,∆X ,∆Y ,∆Z) and, after the m’th iteration,
zm = vec

(
km, ε

2
m, Pm, Qm, Xm, Ym, Zm

)
.

Successive convex optimisation with the algorithm of Dinh et al. [192, Algorithm 1]

Apply Equation O.32c to Equation O.18: L (P,Q) 0 0
0 −ε2I 0
0 0 I

+ . . .

1
2

[−I A B 0

0 C D −I

]
+

X 0
Y 0
Z 0
0 I

∗
∗[−I A B 0

0 C D −I

]
+

X 0
Y 0
Z 0
0 I

∗
− . . .

1
2

[−I A B 0

0 C D −I

]
−

X 0
Y 0
Z 0
0 I

∗
∗[−I A B 0

0 C D −I

]
−

X 0
Y 0
Z 0
0 I

∗
 ⪯ 0

Applying the Schur complement to the first and second terms:
 L (P,Q) 0 0

0 −ε2I 0
0 0 I

 ∗

1√
2

[
−I +X∗ A+ Y ∗ B + Z∗ 0

0 C D 0

]
−I

− 1
2

[
R∗R 0

0 0

]
⪯ 0

where:

R =
[
−I −X∗ A− Y ∗ B − Z∗ 0

0 C D −2I

]
After them’the iteration, at z = zm+∆z ,A (k) ≈ A (km)+

∑N
l=1 ∆kl

Al,X (z) ≈ X (zm)+∆X , etc. The linear approximation
to the bilinear term, R (z)∗R (z), is:

R (z)∗R (z) ≈ R (zm)∗R (zm) +R (zm)∗∆R + ∆∗RR (zm)
tThis design procedure can also be applied to the tapped doubly pipelined one-multiplier Schur lattice filters described in Section 5.6.4 with the added

complication that the tap coefficients, cn, depend on the ϵn ∈ {−1, 1}.

864

At each iteration, the SDP decision variables are ∆z .

The Octave script schurOneMPAlatticeDoublyPipelinedDelay_kyp_Dinh_lowpass_test.m implements the successive convex ap-
proximation algorithm of Dinh et al. with YALMIP in order to design a filter consisting of the parallel combination of a delay
and a Schur one-multiplier all-pass lattice filter. The initial filter is designed with the WISE method shown in Section 8.1.5.
The objective function is a second order approximation to the summed squared error of the amplitude response. The script finds
initial values for the SDP decision variables P , Q etc. with SeDuMi and then uses the SDPT3 solver for successive convex
approximation. The filter design converges very slowly.

The filter specification is:

tol=1e-06 % General used tolerance
N=4 % Allpass filter order
DD=3 % Parallel delay order
fap=0.1 % Amplitude pass band edge
Wap=1 % Amplitude pass band weight
fas=0.2 % Amplitude stop band edge
Was=100 % Amplitude stop band weight

The optimised reflection coefficients are:

k = [-0.5929031136, 0.3293844234, 0.1621855219, 0.0498198586];

Figure O.15 shows the filter amplitude and delay responses. Figure O.16 shows the convergence of the filter design.

0 0.1 0.2 0.3 0.4 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

A
m

pl
itu

de
(d

B
)

Response of parallel all-pass filter and delay : N=4, DD=3

0 0.1 0.2 0.3 0.4 0.5
-48

-46

-44

-42

-40

-38

-36

-34

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.15: Amplitude and delay responses of a lowpass filter comprised of a Schur one-multiplier lattice all-pass filter in
parallel with a delay designed with the generalised KYP lemma amd the algorithm of Dinh et al. [192, Algorithm 1].

Unfortunately, for N = 5, the script filter design diverges.

865

0 20 40 60 80
0

0.001

0.002

0.003

0.004

0.005

Convergence of parallel all-pass filter and delay : N=4, DD=3

no
rm

(∆
k

)

Iteration
0 20 40 60 80

0.0028

0.003

0.0032

0.0034

0.0036

0.0038

E2

norm(∆k)

E2

Figure O.16: Convergence of the filter design of a lowpass filter comprised of a Schur one-multiplier lattice all-pass filter in
parallel with a delay designed with the generalised KYP lemma and the algorithm of Dinh et al. [192, Algorithm 1].

Successive convex optimisation with the algorithm of Lee and Wu [133, Algorithm 1]

Alternatively, apply the algorithm of Lee and Wu to Equation O.31. After the m’the iteration, at z = zm + ∆z , the linear part is:

∇F (zm) ∆z ≈

 L (∆P ,∆Q) 0 0
0 −∆ε2 0
0 0 0

+ . . .

He

Xm 0
Ym 0
Zm 0
0 1

[0 ∆A 0 0
0 0 0 0

]+ He

∆X 0
∆Y 0
∆Z 0
0 0

[−I A (km) B 0
0 C D −1

]

The overall bilinear matrix inequality is:

F (zm + ∆z) ≈F (zm) +∇F (zm) ∆z + He

∆X 0
∆Y 0
∆Z 0
0 0

[0 ∆A 0 0
0 0 0 0

] ⪯ 0 (O.36)

With the convex upper-approximation of Lee and Hu [133, Lemma 2], shown in Equation O.34 the bilinear part of Equation O.36
is:

He

∆X 0
∆Y 0
∆Z 0
0 0

[0 ∆A 0 0
0 0 0 0

] ⪯

∆X 0
∆Y 0
∆Z 0
0 0

S

∆X 0
∆Y 0
∆Z 0
0 0

⊤

+ . . .

[
0 ∆A 0 0
0 0 0 0

]⊤
S−1

[
0 ∆A 0 0
0 0 0 0

]
⪯ 0

where S ∈ Sn+1
++ is a positive definite, symmetric matrix. After linearising S−1 and applying the Schur complement, as shown

866

in Equation O.35, at the m’th iteration the convex upper-approximation at z = zm + ∆z satisfies:

F (zm) +∇F (zm) ∆z ∗ ∗

Sm

∆X 0
∆Y 0
∆Z 0
0 0

⊤

−2Sm + S ∗

[
0 ∆A 0 0
0 0 0 0

]
0 −S

⪯ 0 (O.37)

The SDP decision variables are ∆z and S.

The Octave script schurOneMPAlatticeDoublyPipelinedDelay_kyp_LeeHu_lowpass_test.m implements the successive convex
approximation algorithm of Lee and Hu with YALMIP in order to design a filter consisting of the parallel combination of a delay
and a Schur one-multiplier all-pass lattice filter. The initial filter is designed with the WISE method shown in Section 8.1.5.
The objective function is a second order approximation to the summed squared error of the amplitude response. The script finds
initial values for the SDP decision variables P , Q etc. with SeDuMi and then uses the SDPT3 solver for successive convex
approximation. The filter design converges very slowly.

The filter specification is:

tol=1e-06 % General used tolerance
N=4 % Allpass filter order
DD=3 % Parallel delay order
fap=0.1 % Amplitude pass band edge
Wap=1 % Amplitude pass band weight
fas=0.2 % Amplitude stop band edge
Was=100 % Amplitude stop band weight

The optimised reflection coefficients are:

k = [-0.5926552158, 0.3288599856, 0.1620660362, 0.0491325913];

Figure O.17 shows the filter amplitude and delay responses. Figure O.18 shows the convergence of the filter design.

Unfortunately, for N = 5, the script converges for a few steps and then wanders randomly. It may be that these SDP solvers have
insufficient numerical precision. To test this I installed the SDPA-GMP solver [158, 159, 115] with the mpYALMIP [66] interface
to YALMIP. The mpYALMIP function gensdpagmpfile writes the YALMIP problem to an intermediate file with a conversion
from sparse to full matrixes. That function required more memory than was available on my PC. I modified gensdpagmpfile to
avoid this problem but then found that the executable file, sdpa_gmp, ran very, very slowly.

867

0 0.1 0.2 0.3 0.4 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

A
m

pl
itu

de
(d

B
)

Response of parallel all-pass filter and delay : N=4, DD=3

0 0.1 0.2 0.3 0.4 0.5
-48

-46

-44

-42

-40

-38

-36

-34

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

D
el

ay
(s

am
pl

es
)

Frequency

Figure O.17: Amplitude and delay responses of a lowpass filter comprised of a Schur one-multiplier lattice all-pass filter in
parallel with a delay designed with the generalised KYP lemma and the bilinear algorithm of Lee and Hu [133, Algorithm 1].

0 20 40 60 80
0

0.001

0.002

0.003

0.004

0.005

Convergence of parallel all-pass filter and delay : N=4, DD=3

no
rm

(∆
k

)

Iteration
0 20 40 60 80

0.0028

0.003

0.0032

0.0034

0.0036

0.0038

E2
norm(∆k)

E2

Figure O.18: Convergence of the filter design of a lowpass filter comprised of a Schur one-multiplier lattice all-pass filter in
parallel with a delay designed with the generalised KYP lemma and the algorithm of Lee and Hu [133, Algorithm 1].

868

Colophon

Software requirements

I currently use the Fedora 40 distribution of Linux [56] with:

• uname -r is 6.8.8-300.fc40.x86_64

• gcc version 14.0.1 20240411 (Red Hat 14.0.1-0)

• a local build of octave-9.1.0 with the struct, io, statistics, optim, control, signal, symbolica and parallel Octave-Forge
packages

• the Octave scripts use the qt graphics toolkit with qt6-qtbase-6.7.0-3 and a local build of GraphicsMagick

• texlive-2023-71 and various packages are installed

• dia-0.97.3-27 is used for line drawings

The local build of octave-9.1.0 and Octave-Forge packages assumes that the following packages are installed in addition to the
base Fedora distribution:

dnf install wget readline-devel lzip sharutils gcc gcc-c++ \
gcc-gfortran gmp-devel mpfr-devel make cmake gnuplot-latex m4 gperf \
bison flex openblas-devel patch texinfo texinfo-tex librsvg2 librsvg2-devel \
librsvg2-tools icoutils autoconf automake libtool pcre pcre-devel freetype \
freetype-devel gnupg2 texlive-dvisvgm gl2ps gl2ps-devel hdf5 hdf5-devel \
qhull qhull-devel portaudio portaudio-devel libsndfile libsndfile-devel \
libcurl libcurl-devel gl2ps gl2ps-devel fontconfig-devel mesa-libGLU \
mesa-libGLU-devel qt qt6-qtbase qt6-qtbase-common qt6-qtbase-devel \
qt6-qtbase-gui qt6-qt5compat qt6-qt5compat-devel qt6-qttools \
qt6-qttools-common qt6-qttools-devel rapidjson-devel python3-sympywget \
rapidjson-devel python3-sympy java-17-openjdk-devel xerces-j2

The oct-file src/minphase.cc assumes the eigen3-devel package is installed. The maxima package is required to run the .max
scripts.

The following packages are required to build this document:

dnf install dia epstool texlive \
texlive-algorithmicx texlive-appendix texlive-boondox \
texlive-calculator texlive-chngcntr texlive-dvipng texlive-dvisvgm \
texlive-environ texlive-epstopdf texlive-esint texlive-esint-type1 \
texlive-fontaxes texlive-fouriernc texlive-fourier texlive-framed \
texlive-gsftopk texlive-kpfonts texlive-latex-base-dev texlive-latex-bin-dev \
texlive-latex-graphics-dev texlive-ly1 texlive-mathdesign \
texlive-multirow texlive-nag texlive-needspace texlive-newpx \
texlive-newtx texlive-pdfcrop texlive-powerdot \
texlive-pst-blur texlive-pst-pdf texlive-pst-slpe texlive-rotfloat \
texlive-scheme-basic texlive-threeparttable texlive-tocbibind \
texlive-trimspaces texlive-type1cm texlive-upquote texlive-wrapfig \
texlive-dvisvgm

aThe symbolic Octave-Forge package assumes that the python3-sympy Fedora package is installed.

869

Makefile

This document is built with GNU make-4.4.1. The Makefile in the project archive builds the PDF version of this document
from the LATEXsource in DesignOfIIRFilters.tex. The project archive contains the files required to generate the figures shown
in this document. The line diagrams are in dia format [67] in directory fig. The source code is in directory src. The source
code languages are C++, Maxima and Octave. The Makefile includes a .mk file for each of the Octave test script dependencies
listed in the variable OCTAVE_SCRIPTS. For example, the Octave script butt3NS_test.m, referred to in Section 5.7.1, has the
corresponding Makefile fragment, butt3NS_test.mkb:

butt3NS_test_FIGURES=butt3NS_test_response \
butt3NS_test_expected_response \
butt3NS_test_response_direct_form_noise \
butt3NS_test_sv_noise_schur_lattice \
butt3NS_test_sv_noise_global_optimum \
butt3NS_test_sv_noise_direct_form \
butt3NS_test_sv_sine_schur_lattice

butt3NS_test_FILES = butt3NS_test.m test_common.m delayz.m \
tf2schurNSlattice.m schurNSlatticeNoiseGain.m schurNSlatticeFilter.m \
svf.m KW.m optKW.m tf2Abcd.m crossWelch.m p2n60.m qroots.m \
schurexpand.oct schurdecomp.oct schurNSscale.oct \
schurNSlattice2Abcd.oct qzsolve.oct

Octave

The build-octave.sh script builds a patched, local, command-line only, version of octave-9.1.0 avoiding the vagaries of the Fedora
packagers.

The build-octave.sh script builds Octave and the associated numerical libraries with the g++ option -march=nehalem. The
patch file, octave-9.1.0.patch, is a shell here document within build-octave.sh. The octave-9.1.0/configure script is patched so
that the Octave OCTAVE_VERSION command returns 9.1.0-robj.

The build-octave.sh script assumes the default sizes of FORTRAN data types. For example, real and integer are 4 bytes.
The script must be modified to use 8 byte integer array indexes in blas, lapack, SuiteSparse, octave etc.

The local build of Octave links to locally built versions of the following libraries: arpack-ng-3.9.1 [12], fftw-3.3.10 [57],
glpk-5.0 [69], lapack-3.12.0 [128], qrupdate-1.1.2 [191], SuiteSparse-7.7.0 [229], sundials-7.0.0 [132] and GraphicsMagick-
1.3.43 [107]. The local build of the LAPACK library includes the deprecated routines.

Display the Octave internal build configuration with:

$ octave --eval "__octave_config_info__"

This project includes a number of Octave oct-file extensions written in C++. The Octave on-line FAQ states:

Code written using Octave’s native plug-in interface (also known as a .oct file) necessarily links with Octave internals
and is considered a derivative work of Octave and therefore must be released under terms that are compatible with
the GPL.

The build-octave.sh script builds Octave with the java interface. Initialise the java interface similarly to:

usejava ("jvm")
javaaddpath(strcat(OCTAVE_HOME,"/share/octave/",OCTAVE_VERSION,"/m/java"));
javaclasspath

bgithub.com enforces a limit of 1000 files per directory in a repository. To conform to this limit the *_test.m Octave scripts were moved to src/test and the
*_test.mk Makefile fragments were moved to src/mk.

870

The section Summary of important user-visible changes for version 4.0 in the NEWS file of the Octave source distribution includes
the following comment:

Octave now automatically truncates intermediate calculations done with floating point values to 64 bits. Some hard-
ware math co-processors, such as the x87, maintain extra precision, but this leads to disagreements in calculations
when compared to reference implementations in software using the IEEE standard for double precision. There was
no measurable performance impact to this change, but it may be disabled with the configure option –disable-float-
truncate. MinGW and Cygwin platforms, as well as GCC compilers >= 5.0 require this feature. Non-x87 hardware,
or hardware using SSE options exclusively, can disable float truncation if desired.

The fftw-3.3.8 release notes (May 28th, 2018-2019-2020) statec:

Fixed AVX, AVX2 for gcc-8. By default, FFTW 3.3.7 was broken with gcc-8. AVX and AVX2 code assumed
that the compiler honors the distinction between +0 and -0, but gcc-8 -ffast-math does not. The default CFLAGS
included -ffast-math . This release ensures that FFTW works with gcc-8 -ffast-math , and removes -ffast-math from
the default CFLAGS for good measure.

Octave packages and solvers

The build-octave.sh script installs the following Octave Forge packages:

computer=x86_64-pc-linux-gnu
octave version=9.1.0-robj (HG-ID=d0c18b1446df)
Package Name | Version | Installation directory
--------------+---------+-----------------------

control *| 4.0.1 | .../octave-9.1.0/share/octave/packages/control-4.0.1
io | 2.6.4 | /usr/local/octave-9.1.0/share/octave/packages/io-2.6.4

optim | 1.6.2 | .../octave-9.1.0/share/octave/packages/optim-1.6.2
parallel | 4.0.2 | .../octave-9.1.0/share/octave/packages/parallel-4.0.2

signal *| 1.4.5 | .../octave-9.1.0/share/octave/packages/signal-1.4.5
statistics | 1.6.5 | .../share/octave/packages/statistics-1.6.5

struct | 1.0.18 | .../octave-9.1.0/share/octave/packages/struct-1.0.18
symbolic | 3.1.1 | .../octave-9.1.0/share/octave/packages/symbolic-3.1.1

The build-octave.sh script installs the SeDuMi, SDPT3 and YALMIP SDP solvers from their respective GitHub repositories and
forked versions of the SparsePOP and gloptipoly3 solvers from my repositories at https://github.com/robertgj.

Problems with Octave

The octave-9.1.0.patch here document within build-octave.sh patches files to:

• add an Octave warning id in __gnuplot_draw_axes__.m

• prevent a valgrind warning from load-save.cc

• copies the following scripts from the development version of octave:

1. unique.m to add stable sorting

2. uifigure.m to avoid a core dump in the test case

• patches libgui/graphics/GLCanvas.cc to avoid seg-faults with qt-6.7.0. See https://savannah.gnu.
org/bugs/?65605

cAlso see https://kristerw.github.io/2021/10/19/fast-math/.

871

https://github.com/robertgj
https://savannah.gnu.org/bugs/?65605
https://savannah.gnu.org/bugs/?65605
https://kristerw.github.io/2021/10/19/fast-math/

Problems with Octave-Forge packages

The following packages are patched with shell here documents within build-octave.sh:

• the signal-1.4.5 package zplane function is patched to avoid a LATEX error.

• the signal-1.4.5 package grpdelay function is replaced with a local version called delayz.

• SparsePOP uses the collect function from SymPy. This is not included in the symbolic-3.1.1 package. I add a version
of collect.m based on factor.m.

Building Octave

Building Octave with LTO and PGO

The following commands build Octave linked with the system lapack and blas shared libraries with link-time-optimisation (LTO)
and profile-guided-optimisation (PGO):

#!/bin/sh

BLDOPTS="-m64 -mtune=generic -O2"
export CFLAGS="-I"$LOCAL_PREFIX"/include "$BLDOPTS
export CXXFLAGS="-I"$LOCAL_PREFIX"/include "$BLDOPTS
export FFLAGS=$BLDOPTS
export LDFLAGS="-L"$LAPACK_DIR" -L"$LOCAL_PREFIX"/lib"

$OCTAVE_DIR/configure $OCTAVE_CONFIG_OPTIONS \
--prefix=$OCTAVE_INSTALL_DIR --with-blas="-lblas" --with-lapack="-llapack"

export PGO_GEN_FLAGS="-pthread -fopenmp -fprofile-generate"
make XTRA_CFLAGS=$PGO_GEN_FLAGS XTRA_CXXFLAGS=$PGO_GEN_FLAGS V=1 -j6
find . -name *.gcda -exec rm {} ';'
make V=1 -j6 check
find . -name *.o -exec rm -f {} ';'
find . -name *.lo -exec rm -f {} ';'
find . -name *.la -exec rm -f {} ';'
export PGO_LTO_FLAGS="-pthread -fopenmp -fprofile-use -flto=6 -ffat-lto-objects"
make XTRA_CFLAGS="$PGO_LTO_FLAGS" XTRA_CXXFLAGS="$PGO_LTO_FLAGS" V=1 -j6

The PGO profile information is generated by running the Octave test suite.

Building Octave for debugging

To build a debugging version of Octave:

#!/bin/sh

BLDOPTS="-ggdb3 -m64 -O0"
export CFLAGS="-I"$LOCAL_PREFIX"/include "$BLDOPTS
export CXXFLAGS="-I"$LOCAL_PREFIX"/include "$BLDOPTS
export FFLAGS=$BLDOPTS
export LDFLAGS="-L"$LAPACK_DIR" -L"$LOCAL_PREFIX"/lib"

$OCTAVE_DIR/configure $OCTAVE_CONFIG_OPTIONS \
--prefix=$OCTAVE_INSTALL_DIR --with-blas="-lblas" --with-lapack="-llapack"

make V=1 -j 6

872

Building Octave oct-files for debugging

To debug an oct-file with valgrind and gdb:

valgrind --vgdb=yes --vgdb-error=0 octave-cli -p src src/test/scriptname

In a separate shell run:

gdb octave-cli

and issue the following gdb commands:

target remote | vgdb
continue

To test an oct-file with address-sanitizer add these flags:

-g -fsanitize=address -fsanitize=undefined -fno-sanitize=vptr -fno-omit-frame-pointer

and “pre-load” the address-sanitizer library:

LD_PRELOAD=/usr/lib64/libasan.so.8 octave-cli --eval oct_file_test_script

Installing Octave-Forge packages

To install Octave packages from a remote Octave-Forge file-server:

octave-cli --eval 'pkg install -forge struct io statistics optim control signal'

If octave was configured with –disable-docs then packages can be installed with this work-around:

/usr/local/octave-dbg/bin/octave-cli \
--eval 'texi_macros_file("/dev/null");pkg install package_file_name'

Benchmarking Octave

This section shows the results of benchmarking various builds of Octave and benchmarking blas and lapack libraries with a
shared library LTO and PGO build of Octave. The CPU is an Intel i7-7700K with 4 CPU cores (8 hyper-threaded). During the
benchmark the CPU frequency was fixed at 4.5GHz. To do this, as the root user:

for c in `seq 0 7`;do
echo "4500000" > /sys/devices/system/cpu/cpu$c/cpufreq/scaling_min_freq;
echo "performance" > /sys/devices/system/cpu/cpu$c/cpufreq/scaling_governor;

done
cpupower -c all frequency-info

873

Benchmarking Octave builds

The shell script benchmark/build-benchmark.sh generates the Octave builds shown in Table O.1. It is assumed to run in the
benchmark sub-directory. The Octave build benchmark test loops 100 times finding the amplitude, group delay and phase re-
sponse of a filter. Numerical differences between the blas and lapack implementations make it impossible to usefully benchmark
with a filter design script like iir_sqp_slb_bandpass_test.m or decimator_R2_test.m. The times given are the average of 10 runs.
For the debug build the optimisation level is -O0 and for the other builds it is -O2 -m64 -mtune=generic. The Octave build is
configured for command-line only and local libraries with the folowing options:

export OCTAVE_CONFIG_OPTIONS=" \
--disable-docs \
--disable-java \
--disable-atomic-refcount \
--without-fltk \
--without-qt \
--without-sndfile \
--without-portaudio \
--without-qhull \
--without-magick \
--without-glpk \
--without-hdf5 \
--with-arpack-includedir=$LOCAL_PREFIX/include \
--with-arpack-libdir=$LOCAL_PREFIX/lib \
--with-qrupdate-includedir=$LOCAL_PREFIX/include \
--with-qrupdate-libdir=$LOCAL_PREFIX/lib \
--with-amd-includedir=$LOCAL_PREFIX/include \
--with-amd-libdir=$LOCAL_PREFIX/lib \
--with-camd-includedir=$LOCAL_PREFIX/include \
--with-camd-libdir=$LOCAL_PREFIX/lib \
--with-colamd-includedir=$LOCAL_PREFIX/include \
--with-colamd-libdir=$LOCAL_PREFIX/lib \
--with-ccolamd-includedir=$LOCAL_PREFIX/include \
--with-ccolamd-libdir=$LOCAL_PREFIX/lib \
--with-cholmod-includedir=$LOCAL_PREFIX/include \
--with-cholmod-libdir=$LOCAL_PREFIX/lib \
--with-cxsparse-includedir=$LOCAL_PREFIX/include \
--with-cxsparse-libdir=$LOCAL_PREFIX/lib \
--with-umfpack-includedir=$LOCAL_PREFIX/include \
--with-umfpack-libdir=$LOCAL_PREFIX/lib \
--with-fftw3-includedir=$LOCAL_PREFIX/include \
--with-fftw3-libdir=$LOCAL_PREFIX/lib \
--with-fftw3f-includedir=$LOCAL_PREFIX/include \
--with-fftw3f-libdir=$LOCAL_PREFIX/lib"

Octave build IIR benchmark execution time (seconds)

Debug, shared reference lapack and blas 203.4
Generic, shared reference lapack and blas 47.2
Generic, shared reference lapack and blas, LTO 46.9
Generic, shared reference lapack and blas, PGO 48.9
Generic, shared reference lapack and blas, LTO, PGO 46.0

Table O.1: Average execution time for 10 runs of the IIR benchmark script with various Octave builds.

Benchmarking blas and lapack libraries

The shell script library-benchmark.sh benchmarks the shared library LTO and PGO version of Octave with the linpack.m [139]
script, the previous IIR benchmark script and a script that solves a KYP problem by calling YALMIP and SeDuMi. The linpack.m
script was modified to produce repeatable residuals. The alternative blas and lapack library versions used are local builds of blas-
3.12.0 and lapack-3.12.0 and the Fedora 40 lapack, blas, atlas [14], gsl [70] and openblas [168] packagesd:

dThe test script test/02/t0294a.sh compares the output of DGESVD for a problematic matrix and the libtatlas, system libblas and “local” libblas libraries:
> ./dgesvd_test_atlas
0.14709002182058989

874

atlas.x86_64 3.10.3-24.fc39
blas.x86_64 3.12.0-4.fc40
lapack.x86_64 3.12.0-4.fc40
gsl.x86_64 2.7.1-8.fc40
gsl-devel.x86_64 2.7.1-8.fc40
openblas.x86_64 0.3.26-4.fc40
openblas-threads.x86_64 0.3.26-4.fc40

The library to be used is specified by the LD_PRELOAD environment variable. For example:

LD_PRELOAD=/usr/lib64/libgslcblas.so.0 octave-cli -q linpack.m

The number of threads used by libtatlas was set at compile-time by the package builder. For libopenblasp, the number of threads
is set to, for example 2, by:

export OPENBLAS_NUM_THREADS=2

Table O.2 shows the average MFLOPS or execution time for 10e runs of each test using the shared library PGO and LTO build
of Octave. The normalised residuals for the two ATLAS libraries varied between two values. The largest is shown.

blas library
linpack.m IIR benchmark script KYP benchmark script

MFLOPS Normalised Execution time Execution time
residual (seconds) (seconds)

Generic libblas/liblapack 3916 21.3 46.1 56.6
Intel libblas/liblapack 3889 21.3 46.0 57.0
Haswell libblas/liblapack 4765 18.5 45.8 51.2
Nehalem libblas/liblapack 3917 21.3 46.1 56.4
Skylake libblas/liblapack 4674 18.5 45.8 51.2
Fedora 39 libblas/liblapack 3927 21.3 46.1 56.5
libgslcblas 3916 21.3 46.2 56.6
libsatlas 13269 14.3 45.9 60.2
libtatlas 20696 14.3 46.3 59.9
libopenblas 33921 9.9 44.6 51.2
libopenblasp (1 thread) 33743 9.9 44.4 51.6
libopenblasp (2 threads) 48531 12.1 44.8 51.7
libopenblasp (4 threads) 61805 10.8 44.2 51.7

Table O.2: Benchmark results for linpack.m and the IIR and KYP benchmark scripts with various blas and lapack implementa-
tions.

Benchmarking freqz, iirA and schurOneMPAlatticeAsq

The Octave script benchmark_iirA_freqz.sh compares the average execution time of the Octave signal package function freqz
(calculated at equal frequency intervals with an FFT) and the iirA and schurOneMPAlatticeAsq functions (calculated at arbitrary
frequencies with matrix multiplication). Figure O.19 shows the mean execution times for frequency vectors with a length that is
a multiple of 200. Figure O.20 shows the mean execution times for frequency vectors with a length that is a power of 2.

> ./dgesvd_test_sysblas
0.14709002182060871
> LD_LIBRARY_PATH=/usr/local/octave-9.1.0/lib ./dgesvd_test_sysblas
0.14709002182060871
Previous versions of atlas produced slightly different results on each run.

eProbably not enough!

875

0 2000 4000 6000 8000 10000
10−4

10−3

10−2

10−1

100

Frequency vector length (n)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Mean execution time (20 runs) schurOneMPAlatticeAsq,iirA,freqz

schurOneMPAlatticeAsq

iirA
freqz

Figure O.19: Mean execution times of freqz, iirA and schurOneMPAlatticeAsq for frequency vectors with a length that is a
multiple of 200.

4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

101

Frequency vector length (log2n)

M
ea

n
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Mean execution time (20 runs) schurOneMPAlatticeAsq,iirA,freqz

schurOneMPAlatticeAsq

iirA
freqz

Figure O.20: Mean execution times of freqz, iirA and schurOneMPAlatticeAsq for frequency vectors with a length that is a power
of 2.

876

Profiling Octave

Profiling Octave scripts with the internal profiler

Here is an example of the use of the internal Octave profiler in the Octave script yalmip_kyp_moment_lowpass_test.m:

Constraints=[F_max<=-sedumi_eps, Q_max>=0, F_pl<=0, Q_pl>=0, F_s<=0, Q_s>=0];
Objective=(hsdp*G*hsdp')+(2*hsdp*g')+(2*fap);
Options=sdpsettings("solver","moment","sedumi.eps",sedumi_eps);
profile("on");
try
sol=optimize(Constraints,Objective,Options);

catch
fprintf(stderr,lasterror().message);

end_try_catch
profile("off");
T=profile("info");
profshow(T);

with Octave profiler output:

Function Attr Time (s) Time (%) Calls
--
415 blkchol 1693.754 93.10 14
414 getada3 50.494 2.78 14
412 getada2 27.194 1.49 14
411 getada1 23.795 1.31 14
377 sedumi 4.569 0.25 1
427 bwblkslv 3.000 0.16 60
423 fwblkslv 1.879 0.10 60
393 getsymbada 1.604 0.09 1
313 findhashsorted 1.264 0.07 16900
8 binary + R 1.194 0.07 274728

179 system 0.949 0.05 5
311 abs 0.767 0.04 301
400 symbfwblk 0.704 0.04 4
73 binary * 0.667 0.04 6194
272 sparse 0.628 0.03 100
288 monpowers 0.623 0.03 2
419 psdscale 0.609 0.03 205
294 @sdpvar/recovermonoms 0.544 0.03 2
396 tril 0.413 0.02 869
300 @sdpvar/mtimes 0.388 0.02 1

Profiling Octave .oct files

I have not succeeded in profiling Octave .oct shared object files with either sprof or gprofng.

877

Solvers

SeDuMi

The SeDuMi source is available from LeHigh University as SeDuMi_1_3.zip [226]. Unfortunately, this version does not seem to
be actively maintained. An “unofficial” GitHub [225] fork is compatible with Octave. The 1.3.8 tag runs without modification
under Octavef.

The SeDuMi source depends on the OpenBLAS f77blas.h and openblas_config.h headers. install_sedumi.m assumes they are
present in /usr/include/openblas. A 64-bit version of SeDuMi requires -DOPENBLAS_USE64BITINT. The install_sedumi.m
script can be called with a mex template. For example, to enable the mxAssert checks:

octave:1> mexcmd = ['mex -O2 -DMEX_DEBUG -DOCTAVE -I/usr/include/openblas %s '];
octave:2> install_sedumi ('-rebuild', mexcmd);

Problems with SeDuMi

The SeDuMi User Guide [227, Section 4] shows an example of optimising a complex valued Toeplitz matrix. The Octave
script sedumi_toepest_test.m runs this example. Unfortunately, the Z matrix found by this script is different to that shown in
the SeDuMi User Guide. The Octave script sedumi_real_toepest_test.m expresses the Z and P matrixes in terms of the real
and imaginary parts of the matrix elements (see Appendix B.5). The Z matrix found by that script agrees with that shown
in the SeDuMi User Guide. Löfberg [105] shows five different YALMIP solutions for this problem, reproduced in the Octave
script yalmip_complex_test.m. The Z matrixes found by that script agree with the Z matrix shown in the SeDuMi User Guide.
YALMIP supports complex-valued constraints for all solvers by automatically converting complex-valued problems to real-valued
problems.

The Octave script sedumi_profiler_test.m profiles the SeDuMi/examples/test_sedumi.m script:

Function Attr Time (s) Time (%) Calls

34 binary * 59.440 31.62 52288
155 psdscale 43.033 22.89 4138
150 getada3 24.340 12.95 162
175 eig 21.098 11.22 4055
173 binary \ 7.591 4.04 2443
84 binary / 7.548 4.02 12468

181 psdframeit 4.671 2.48 366
170 psdinvjmul 4.575 2.43 182

The SeDuMi m-file SeDuMi/psdscale.m is complex and has no comments.

SparsePOP

SparsePOP [83] is “a semidefinite relaxations package for polynomial programming”. SparsePOP303 runs under Octave with
the modifications shown in SparsePOP303.patch.

The readGMS.m and convert2.m functions are altered to support the Octave-Forge symbolic package [167]. The latter is based on
SymPy [228], a Python library for symbolic mathematics. The Octave sparsePOP_test.m script shows an example of sparsePOP
reading the Bex5_2_5.gms GAMS format example with the Octave-Forge symbolic package.

fThe SeDuMi-1.3 source file vec.m shadows a built-in Octave function.

878

Problems with SparsePOP

The sparsePOP_solveExample_test.m script runs the SparsePOP solveExample.m function, with the ’sedumi’ solver, excluding
problems k_exclude = [36, 45, 46, 54, 70, 71, 88, 92]. For those k I catch exceptions like:

Caught exception at k=36!
'2' is not defined in the line of 'Variables'.
Should check the line of the objective function in 'Babel.gms'.
warning: Called readGMS>getObjPoly at line 1306
warning: Called readGMS at line 341
warning: Called sparsePOP at line 324
warning: Called solveExample at line 263
warning: Called solveExample_test at line 27

I run sparsePOP with param.mex=0. The mexconv1 mex-file occasionally causes a valgrind warning when make_mexdata
incorrectly calculates the size of objPoly.supports. For example, when running the SparsePOP solveExample function with
valgrind:

85: randomwithEQ(20,2,4,4,3201)

SparsePOP 3.03
by H.Waki, S.Kim, M.Kojima, M.Muramatsu,

H.Sugimoto and M.Yamashita, September 2018

==66559== Invalid read of size 8
==66559== at 0xC346D21: mexFunction (mexconv1.cpp:180)

SDPT3

SDPT3 [111, 110, 196] is a MATLAB software for semidefinite-quadratic-linear programming. The version used in this project
is a fork of the “unofficial” GitHub repository [150].

Problems with SDPT3

The sdpt3.patch file shows a modification that suppresses a divide-by-zero warning when running the maxcut example from
sqlpdemo with a feasible initial solution.

YALMIP

YALMIP [106, 99] is a toolbox for modelling and optimisation in MATLAB and Octave. YALMIP calls semi-definite program-
ming (SDP) solvers such as SeDuMi and SDPT3.

LMIRank

LMIRank [211, 199] is a toolbox for solving rank constrained LMI problems:

F (x) ⪰ 0
G (x) ⪰ 0

rankG (x) ≤ r

The Octave file lmirank.m contains the lmirank and trheuristic functions. The Octave test script lmirank_test.m contains
the lmiranktest2 function. lmirank calls the SeDuMi SDP solver. YALMIP has an interface to lmirank.

879

gloptipoly3

gloptipoly3 [41, 42, 130, 131] is “intended to solve, or at least approximate, the Generalized Problem of Moments (GPM), an
infinite-dimensional optimization problem which can be viewed as an extension of the classical problem of moments”.

SDPA

SDPA [149, 115] is software for semidefinite-quadratic-linear programming. The shell script install-sdpa.sh downloads, patches
and installs SDPA with the mex-file interface to Octave. The Fedora MUMPS and MUMPS-devel packages are prerequisites.

Problems with SDPA

When I run SDPA as a solver in the Octave and YALMIP test script yalmip_complex_test.m I get messages like:

Strange behavior : primal < dual :: line 158 in sdpa_solve.cpp

Nonetheless the results for these small examples appear correct. I suspect that there is a problem in the conversion from the
YALMIP internal format to the SDPA format.

SCS

SCS [30, 32, 31], or Splitting Conic Solver, is software for semidefinite-quadratic-linear programming. The shell script install-
scs.sh downloads, patches and installs SCS with the mex-file interface to Octave. There are two varieties of SCS, a direct LMI
solver and an indirect conjugate-gradient solverg.

Problems with SCS

SCS with default settings is much less precise than SeDuMi. The documentation does not make it clear how to adjust the various
eps_* parameters so I will do some experiments.

QEMU emulation

I endeavour to ensure that the Octave scripts required to build this document run successfully under the QEMU emulation of an
Intel Nehalem CPU. The following is a general indication of how to set up QEMU emulation to achieve this.

QEMU user-mode emulation

To run an Octave script with the QEMU user-mode emulation, run, for example:

qemu-x86_64 -cpu Nehalem `which octave` --no-gui -p src src/test/butt3NS_test.m

This runs the octave-cli binary and associated dynamic linker in the QEMU x86_64 user-mode emulation of an Intel Ne-
halem CPU.

To build this document with the QEMU user-mode emulation of Octave, run:

make OCTAVE="qemu-x86_64 -cpu Nehalem `which octave` --no-gui"

gYALMIP supports the "scs", "scs-direct" and "scs-indirect" SCS solver names.

880

QEMU virtual machine emulation

Unfortunately, user-mode QEMU emulation only uses one thread and is is not completely portable. I build octave and the
associated linear algebra libraries with -march=nehalem. The system compiler links octave to the system libm, libquad-
math and libstdc++ shared libraries from the Fedora glibc, libquadmath and libstdc++ packages, respectively. Running gcc
-v shows that the system compiler is itself compiled with -mtune=generic. I believe that, currently, this is equivalent to
-march=nehalem but it may change in future. QEMU emulation on a virtual machine allows use of known libraries, multiple
CPUs, and builds this document much more quickly than user-mode emulation.

Create the VM

Buettner [117] describes configuration of a QEMU [190] based virtual machine with the RedHat virt-manager application. In
order to be able to shut down the virtual machines I found it necessary to also install the Fedora acpid and qemu-guest-agent
packages and enable the associated services on the host.

I created a QEMU VM from the Fedora 36 Server net install ISO image with 4GB RAM, 10GB disk, 8 Nehalem CPUs, bridged
networking on device virbr0, root password password and SSH root access with password. Following Buettner’s advice I
removed the tablet, sound, serial port 1, channel qemu-ga, channel spice and USB redirector 1 and 2. In the following the IPv4
address will be determined by your network settings and the VM DHCP lease. The host firewall is set to allow trusted access by
the ssh service. Recover the pointer from the virt-manager terminal by depressing the left-Ctrl and left-Alt keys.

If necessary, edit the user and group in /etc/libvirt/qemu.conf and add the user to the qemu, kvm and libvirt groups:

sudo usermod -aG qemu ${USER}
sudo usermod -aG kvm ${USER}
sudo usermod -aG libvirt ${USER}

virsh requires that LIBVIRT_DEFAULT_URI is set in the shell environment:

export LIBVIRT_DEFAULT_URI=qemu:///system

Log out and log back in to effect these changes.

Rename the VM

To change the name of a VM:

virsh shutdown foo
virsh domrename foo bar
virsh start bar

Set up the VM

I did not attempt to set up a shared directory or file server. I communicate with the VM through ssh and transfer files with scp.
A vertical ellipsis indicates discarded output.

$ virsh start Fedora36Server
Domain 'Fedora36Server' started

$ virsh net-list
Name State Autostart Persistent
--
default active yes yes

$ virsh net-dhcp-leases default
.

881

.
$ ssh root@192.168.122.100
.
.
[root@localhost ~]# uname -rs
Linux 5.19.10-200.fc36.x86_64
[root@localhost ~] dnf install wget readline-devel lzip sharutils gcc gcc-c++ \
gcc-gfortran gmp-devel mpfr-devel make cmake gnuplot-latex m4 gperf bison flex \
openblas-devel patch texinfo texinfo-tex icoutils librsvg2-tools librsvg2 \
dia epstool autoconf automake libtool pcre pcre-devel freetype freetype-devel \
dia epstool texlive-algorithmicx texlive-appendix texlive-boondox \
texlive-calculator texlive-chngcntr texlive-dvipng texlive-environ \
texlive-epstopdf texlive-esint texlive-esint-type1 texlive-fontaxes \
texlive-fouriernc texlive-fourier texlive-framed texlive-gsftopk \
texlive-kpfonts texlive-latex-base-dev texlive-latex-bin-dev \
texlive-latex-graphics-dev texlive-ly1 texlive-mathdesign texlive-multirow \
texlive-nag texlive-needspace texlive-newpx texlive-newtx \
texlive-pdfcrop texlive-powerdot texlive-pst-blur texlive-pst-pdf \
texlive-pst-slpe texlive-rotfloat texlive-scheme-basic \
texlive-threeparttable texlive-tocbibind texlive-trimspaces \
texlive-type1cm texlive-upquote texlive-wrapfig texlive-dvisvgm \
hdf5 hdf5-devel qt qscintilla-qt5 qscintilla-qt5-devel \
qhull qhull-devel portaudio portaudio-devel libsndfile libsndfile-devel \
GraphicsMagick-c++ GraphicsMagick-c++-devel libcurl libcurl-devel \
gl2ps gl2ps-devel fontconfig-devel mesa-libGLU mesa-libGLU-devel \
qt5-qttools qt5-qttools-common qt5-qttools-devel rapidjson-devel python3-sympy \
maxima
.
.
[root@localhost ~]# wget https://github.com/robertgj/DesignOfIIRFilters/archive/master.zip
[root@localhost ~]# unzip master.zip
[root@localhost ~]# mkdir -p /usr/local/src/octave
[root@localhost ~]# cp DesignOfIIRFilters-master/build-octave.sh /usr/local/src/octave
[root@localhost ~]# cd /usr/local/src/octave
[root@localhost octave]# wget https://ftp.gnu.org/gnu/gnu-keyring.gpg
.
.
[root@localhost octave]# gpg2 --import gnu-keyring.gpg
.
.
[root@localhost octave]# sh ./build-octave.sh
.
.
[root@localhost ~]# cd
[root@localhost ~]# echo "export PATH=$PATH:/usr/local/octave-7.2.0/bin" >> .bashrc
[root@localhost ~]# shutdown -h now
Connection to 192.168.122.100 closed by remote host.
Connection to 192.168.122.100 closed.
$

This edited example session shows:

• starting the VM with virsh

• logging into the VM with ssh

• system update with dnf

• installation of the Fedora packages required to build this document

• download of the source for this document from GitHub

• building a local version of Octave with the build-octave.sh script

Build this document on the VM

Octave will only use the qt graphics toolkit if it finds an X display. Otherwise it uses the gnuplot graphics toolkit. Use virt-
manager to set the display to Type ’VNC server’, Listen type ’Address’ and Address ’All interfaces’. The -Y option to ssh
enables trusted X11 forwarding.

882

$ virsh start Fedora36Server
$ ssh -Y root@192.168.122.100
[root@localhost ~]# dnf install xorg-x11-xauth xorg-x11-xinit \
xorg-x11-drv-qxl xorg-x11-xinit-session xrdb xmodmap
[root@localhost ~]# echo "X11Forwarding yes" >>/etc/ssh/sshd_config
[root@localhost ~]# echo "X11UseLocalhost no" >>/etc/ssh/sshd_config
[root@localhost ~]# echo "AddressFamily inet" >>/etc/ssh/sshd_config
[root@localhost ~]# systemctl restart sshd.service
[root@localhost ~]# octave --no-gui --eval "available_graphics_toolkits"
ans =
{
[1,1] = gnuplot
[1,2] = qt

}
[root@localhost ~]# cd DesignOfIIRFilters-master
[root@localhost DesignOfIIRFilters-master]# make -k -O -j 8

Copy a file to the VM

$ virsh start Fedora36Server
$ scp Makefile scp://root@192.168.122.100//root/Makefile

Copy this document from the VM

$ virsh start Fedora36Server
$ scp root@192.168.122.100:/root/DesignOfIIRFilters-master/DesignOfIIRFilters.pdf \
DesignOfIIRFilters.pdf

Run the test scripts on the VM

$ virsh start Fedora36Server
$ ssh -Y root@192.168.122.100
[root@localhost ~]# cd DesignOfIIRFilters-master
[root@localhost DesignOfIIRFilters-master]# make batchtest
.
.
.

Export the VM to libvirt

$ virsh start Fedora36Server
$ virsh dumpxml Fedora36Server

Remove an existing VM

$ sudo virsh shutdown Fedora36Server
$ sudo virsh undefine Fedora36Server

Zero the disk image before compressing it

Shut down the VM and, on the host, runh:

$ sudo virsh shutdown Fedora36Server
$ sudo virt-sparsify -v -x --in-place your-image-file

hFirst install the Fedora guestfs-tools package.

883

Alternatively, fill unused VM disc sectors with 0:

$ virsh start Fedora36Server
$ ssh -Y root@192.168.122.100
[root@localhost ~]# cd /boot
[root@localhost ~]# dd if=/dev/zero of=zerofile
[root@localhost ~]# sync
[root@localhost ~]# rm -f zerofile
[root@localhost ~]# cd /
[root@localhost ~]# dd if=/dev/zero of=zerofile
[root@localhost ~]# sync
[root@localhost ~]# rm -f zerofile
[root@localhost ~]# shutdown -h now

Testing

The test directory contains regression test shell scripts. The test scripts must be run from the project root directory. The shell
script batchtest.sh runs multiple tests in parallel. Alternatively, run make batchtest.

Aegis

I use the aegis software change management system written by the late Peter Miller [186]. To build aegis with the patch provided
in this project:

tar -xf aegis-4.24.tar.gz
cd aegis-4.24
patch -p1 < ../aegis-4.24.patch
CXXFLAGS=-O2 ./configure
make && make install

Replacing Makefile.in with Makefile.in.solib builds binaries linked to a shared library. The configure script may prompt you
to install the groff, file-devel, uuid-devel etc. packages. The /usr/local/com/aegis/state file lists existing Aegis projects. The
/usr/local/com/aegis/user directory contains files listing the per-user state of existing Aegis projects. I use this .aegisrc:

default_development_directory = "CHANGES";
default_project_directory = "AEGIS";

and add to .bashrc:

if [-f /usr/local/etc/profile.d/aegis.sh]; then
. /usr/local/etc/profile.d/aegis.sh

fi

aegis.conf configures aegis to use the file comparison functions from Miller’s fhist [187] project. fhist depends on the libex-
plain [188] library. fhist and libexplain are compiled similarly to aegis with the patches provided in this project.

Monochrome printing

Monochrome printing of this document is supported by:

• hiding coloured hyperlinks in the printed PDF document by compiling this document with:

pdflatex '\newcommand\DesignOfIIRFiltersMono{}\input{DesignOfIIRFilters}'

884

The DesignOfIIRFiltersMono flag enables the following LATEXcode:

\usepackage[hidelinks]{hyperref}

• setting the Octave default line palette to all black in src/test_common.m:

if getenv("OCTAVE_ENABLE_MONOCHROME")
set(0,"defaultaxescolororder",zeros(size(get(0,"defaultaxescolororder"))));

endif

The following command enables both these changes:

make cleanall && OCTAVE_ENABLE_MONOCHROME=1 make -j 6 monochrome

885

886

Bibliography

[1] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier and Paul Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Trans. Math. Softw., 33(2), June 2007. 93, 95, 628, 800

[2] A. Antoniou and W.-S. Lu. Practical Optimization: Algorithms and Engineering Applications. Springer Science+Business
Media, LLC, 2007. ISBN 0-387-71106-6. 223, 552

[3] A. G. Deczky. Synthesis of recursive digital filters using the minimum p-error criterion. IEEE Transactions on Audio and
Electroacoustics, 20:257–263, October 1972. 19, 20, 147, 157, 166

[4] A. H. Gray and J. D. Markel. Digital Lattice And Ladder Filter Synthesis. IEEE Transactions on Audio and Electroacous-
tics, 21(6):491–500, December 1973. 17, 19, 20, 72, 98, 99

[5] A. H. Land and A. G. Doig. An Automatic Method Of Solving Discrete Programming Problems. Econometrica,
28(3):497–520, July 1960. 410

[6] A. H. Sayed and T. Kailath. A Survey of Spectral Factorization Methods. Numerical Linear Algebra With Applications,
08:467–496, 2001. 676

[7] A. Krukowski and I. Kale. Two Approaches for fixed-point filter design: "bit-flipping" algorithm and constrained down-
hill Simplex method. In Proceedings of the Fifth International Symposium on Signal Processing and its Applications,
volume 2, pages 965–968, 1999. 20, 392, 393

[8] A. Nishihara and K. Sugahara. A Synthesis of Digital Filters with Minimum Pole Sensitivity. The Transactions of the
IECE of Japan, E65(5):234–240, May 1982. 71

[9] A. P. Ruszczynzki. Nonlinear Optimization. Princeton University Press, 2006. ISBN 0-691-11915-5. 20, 598, 600, 606,
608

[10] A. Rantzer. On the Kalman-Yakubovich-Popov Lemma for Positive Systems. IEEE Transactions on Automatic Control,
61(5):1346–1349, May 2016. 844

[11] A. Tarczynski, G. Cain, E. Hermanowicz and M. Rojewski. A WISE Method for Designing IIR Filters. IEEE Transactions
on Signal Processing, 49(7):1421–1432, July 2001. 19, 125, 127, 147, 148, 149, 151, 154

[12] A collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. https://github.com/
opencollab/arpack-ng. 870

[13] Athanasios Papoulis. Signal Analysis. McGraw-Hill International, 1981. ISBN 0-07-066468-4. 189

[14] Automatically Tuned Linear Algebra Software. http://math-atlas.sourceforge.net/. 874

[15] Automatic Differentiation. http://www.autodiff.org. 580

[16] B. C. Carlson. Computing Elliptic Integrals by Duplication. Numerische Mathematik, 33:1–16, 1979. 17, 567, 568, 569

[17] B. C. Carlson. POWER SERIES FOR INVERSE JACOBIAN ELLIPTIC FUNCTIONS. MATHEMATICS OF COMPU-
TATION, 77(263):1615–1621, July 2008. 571

[18] B. Christianson. Global Convergence using De-linked Goldstein or Wolfe Linesearch Conditions. AMO - Advanced
Modeling and Optimization, 1(1):25–31, 2009. 610

[19] B. Després. Positive polynomials and numerical approximation. https://www.math.univ-paris13.fr/
~marchal/exposedespres.pdf, 2020. 764

[20] B. Dumitrescu. Bounded Real Lemma for FIR MIMO Systems. IEEE Signal Processing Letters, 12(7):496–499, July
2005. 667

887

https://github.com/opencollab/arpack-ng
https://github.com/opencollab/arpack-ng
http://math-atlas.sourceforge.net/
http://www.autodiff.org
https://www.math.univ-paris13.fr/~marchal/exposedespres.pdf
https://www.math.univ-paris13.fr/~marchal/exposedespres.pdf

[21] B. Dumitrescu and R. Niemistö. Multistage IIR Filter Design Using Convex Stability Domains Defined by Positive
Realness. IEEE Transactions on Signal Processing, 52(4):962–974, April 2004. 143, 147

[22] B. Dumitrescu, I. Tăbuş and P. Stoica. On the Parameterization of Positive Real Sequences and MA Parameter Estimation.
IEEE Transactions on Signal Processing, 49(11):2630–2639, November 2001. 667, 673, 674, 675, 676

[23] B. Kumar and S. C. D. Roy. COEFFICIENTS OF MAXIMALLY LINEAR, FIR DIGITAL DIFFERENTIATORS FOR
LOW FREQUENClES. Electronics Letters, 24(9):563–565, 28th April 1988. 759

[24] B. Kumar, S. C. D. Roy and H. Shah. On the Design of FIR Digital Differentiators which Are Maximally Linear at the
Frequency π/p, p ∈ {PositiveIntegers}. IEEE Transactions on Signal Processing, 40(9):2334–2338, September 1992.
759, 762, 763

[25] B. W. Bomar. New second-order state-space structures for realizing low round off noise digital filters. IEEE Transactions
on Acoustics, Speech and Signal Processing, 33(1):106–110, February 1985. 17, 63, 65

[26] B. W. Bomar. On the Design of Second-Order State-Space Digital Filter Sections. IEEE Transactions on Circuits and
Systems, 36(4):542–552, April 1989. 63

[27] V. Balakrishnan and L. Vandenberghe. Semidefinite Programming Duality and Linear Time-invariant Systems. http:
//docs.lib.purdue.edu/ecetr/162, 2002. ECE Technical Reports. Paper 162. 846

[28] Barry R. Marks and Gordon P. Wright. A General Inner Approximation Algorithm for Nonconvex Mathematical Programs.
Operations Research, 26(4):681–683, 1978. 861

[29] Boost Library Documentation. Jacobi Zeta Function. https://www.boost.org/doc/libs/1_79_0/libs/
math/doc/html/math_toolkit/ellint/jacobi_zeta.html. 573

[30] Brendan O’Donoghue. Operator Splitting for a Homogeneous Embedding of the Linear Complementarity Problem. SIAM
Journal on Optimization, 31:1999–2023, August 2021. 880

[31] Brendan O’Donoghue and Alastair Abbott. scs-matlab. https://github.com/bodono/scs-matlab, 2023. 880

[32] Brendan O’Donoghue and Eric Chu and Neal Parikh and Stephen Boyd. SCS: Splitting Conic Solver. https://
github.com/cvxgrp/scs, November 2023. 880

[33] C. Gumacos. Weighting Coefficients for Certain Maximally Flat Nonrecursive Digital Filters. IEEE Transactions on
Circuits and Systems, 25(4):234–235, April 1978. 755, 756

[34] C. T. Mullis and R. A. Roberts. Roundoff Noise in Digital Filters:Frequency Transformations and Invariants. IEEE
Transactions on Acoustics, Speech and Signal Processing, 24(6):538–550, December 1976. 48, 49, 62, 113, 119

[35] C. T. Mullis and R. A. Roberts. Synthesis of minimum roundoff noise fixed-point digital filters. IEEE Transactions on
Circuits and Systems, 23:512–551, September 1976. 59, 60, 113

[36] C. T. Mullis and R. A. Roberts. An Interpretation of Error Spectrum Shaping in Digital Filters. IEEE Transactions on
Acoustics, Speech and Signal Processing, 30(6):1013–1015, December 1982. 136

[37] Center for Discrete Mathematics and Theoretical Computer Science. The DIMACS library of mixed semi-definite
quadratic linear programs. http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/
FILTER/minphase.mat.gz. 667

[38] Cheng Yiping. A Proof of the Discrete-Time KYP Lemma Using Semidefinite Programming Duality. In Proceedings of
the 26th Chinese Control Conference, pages 156–160, July 2007. 829, 846, 847

[39] D. A. Bini, G. Fiorentino and L. Robol. Multiprecision Polynomial Solver. https://github.com/robol/
MPSolve. 20

[40] D. Goldfarb and A. Idnani. A Numerically Stable Dual Method for Solving Strictly Convex Quadratic Programs. Mathe-
matical Programming, 27:1–33, 1983. 17, 151, 611, 612, 613, 615

[41] D. Henrion, J. B. Lasserre and Johan Löfberg. GloptiPoly 3 - moments, optimization and semidefinite programming.
https://homepages.laas.fr/henrion/software/gloptipoly3/. 880

[42] D. Henrion, J. B. Lasserre and Johan Löfberg. GloptiPoly 3 - moments, optimization and semidefinite programming.
https://arxiv.org/pdf/0709.2559.pdf. 880

[43] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999. ISBN 1-886529-00-0. 20, 599, 600, 602,
605, 606, 607, 608, 609

888

http://docs.lib.purdue.edu/ecetr/162
http://docs.lib.purdue.edu/ecetr/162
https://www.boost.org/doc/libs/1_79_0/libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html
https://www.boost.org/doc/libs/1_79_0/libs/math/doc/html/math_toolkit/ellint/jacobi_zeta.html
https://github.com/bodono/scs-matlab
https://github.com/cvxgrp/scs
https://github.com/cvxgrp/scs
http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/FILTER/minphase.mat.gz
http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/FILTER/minphase.mat.gz
https://github.com/robol/MPSolve
https://github.com/robol/MPSolve
https://homepages.laas.fr/henrion/software/gloptipoly3/
https://arxiv.org/pdf/0709.2559.pdf

[44] D. Rabrenović and M. Lutovac. Minimum Stopband Attenuation of Cauer Filters without Elliptic Functions and Integrals.
IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 40(9):618–621, September 1993.
636, 637

[45] D. Rabrenović and M. Lutovac. Elliptic filters with minimal Q-factors. Electronics Letters, 30(3):206–207, 3rd February
1994. 636, 637

[46] C.-S. Yang D. Shiung, Y.-Y. Yang. Improving FIR Filters by Using Cascade Techniques. IEEE Signal Processing Maga-
zine, pages 108–114, May 2016. 800, 814

[47] D. Williamson. Roundoff Noise Minimization and Pole-Zero Sensitivity in Fixed-point Digital Filters Using Residue
Feedback. IEEE Transactions on Acoustics, Speech and Signal Processing, 34(5):1210–1220, October 1986. 17, 136,
137, 138, 139

[48] Quoc Tran Dinh, Wim Michiels, and Moritz Diehl. An Inner Convex Approximation Algorithm for BMI Optimization
and Applications in Control. https://arxiv.org/abs/1202.5488, 2012. 861

[49] E. C. Warner and J. T. Scruggs. Iterative Convex Overbounding Algorithms for BMI Optimization Problems. International
Federation of Automatic Control PapersOnLine, 50-1:10449––10455, 2017. 861

[50] E. M. Hofstetter. A New Technique for the Design of Non-Recursive Digital Filters, December 1970. Massachusetts
Institute of Technology, Lincoln Laboratory, Technical Note 1970-42. 707, 769

[51] E. T. Whittaker and G. N. Watson, editor. A Course of Modern Analysis. Cambridge University Press, 4th edition, 1927.
ISBN 978-0-521-58807-2. 566, 788

[52] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley and Sons, Fifth edition, 1983. ISBN 0-471-88941-5.
547, 550

[53] NICONET e.V. The Control and Systems Library SLICOT. http://www.slicot.org. 54

[54] F. Alizadeh and D. Goldfarb. Second-Order Cone Programming. Mathematical Programming, 95:3–51, 2001. 20, 215,
223

[55] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V.
Saunders, editors. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/. 566, 567, 569, 570,
571, 572, 573, 620, 787, 792

[56] Redhat Fedora Linux distribution. https://getfedora.org/. 869

[57] A fast, free C FFT library. http://www.fftw.org. 870

[58] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, 3rd edition, 1996. ISBN
0-8018-5413-8. 17, 35, 37, 134, 135, 149, 552, 553, 575, 576, 603, 604, 610

[59] G. Meinsma, Y. Shrivastava and M. Fu. A dual formulation of mixed µ and on the losslessness of (D,G) scaling. IEEE
Transactions on Automatic Control, 42(7):1032–1036, 1997. 826

[60] G. Pipeleers and L. Vandenberghe. Generalized KYP Lemma with Real Data. IEEE Transactions on Automatic Control,
56(12):2942–2946, December 2011. 824, 836

[61] G. Pipeleers, T. Iwasaki and S. Hara. Generalizing the KYP Lemma to the Union of Intervals. Proceedings of the European
Control Conference, pages 3913–3918, July 2013. 851

[62] G. Pipeleers, T. Iwasaki and S. Hara. GENERALIZING THE KYP LEMMA TO MULTIPLE FREQUENCY INTER-
VALS. SIAM Journal on Control and Optimization, 52(6):3618–3638, 2014. 772, 824, 848, 849, 850, 851, 852, 854, 855,
856

[63] G. T. Cargo and O. Shisha. The Bernstein Form of a Polynomial. JOURNAL OF RESEARCH of the Notional Bureau of
Standards-B. Mathematics and Mathematical Physics, 70B(1):79–81, January-March 1966. 743

[64] Jean Gallier. The Schur Complement and Symmetric Positive Semidefinite (and Definite) Matrices. https://www.
cis.upenn.edu/~jean/schur-comp.pdf, August 2019. 552, 554

[65] Gian Antonio Mian and Alberto Pio Nainer. A Fast Procedure to Design Equiripple Minimum-Phase FIR Filters. IEEE
Transactions on Circuits and Systems, 29(5):327–331, May 1982. 214, 664, 665, 671

[66] Giovanni Fantuzzi and Federico Fuentes. mpYALMIP : An interface to the multiple-precision solver SDPA-GMP for
YALMIP. https://github.com/aeroimperial-optimization/mpYALMIP. 867

[67] gnome.org. Dia diagram editor. https://wiki.gnome.org/Apps/Dia/. 870

889

https://arxiv.org/abs/1202.5488
http://www.slicot.org
http://dlmf.nist.gov/
https://getfedora.org/
http://www.fftw.org
https://www.cis.upenn.edu/~jean/schur-comp.pdf
https://www.cis.upenn.edu/~jean/schur-comp.pdf
https://github.com/aeroimperial-optimization/mpYALMIP
https://wiki.gnome.org/Apps/Dia/

[68] GNU Project. GMP: The GNU Multiple Precision Arithmetic Library. http://gmplib.org. 93, 628

[69] GNU Project. GNU Linear Programming Kit. https://www.gnu.org/software/glpk/. 870

[70] GNU Project. GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/. 20, 874

[71] David Goldberg. What Every Computer Scientist Should Know About Floating-point Arithmetic. ACM Comput. Surv.,
23(1):5–48, March 1991. 20

[72] G.Stoyanov, Zl. Nikolova, K. Ivanova, V. Anzova. Design and Realization of Efficient IIR Digital Filter Structures Based
on Sensitivity Minimizations. In TELSIKS 2007, pages 299–308, September 2007. 72, 74

[73] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010. 665

[74] H. A. Spang III and P. M. Shultheis. Reduction of quantizing noise by use of feedback. IRE Transactions on Communica-
tions Systems, 10:373–380, December 1962. 136

[75] H. D. Tuan, N. T. Hoang, H. Q. Ngo, H. Tuy and B. Vo. A dual frequency-selective bounded real lemma and its applications
to IIR filter design. In Proceedings of the IEEE Conference on Decision and Control, January 2007. 765

[76] H. D. Tuan, T. T. Son, B. Vo and T. Q. Nguyen. Efficient Large-Scale Filter/Filterbank Design via LMI Characterization
of Trigonometric Curves. IEEE Transactions on Signal Processing, 55(9):4393–4404, September 2007. 764, 765, 766,
767, 768, 769, 770, 771, 772, 773

[77] H. J. Orchard and Alan N. Willson. Elliptic Functions for Filter Design. IEEE Transactions on Circuits and Systems-
I:Fundamental Theory and Applications, 44(4):273–287, April 1997. 636, 637, 639

[78] H. J. Orchard and Alan N. Willson. On the Computation of a Minimum-Phase Spectral Factor. IEEE Transactions on
Circuits and Systems-I:Fundamental Theory and Applications, 50(3):365–375, March 2003. 214, 664, 670

[79] H. Johansson and L. Wanhammar. High-Speed Recursive Digital Filters Based on the Frequency-Response Masking
Approach. IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 47(1):48–61, January
2000. 20, 330

[80] H. Johansson and T. Saramäki. A Class of Complementary IIR Filters. In Proceedings of the IEEE International Sympo-
sium on Circuits and Systems VLSI, May 1999. 654, 655

[81] H. Riblet. The Application of a New Class of Equal-Ripple Functions to Some Familiar Transmission-Line Problems.
IEEE Transactions on Microwave Theory and Techniques, 12:415–421, July 1964. 806

[82] Masakazu Kojima Hayato Waki, Sunyoung Kim and Masakazu Muramatsu. Sums of Squares and Semidefinite Program
Relaxations for Polynomial Optimization Problems with Structured Sparsity. SIAM Journal on Optimization, 17(1):218–
242, 2006. 491

[83] Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Muramatsu, Hiroshi Sugimoto and Makoto Yamashita.
SparsePOP (Sparse SDP Relaxation of Polynomial Optimization Problems). http://sparsepop.sourceforge.
net. 491, 878

[84] I. Kunold. Linear phase realization of wave digital lattice filters. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 1455–1458, 1988. 278

[85] I. Pólik and T. Terlaky. A Survey of the S-Lemma. SIAM Review, 49(3):371–418, 2007. 558

[86] I. R. Khan, M. Okuda and R. Ohba. New design of FIR digital differentiators having maximally linearity at middle of the
frequency band. In International Symposium on Communications and Information Technologies 2004, pages 178–183,
October 2004. 759, 762

[87] I. W. Selesnick. Maximally Flat Low-Pass Digital Differentiators. IEEE Transactions on Circuits and Systems-II:Analog
and Digital Signal Processing, 49(3):219–223, March 2002. 759, 760, 761

[88] I. W. Selesnick and C. S. Burrus. Exchange Algorithms for the Design of Linear Phase FIR Filters and Differentiators
Having Flat Monotonic Passbands and Equiripple Stopbands. IEEE Transactions on Circuits and Systems-II:Analog and
Digital Signal Processing, 43(9):671–675, September 1996. 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741

[89] I. W. Selesnick and C. S. Burrus. Exchange Algorithms that Complement the Parks-McClellan Algorithm for Linear-Phase
FIR Filter Design. IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 44(2):137–143,
February 1997. 712, 717, 729, 730, 769

[90] I. W. Selesnick, M. Lang and C. S. Burrus. Constrained Least Square Design of FIR Filters without Specified Transition
Bands. IEEE Transactions on Signal Processing, 44(8):1879–1892, August 1996. 145, 146, 692, 701, 773, 774, 775

890

http://gmplib.org
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/gsl/
http://eigen.tuxfamily.org
http://sparsepop.sourceforge.net
http://sparsepop.sourceforge.net

[91] I. W. Selesnick, M. Lang and C. S. Burrus. A Modified Algorithm for Constrained Least Square Design of Multiband FIR
Filters without Specified Transition Bands. IEEE Transactions on Signal Processing, 46(2):497–501, February 1998. 17,
19, 20, 146, 152, 692

[92] J. D. Markel and A. H. Gray. Fixed-Point Implementation Algorithms for a Class of Orthogonal Polynomial Filter Struc-
tures. IEEE Transactions on Acoustics, Speech and Signal Processing, 23(5):486–494, October 1975. 98

[93] J. G. VanAntwerp and R. D. Braatz. A tutorial on linear and bilinear matrix inequalities. Journal of Process Control,
10:363–385, 2000. 559, 861

[94] J. H. McClellan, T. W. Parks and L. R. Rabiner. A Computer Program for Designing Optimum FIR Linear Phase Digital
Filters. IEEE Transactions on Audio and Electroacoustics, 21(6):506–526, December 1973. 17, 720, 721

[95] J. H. Wilkinson. Studies in Numerical Analysis, Ed. G.H.Golub, volume 24 of Studies in Mathematics, chapter The
perfidious polynomial, pages 1–28. Mathematical Association of America, 1984. 20

[96] J. H. Wilkinson, editor. The Algebraic Eigenvalue Problem. Oxford University Press, Inc., 1988. ISBN 0-198-53418-3.
37

[97] J. KONOPACKI and K. MOŚCIŃSKA. Estimation of filter order for prescribed, reduced group delay FIR filter design.
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, 63(1):209–216, 2015. https:
//journals.pan.pl/Content/84137/PDF/24_paper.pdf. 839

[98] J. L. Sullivan and J. W. Adams. PCLS IIR Digital Filters with Simultaneous Frequency Response Magnitude and Group
Delay Specifications. IEEE Transactions on Signal Processing, 46(11):2853–2861, November 1998. 146, 157

[99] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the CACSD Conference,
Taipei, Taiwan, 2004. 836, 837, 839, 879

[100] J.-P. Berrut and L. N. Trefethen. Barycentric Lagrange Interpolation. SIAM Review, 46(3):501–517, 2004. 577, 707

[101] J, Szczupak, S. K. Mitra and J. Fadavi-Ardekani. A Computer-Based Synthesis Method of Structurally LBR Digital
AllPass Networks. IEEE Transactions on Circuits and Systems, 35(6):755–760, June 1988. 71

[102] J. Tuqan and P. P. Vaidyanathan. A State Space Approach to the Design of Globally Optimal FIR Energy Compaction
Filters. IEEE Transactions on Signal Processing, 48(10):2822–2838, October 2000. 667, 668, 671, 672, 676

[103] J. W. Adams and J. L. Sullivan. Peak Constrained Least-Squares Optimization. IEEE Transactions on Signal Processing,
46(2):306–321, February 1998. 152

[104] Jan Purczyński and Cezary Pawelczak. Maximally Linear FIR Digital Differentiators in Frequencies of π/p-Simplified
Formulas of Weighting Coefficients. IEEE Transactions on Signal Processing, 50(4):978–981, April 2002. 759, 762, 763

[105] Johan Löfberg. Complex-valued problems. https://yalmip.github.io/inside/complexproblems/. 878

[106] Johan Löfberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. https://yalmip.github.io/.
836, 837, 839, 879

[107] John Cristy and Bob Friesenhahn. GraphicsMagick Image Processing System. http://www.graphicsmagick.
org. 870

[108] John W. Eaton, David Bateman, Sören Hauberg and Rik Wehbring. GNU Octave version 4.2.0 manual: a high-level
interactive language for numerical computations, 2016. 19, 47

[109] Jorge Nocedal and Stephen J.Wright. Numerical Optimization. Springer, second edition, 2006. ISBN 0-387-30303-0. 20,
598, 599, 602

[110] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 — a Matlab software package for semidefinite programming. Opti-
mization Methods and Software, 11:545–581, 1999. 879

[111] K. C. Toh, R. H. Tütüncü, and M. J. Todd. SDPT3 - a MATLAB software package for semidefinite-quadratic-linear
programming. http://www.math.cmu.edu/~reha/sdpt3.html. 879

[112] K. Ivanova and G.Stoyanov. A New Low-sensitivity Second-order Allpass Section Suitable for Fractional Delay Filter
Realizations. In TELSIKS 2007, pages 317–320, September 2007. 74

[113] K. Surma-aho and T. Saramäki. A Systematic Technique for Designing Approximately Linear Phase Recursive Digital
Filters. IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 46(7):956–963, July 1999.
17, 149, 643, 648

[114] Kai Hwang. Computer Arithmetic : Principles, Architecture and Design. John Wiley and Sons, 1979. ISBN 0-471-03496-
7. 374

891

https://journals.pan.pl/Content/84137/PDF/24_paper.pdf
https://journals.pan.pl/Content/84137/PDF/24_paper.pdf
https://yalmip.github.io/inside/complexproblems/
https://yalmip.github.io/
http://www.graphicsmagick.org
http://www.graphicsmagick.org
http://www.math.cmu.edu/~reha/sdpt3.html

[115] Katsuki Fujisawa, Yoshiaki Futakata, Masakazu Kojima, Satoshi Matsuyama, Satoshi Nakamura, Kazuhide Nakata, and
Makoto Yamashita. SDPA-M (SemiDefinite Programming Algorithm in MATLAB) User’s manual — version 6.2.0.
Research Report B-359, Dept. of Mathematical and Computing Science, Tokyo Institute of Technology, May 2005. 867,
880

[116] Keshab K. Parhi. VLSI Digital Signal Processing Systems : Design and Implementation. Wiley Inter-Science, 1999. ISBN
0-471-24186-5. 17, 19, 20, 72, 92, 93, 94, 95, 97, 99, 100, 102, 103, 113, 118, 119, 124, 135, 374, 375

[117] Kevin Buettner. Configure and run a QEMU-based VM outside of libvirt with virt-manager. https:developers.
redhat.com/author/kevin-buettner. 881

[118] Kim-Chuan Toh. A Note on the Calculation of Step-Lengths in Interior-Point Methods for Semidefinite Programming.
Computational Optimization and Applications, 21(3):301–310, 2002. 610

[119] L. Fousse et al. MPFR: A multiple-precision binary floating-point library with correct rounding. http://www.mpfr.
org. 93, 628

[120] L. M. Smith. Decomposition of FIR Digital Filters for Realization Via the Cascade Connection of Subfilters. IEEE
Transactions on Signal Processing, 46(6):1681–1684, June 1998. 800, 814

[121] L. M. Smith and M. E. Henderson Jr. Roundoff Noise Reduction in Cascade Realizations of FIR Digital Filters. IEEE
Transactions on Signal Processing, 48(4):1196–1200, April 2000. 800

[122] L. Milić and J. Ćertić. Two-Channel IIR Filter Banks Utilizing the Frequency-Response Masking Technique. Telfor
Journal, 1(2):45–48, 2009. 20

[123] L. Milić and M. Lutovac. Design of Multiplierless Elliptic IIR Filters with a Small Quantization Error. IEEE Transactions
on Signal Processing, 47(2):469–479, February 1999. 636

[124] L. Milić, J. Ćertić and M. Lutovac. A class of FRM-based all-pass digital filters with applications in half-band filters and
Hilbert transformers. In International Conference on Green Circuits and Systems, pages 273–278. IEEE, 2010. 366

[125] L. R. Rajagopal and S. C. D. Roy. Design of Maximally-Flat FIR Filters Using the Bernstein Polynomial. IEEE Transac-
tions on Circuits and Systems, 34(12):1587–1590, December 1987. 743, 744, 747, 752

[126] L. Theile. On the Sensitivity of Linear State-Space Systems. IEEE Transactions on Circuits and Systems, 33(5):502–510,
May 1986. 38

[127] R. Wallin L. Vandenberghe, V. Balakrishnan and A. Hansson. On the implementation of primal-dual interior-point methods
for semidefinite programming problems derived from the KYP lemma. In Proceedings of the 42nd IEEE Conference on
Decision and Control, pages 4658–4663, December 2003. 846

[128] LAPACK-Linear Algebra PACKage. http://www.netlib.org/lapack/. 870

[129] J. B. Lasserre. Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimization,
11(3):796–817, 2001. 491

[130] J. B. Lasserre. A semidefinite programming approach to the generalized problem of moments. Mathematical Program-
ming, 112:65–92, 2008. 880

[131] J. B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge University Press, 2015. ISBN
978-1-107-63069-7. 880

[132] Lawrence Livermore National Laboratory. SUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers.
https://computing.llnl.gov/projects/sundials. 870

[133] Donghwan Lee and Jianghai Hu. A sequential parametric convex approximation method for solving bilinear matrix in-
equalities. https://engineering.purdue.edu/~jianghai/Publication/OPTL2018_BMI.pdf, July
2016. 861, 862, 863, 866, 868

[134] Wu-Sheng Lu. Digital Filter Design: Global Solutions via Polynomial Optimization. Proceedings of the IEEE Asia Pacific
Conference on Circuits and Systems, pages 49–52, 2006. 491

[135] M. A. Richards. Application of Deczky’s Program for Recursive Filter Design to the Design of Recursive Decimators.
IEEE Transactions on Acoustics, Speech and Signal Processing, 30(5):811–814, October 1982. 19, 20, 147, 580

[136] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical
Tables. Number 55 in Applied Mathematics Series. National Bureau of Standards, 1972. 566

[137] M. C. Lang. Least-Squares Design of IIR Filters with Prescribed Magnitude and Phase Responses and a Pole Radius
Constraint. IEEE Transactions on Signal Processing, 48(11):3109–3121, November 2000. 147

892

https:developers.redhat.com/author/kevin-buettner
https:developers.redhat.com/author/kevin-buettner
http://www.mpfr.org
http://www.mpfr.org
http://www.netlib.org/lapack/
https://computing.llnl.gov/projects/sundials
https://engineering.purdue.edu/~jianghai/Publication/OPTL2018_BMI.pdf

[138] M. J. D. Powell. A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. Lecture Notes in Mathematics,
630:144–157, 1978. 598, 602, 606

[139] M. J. Rutter. Linpack benchmark in Octave/Matlab. http://www.tcm.phy.cam.ac.uk/~mjr/linpack/
linpack.m, November 2015. 874

[140] M. Lutovac and L. Milić. Design Of Computationally Efficient Elliptic IIR Filters with a Reduced Number of Shift-and-
Add Operations in Multipliers. IEEE Transactions on Signal Processing, 45(10):2422–2430, October 1997. 636, 637,
638, 639

[141] M. Murumatsu and T. Suzuki. A NEW SECOND-ORDE CONE PROGRAMMING RELAXATION FOR MAX-CUT
PROBLEMS. Journal of the Operations Research Society of Japan, 46(2):164–177, 2003. 500

[142] M. Renfors and T. Saramäki. Recursive Nth-Band Digital Filters-Part I:Design and Properties. IEEE Transactions on
Circuits and Systems, 34(1):24–39, January 1987. 20, 287

[143] M. Renfors and T. Saramäki. Recursive Nth-Band Digital Filters-Part II:Design of Multistage Decimators and Interpola-
tors. IEEE Transactions on Circuits and Systems, 34(1):40–51, January 1987. 20, 287

[144] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret. Applications of second-order cone programming. Linear Algebra
and its Applications, 1998. 20

[145] M. Vlček and R. Unbehauen. Analytical Solutions for Design of IIR Equiripple Filters. IEEE Transactions on Acoustics,
Speech and Signal Processing, 37(10):1518–1531, October 1989. 566, 777, 789

[146] M. Vlček and R. Unbehauen. Zolotarev Polynomials and Optimal FIR Filters. IEEE Transactions on Signal Processing,
47(3):717–730, March 1999. 17, 787, 788, 789, 790, 791, 792, 793, 795, 796, 797, 798, 812

[147] M. Vlček and R. Unbehauen. Corrections to "Zolotarev Polynomials and Optimal FIR Filters". IEEE Transactions on
Signal Processing, 48(7):2171, July 2000. 17, 789, 790, 791

[148] M. Vlček, P. Zahradník and R. Unbehauen. Analytical Design of FIR Filters. IEEE Transactions on Signal Processing,
48(9):2705–2709, September 2000. 17, 746, 747, 748

[149] Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata, Maho Nakata, Mituhiro Fukuda, Kazuhiro Kobayashi, and
Kazushige Goto. A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460,
Dept. of Mathematical and Computing Science, Tokyo Institute of Technology, September 2010. 880

[150] Michael Grant. SDPT3 version 4.0: MATLAB/Octave software for semidefinite-quadratic-linear programming. https:
//github.com/sqlp/sdpt3. 879

[151] Min Su Kim, Sun Joo Kwon and Se Young Oh. The Performance of a Modified Armijo Line Search Rule in BFGS
Optimisation Method. Journal of the ChungCheong Mathematical Society, 21(1):117–127, March 2008. 609

[152] Mohsen Kheirandishfard, Fariba Zohrizadch, Muhammad Adil and Ramtin Madani. Convexification of Bilinear
Matrix Inequalities via Conic and Parabolic Relaxations. http://www.columbia.edu/~rm3122/paper/
convexification_bilinear.pdf, 2017. 836

[153] Mohsen Kheirandishfard, Fariba Zohrizadeh, Muhammad Adil and Ramtin Madani. Convex Relaxation of Bilinear Matrix
Inequalities Part I: Theoretical Results. In 2018 IEEE Conference on Decision and Control (CDC), pages 67–74, 2018.
836

[154] Mohsen Kheirandishfard, Fariba Zohrizadeh, Muhammad Adil and Ramtin Madani. Convex Relaxation of Bilinear Matrix
Inequalities Part II: Applications to Optimal Control Synthesis. In 2018 IEEE Conference on Decision and Control (CDC),
pages 75–82, 2018. 836

[155] M.Vlček and P. Zahradník. Almost Equiripple Low-pass FIR Filters. Circuits Syst Signal Processing, 32:743–757, 2013.
DOI 10.1007/s00034-012-9484-0. 18, 798, 799, 806, 807, 808, 809, 810, 811, 812, 813

[156] M.Vlček and P. Zahradník. Approximation of Almost Equiripple Low-pass FIR Filters. In 2013 European Conference on
Circuit Theory and Design, September 2013. DOI: 10.1109/ECCTD.2013.6662301. 789, 806

[157] N. J. Higham. The numerical stability of barycentric Lagrange interpolation. IMA Journal of Numerical Analysis, 24:547–
556, 2004. 578

[158] Nakata, Maho. SDPA-GMP : SDPA in arbitrary multiple precision. https://github.com/nakatamaho/
sdpa-gmp. 867

[159] Nakata, Maho. A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite program-
ming solver: SDPA-GMP, -QD and -DD. In 2010 IEEE International Symposium on Computer-Aided Control System
Design, pages 29–34, 2010. 867

893

http://www.tcm.phy.cam.ac.uk/~mjr/linpack/linpack.m
http://www.tcm.phy.cam.ac.uk/~mjr/linpack/linpack.m
https://github.com/sqlp/sdpt3
https://github.com/sqlp/sdpt3
http://www.columbia.edu/~rm3122/paper/convexification_bilinear.pdf
http://www.columbia.edu/~rm3122/paper/convexification_bilinear.pdf
https://github.com/nakatamaho/sdpa-gmp
https://github.com/nakatamaho/sdpa-gmp

[160] Noburo Sebe. Sequential Convex Overbounding Approximation Method for Bilinear Matrix Inequality Problems. Inter-
national Federation of Automatic Control PapersOnLine, 51-25:102––109, 2018. 861

[161] O. Herrmann. On the Approximation Problem in Nonrecursive Digital Filter Design. IEEE Transactions on Circuit
Theory, 18(3):411–413, May 1971. 743, 744, 745, 747, 752

[162] Octave Forge. Computer-Aided Control System Design. https://octave.sourceforge.io/control/. 671

[163] Octave Forge. Non-linear optimization toolbox. https://octave.sourceforge.io/optim/. 20, 525, 531, 538

[164] Octave Forge. Non-linear optimization toolbox nonlin_min function. https://octave.sourceforge.io/
optim/function/nonlin_min.html. 531

[165] Octave Forge. Parallel execution package. https://octave.sourceforge.io/parallel/. 589

[166] Octave Forge. Signal processing toolbox. https://octave.sourceforge.io/signal/. 66

[167] Octave Forge. Symbolic calculation toolbox. https://octave.sourceforge.io/symbolic/. 580, 878

[168] OpenBlas: An optimised BLAS library. http://www.openblas.net/. 874

[169] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall, 2nd edition, 1998. ISBN
0-13-754920-2. 17, 683, 706, 720, 721, 760

[170] P. A. Regalia. Stable and Efficient Lattice Algorithms for Adaptive IIR Filtering. IEEE Transactions on Signal Processing,
40(2):375–388, February 1992. 291

[171] P. A. Regalia, S. K. Mitra and P. P. Vaidyanathan. The Digital All-Pass Filter: A Versatile Signal Processing Building
Block. Proceedings of the IEEE, 76(1):19–37, January 1988. 20

[172] P. Morse and H. Feshbach. Methods Of Theoretical Physics Part I. McGraw-Hill Book Company, 1953. Library of
Congress Catalog Card Number: 52-11515. 812

[173] P. P. Vaidyanathan. Efficient and Multiplierless Design of FIR Filters with Very Sharp Cutoff via Maximally Flat Building
Blocks. IEEE Transactions on Circuits and Systems, 32(3):236–244, March 1985. 752, 753, 754

[174] P. P. Vaidyanathan. Optimal Design of Linear-Phase FIR Digital Filters with Very Flat Passbands and Equiripple Stop-
bands. IEEE Transactions on Circuits and Systems, 32(9):904–917, September 1985. 731

[175] P. P. Vaidyanathan. Passive Cascaded-Lattice Structures for Low-Sensitivity FIR Filter Design, with Applications to Filter
Banks. IEEE Transactions on Circuits and Systems, 33(11):1045–1064, November 1986. 661, 662, 663

[176] P. P. Vaidyanathan and S. K. Mitra. Low Passband Sensitivity Digital Filters: A Generalized Viewpoint and Synthesis
Procedures. Proceedings of the IEEE, 72(4):404–423, April 1984. 119, 131, 625, 648

[177] P. P. Vaidyanathan and S. K. Mitra. A Unified Structural Interpretation of Some Well-Known Stability-Test Procedures for
Linear Systems. Proceedings of the IEEE, 75(4):478–497, April 1987. 291

[178] P. P. Vaidyanathan and Truong Q. Nguyen. A “TRICK” for the Design of FIR Half-Band Filters. IEEE Transactions on
Circuits and Systems, 34(3):297–300, March 1987. 776

[179] P. P. Vaidyanathan, S. K. Mitra and Y. Nuevo. A New Approach to the Realization of Low-Sensitivity IIR Digital Filters.
IEEE Transactions on Acoustics, Speech and Signal Processing, 34(2):350–361, April 1986. 20, 70, 119, 131, 247, 625,
627

[180] P. Stoica, T. McKelvey and J. Mari. MA Estimation in Polynomial Time. IEEE Transactions on Signal Processing,
48(7):1999–2012, July 2000. 674

[181] P. Zahradník. Equiripple Approximation of Low-Pass FIR Filters. IEEE Transactions on Circuits and Systems-II:Express
Briefs, 65(4):526–530, April 2018. 787

[182] P. Zahradník and M. Vlček. Equiripple Approximation of Half-Band FIR Filters. IEEE Transactions on Circuits and
Systems-II:Express Briefs, 56(12):941–945, December 2009. 17, 778, 779, 780, 781, 783

[183] P. Zahradník, M. Šusta, and B. Šimak. Degree of Equiripple Narrow Bandpass FIR Filter. IEEE Transactions on Circuits
and Systems-II:Express Briefs, 62(8):771–775, August 2015. 787, 795, 796

[184] P. Zahradník, M. Šusta, B. Šimak and M. Vlček. Cascade Structure of Narrow Equiripple Bandpass FIR Filters. IEEE
Transactions on Circuits and Systems-II:Express Briefs, 64(4):407–411, April 2017. 17, 800, 801, 802, 803

[185] P. Zahradník, M.Vlček and R. Unbehauen. Almost Equiripple FIR Half-Band Filters. IEEE Transactions on Circuits and
Systems-I:Fundamental Theory and Applications, 46(6):744–748, June 1999. 777, 778

894

https://octave.sourceforge.io/control/
https://octave.sourceforge.io/optim/
https://octave.sourceforge.io/optim/function/nonlin_min.html
https://octave.sourceforge.io/optim/function/nonlin_min.html
https://octave.sourceforge.io/parallel/
https://octave.sourceforge.io/signal/
https://octave.sourceforge.io/symbolic/
http://www.openblas.net/

[186] Peter Miller. aegis-4.24. https://sourceforge.net/projects/aegis/files/aegis/4.24/aegis-4.
24.tar.gz. 884

[187] Peter Miller. fhist-1.21.D001. http://fhist.sourceforge.net. 884

[188] Peter Miller. libexplain-1.4. http://libexplain.sourceforge.net. 884

[189] Philip Hartman. On Functions Representable as a Difference of Convex Functions. Pacific Journal of Mathematics,
9(3):707–713, July 1959. 862

[190] QEMU : the FAST! processor emulator. https://www.qemu.org/. 881

[191] qrupdate is a Fortran library for fast updates of QR and Cholesky decompositions. https://sourceforge.net/
projects/qrupdate/. 870

[192] Quoc Tran Dinh, Suat Gumussoy, Wim Michiels and Moritz Diehl. Combining Convex–Concave Decompositions and
Linearization Approaches for Solving BMIs, With Application to Static Output Feedback. https://set.kuleuven.
be/optec/Software/softwarefiles/bmipaper, July 2011. Technical Report. 861, 862, 863, 864, 865, 866

[193] R. A. Roberts and C. T. Mullis. Digital Signal Processing. Addison Wesley, 1987. ISBN 0-201-16350-0. 17, 19, 25, 33,
36, 39, 41, 43, 44, 46, 47, 53, 54, 63, 64, 65, 113, 131, 133, 134, 135, 148, 623, 706, 721

[194] R. Ansari and B. Liu. A Class of Low-Noise Computationally Efficient Recursive Digital Filters with Applications to
Sampling Rate Alterations. IEEE Transactions on Acoustics, Speech and Signal Processing, 33(1):90–97, February 1985.
74

[195] R. E. Kalman. Lyapunov Functions for the Poblem of Lur’e in Automatic Control. Proceedings of the National Academy
of Sciences of the United States of America, 49(2):201–205, February 1963. 824

[196] R. H. Tütüncü, K. C. Toh and M. J. Todd. Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical
Programming, Ser. B, 95(2):189–217, 2003. 879

[197] R. J. Duffin and Elmor L. Peterson. Reversed Geometric Programs Treated by Harmonic Means. Indiana University
Mathematics Journal, 22(6):531–550, 1972. 861

[198] R. Levy. Generalized Rational Function Approximation in Finite Intervals Using Zolotarev Functions. IEEE Transactions
on Microwave Theory and Techniques, 18(12):1052–1064, December 1970. 789

[199] R. Orsi, U. Helmke and J. B. Moore. A Newton-like method for solving rank constrained linear matrix inequalities.
Automatica, 42:1875–1882, 2006. 836, 879

[200] R. Rehman and I. C. F. Ipsen. La Budde’s Method for Computing Characteristic Polynomials. http://arxiv.org/
pdf/1104.3769v1, April 2011. 17, 37

[201] R. Sedgwick. Algorithms in C++. Addison-Wesley, 1990. ISBN 0-201-51059-6. 410

[202] R. Storn and K. Price. Differential Evolution - A simple and efficient adaptive scheme for global optimization over contin-
uous spaces. http://www1.icsi.berkeley.edu/ftp/pub/techreports/1995/tr-95-012.pdf. 538

[203] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. ISBN 0-691-08069-0. 557

[204] A. Hansson R. Wallin and L. Vandenberghe. Comparison of two structure-exploiting optimization algorithms for integral
quadratic constraints. http://www.control.isy.liu.se/research/reports/2003/2502.pdf. 846

[205] A. Hansson R. Wallin and L. Vandenberghe. Efficiently solving semidefinite programs originating from the KYP lemma
using standard pimal-dual solvers. http://www.control.isy.liu.se/research/reports/2003/2503.
pdf. 846

[206] Ren Y., Li Q., Liu K.-Z., Ding D.-W. A successive convex optimization method for bilinear matrix inequality problems
and its application to static output-feedback control. Int. J. Robust Nonlinear Control, 31(18):9709–9730, 2021. 845, 861

[207] Richard Lyons. Interpolated Narrowband Lowpass FIR Filters. IEEE Signal Processing Magazine, pages 51–57, January
2003. 178

[208] Rika Ito, Tetsuya Fujie, Kenji Suyama and Ryuichi Hirabayashi. A powers-of-two term allocation algorithm for designing
FIR filters with CSD coefficients in a min-max sense. http://www.eurasip.org/Proceedings/Eusipco/
Eusipco2004/defevent/papers/cr1722.pdf. 17, 19, 20, 376, 410

[209] Rika Ito, Tetsuya Fujie, Kenji Suyama, Ryuichi Hirabayashi. New design method of FIR filters with SP2 coefficients
based on a new linear programming relaxation with triangle inequalities. In 11th European Signal Processing Conference
(EUSIPCO 2002), 2002. 499, 500

895

https://sourceforge.net/projects/aegis/files/aegis/4.24/aegis-4.24.tar.gz
https://sourceforge.net/projects/aegis/files/aegis/4.24/aegis-4.24.tar.gz
http://fhist.sourceforge.net
http://libexplain.sourceforge.net
https://www.qemu.org/
https://sourceforge.net/projects/qrupdate/
https://sourceforge.net/projects/qrupdate/
https://set.kuleuven.be/optec/Software/softwarefiles/bmipaper
https://set.kuleuven.be/optec/Software/softwarefiles/bmipaper
http://arxiv.org/pdf/1104.3769v1
http://arxiv.org/pdf/1104.3769v1
http://www1.icsi.berkeley.edu/ftp/pub/techreports/1995/tr-95-012.pdf
http://www.control.isy.liu.se/research/reports/2003/2502.pdf
http://www.control.isy.liu.se/research/reports/2003/2503.pdf
http://www.control.isy.liu.se/research/reports/2003/2503.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2004/defevent/papers/cr1722.pdf
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2004/defevent/papers/cr1722.pdf

[210] Rizwana Rehman. Numerical Computation of the Characteristic Polynomial of a Complex Matrix. http://www.lib.
ncsu.edu/resolver/1840.16/6262, 2010. 37

[211] Robert Orsi. LMIRank: software for rank constrained LMI problems. https://users.cecs.anu.edu.au/
~robert/lmirank/. 836, 879

[212] S. Boyd and L. Vandenberghe. Convex Opimization. Cambridge University Press, 2008. ISBN 0-521-83378. 20, 552,
861, 863

[213] S. Hammarling. Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation. Systems
and Control Letters, 17:137–139, 1991. 54

[214] S. J. Wright. Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution. Computational Optimization
and Applications, 11:253–275, 1998. 604

[215] S. K. Mitra and K. Hirano. Digital All-Pass Networks. IEEE Transactions on Circuits and Systems, 21(5):688–700,
September 1974. 71, 74

[216] S. K. Mitra and R. J. Sherwood. Canonic Realizations of Digital Filters Using the Continued Fraction Expansion. IEEE
Transactions on Audio and Electroacoustics, 20(3):185–194, August 1972. 33

[217] S.-P. Wu, S. Boyd, and L. Vandenberghe. FIR Filter Design via Semidefinite Programming and Spectral Factorization. In
IEEE Conference on Decision and Control, volume 1, pages 271–276, December 1996. 19

[218] Saed Samadi and Akinori Nishihara. The World of Flatness. IEEE Circuits and Systems Magazine, 7(3, Third Quarter):38–
44, 2007. 743

[219] I. W. Selesnick. A collection of scripts for constrained-least-squares FIR filter design. http://dsp.rice.edu/
software/, Under "FIR and IIR Filter Design Algorithms", Constrained Least Square FIR Filter Design (Redirects to
ConstrainedLeastSquaresAllprogs.tar.zip on web.archive.org). 146

[220] I. W. Selesnick. Exchange Algorithms Complementing the Parks-McClellan Algorithm. http://dsp.rice.edu/
software, Under "FIR and IIR Filter Design Algorithms", Exchange Algorithms Complementing the Parks-McClellan
Algorithm (ParkMcClellansAllPrograms.tar.zip on web.archive.org). 717, 720, 729

[221] I. W. Selesnick. Symmetric FIR Filters - Flat Passbands, Chebyshev Stopbands. http://dsp.rice.edu/
software/, Under "FIR and IIR Filter Design Algorithms", Symmetric FIR Filters - Flat Passbands, Chebyshev Stop-
bands (fircheb.tar.zip on web.archive.org). 740

[222] Seungil You and John C. Doyle. A Lagrangian Dual Approach to the Generalized KYP Lemma. In 52nd IEEE Conference
on Decision and Control, pages 2447–2452, December 2013. 847

[223] Shunsuke Koshita, Satoru Tanaka, Masahide Abe and Masayuki Kawamata. Grammian-Preserving Frequency Transfor-
mation for Linear Discrete-Time Systems Using Normalised Lattice Structure. Proceedings of the IEEE International
Symposium on Circuits and Systems, pages 1124–1127, 2008. 119

[224] Soo-Chang Pei and Peng-Hua Wang. Closed-Form Design of Maximally Flat FIR Hilbert Transformers, Differentiators,
and Fractional Delayers by Power Series Expansion. IEEE Transactions on Circuits and Systems-I:Fundamental Theory
and Applications, 48(4):389–398, April 2001. 757, 758

[225] J. Sturm. SeDuMi_1_3 at GitHub. https://github.com/sqlp/sedumi. 19, 20, 217, 500, 878

[226] J. Sturm. SeDuMi_1_3 at LeHigh University. http://sedumi.ie.lehigh.edu/sedumi. 878

[227] J. Sturm. Using SeDuMi 1.02, A MATLAB Toolbox for Optimization over Symmetric Cones (Updated for Version 1.05).
Octave SeDuMi installation at site/m/SeDuMi/doc/SeDuMi_Guide_105R5.pdf. 667, 671, 672, 878

[228] SymPy Development Team. SymPy. https://www.sympy.org/en/index.html. 878

[229] T. A. Davis et al. SuiteSparse: a suite of sparse matrix packages . http://people.engr.tamu.edu/davis/
suitesparse.html. 870

[230] T. Iwasaki and S. Hara. Generalised KYP Lemma: Unified Characterization of Frequency Domain Inequalities with
Applications to System Design. Technical report, DEPARTMENT OF MATHEMATICAL INFORMATICS, GRADUATE
SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY THE UNIVERSITY OF TOKYO, August 2003. 824

[231] T. Iwasaki and S. Hara. Generalization of Kalman-Yakubovic̆-Popov Lemma for Restricted Frequency Inequalities. In
Proceedings of the American Control Conference, pages 3828–3833, June 2003. 829, 830, 832, 833, 834

[232] T. Iwasaki and S. Hara. Generalised KYP Lemma: Unified Frequency Domain Inequalities With Design Applications.
IEEE Transactions on Automatic Control, 50(1):41–59, January 2005. 824, 834, 838, 839, 840, 849

896

http://www.lib.ncsu.edu/resolver/1840.16/6262
http://www.lib.ncsu.edu/resolver/1840.16/6262
https://users.cecs.anu.edu.au/~robert/lmirank/
https://users.cecs.anu.edu.au/~robert/lmirank/
http://dsp.rice.edu/software/
http://dsp.rice.edu/software/
http://dsp.rice.edu/software
http://dsp.rice.edu/software
http://dsp.rice.edu/software/
http://dsp.rice.edu/software/
https://github.com/sqlp/sedumi
http://sedumi.ie.lehigh.edu/sedumi
https://www.sympy.org/en/index.html
http://people.engr.tamu.edu/davis/suitesparse.html
http://people.engr.tamu.edu/davis/suitesparse.html

[233] T. N. Davidson, Z.-Q. Luo and J. F. Sturm. Linear Matrix Inequality Formulation of Spectral Mask Constraints With
Applications to FIR Filter Design. IEEE Transactions on Signal Processing, 50(11):2702–2715, November 2002. 764,
824

[234] T. Saramäki. Design of Optimum Recursive Digital Filters with Zeros on the Unit Circle. IEEE Transactions on Acoustics,
Speech and Signal Processing, 31(2):450–458, April 1983. 642, 643, 648

[235] T. Saramäki. On the Design of Digital Filters as a Sum of Two All-Pass Filters. IEEE Transactions on Circuits and
Systems, 32(11):1191–1193, November 1985. 648

[236] T. Saramäki. Design of FIR Filters as a Tapped Cascaded Interconnection of Identical Subfilters. IEEE Transactions on
Circuits and Systems, 34(9):1011–1029, September 1987. 800, 814, 815, 816, 817, 819, 820, 822

[237] T. Saramäki, Y.C. Lim and R. Yang. The synthesis of half-band filter using frequency-response masking technique. IEEE
Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 42(1):58–60, January 1995. 360

[238] T. Söderström and P. Stoica. System Identification. Prentice Hall International, http://user.it.uu.se/~ts/
sysidbook.pdf, 1989. ISBN 0-13-881236-5. 674

[239] T. W. Parks and J. H. McClellan. Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase. IEEE
Transactions on Circuit Theory, 19(2):189–194, March 1972. 17, 685, 707, 720, 721, 722, 723, 724, 726, 769

[240] T. Yoshida, Y. Sugiara and N. Aikawa. A General Expression of the Low-Pass Maximally Flat FIR Digital Differentiators.
In Proceedings of the IEEE International Symposium on Circuits and Systems, 2015. 759

[241] Tetsuya Iwasaki, Gjerrit Meinsma and Minyue Fu. Generalised S-Procedure and Finite Frequency KYP Lemma. Mathe-
matical Problems in Engineering, 6:305–320, 2000. 824, 825, 826, 827

[242] The MathWorks. MATLAB: The Language of Technical Computing. http://mathworks.com. 19

[243] Ulf T. Jönsson. A Lecture on the S-Procedure. https://people.kth.se/~uj/5B5746/Lecture.ps. 554,
557, 558

[244] William H. Press Saul A. Teukolsky William T. Vetterling and Brian P. Flannery. Numerical Recipes In C : The Art of
Scientific Computing. Cambridge University Press, 2nd edition, 1992. ISBN: 0-521-43108-5. 563

[245] W.-S. Lu and T. Hinamoto. Optimal Design of IIR Digital Filters With Robust Stability Using Conic Quadratic-
Programming Updates. IEEE Transactions on Signal Processing, 51(6):1581–1592, June 2003. 239, 247

[246] W.-S. Lu and T. Hinamoto. Optimal Design of IIR Frequency-Response-Masking Filters Using Second-Order Cone
Programming. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 50(11):1401–1412,
November 2003. 20, 147, 216, 330, 333, 334, 341, 346

[247] W.-S. Lu and T. Hinamoto. Jointly Optimized Error-Feedback and Realization for Roundoff Noise Minimization in State-
Space Digital Filters. IEEE Transactions on Signal Processing, 53(6):2135–2145, June 2005. 136, 137

[248] W.-S. Lu and T. Hinamoto. Design of FIR Filters with Discrete Coefficients via Polynomial Programming: Towards the
Global Solution. Proceedings of the IEEE International Symposium on Circuits and Systems, pages 2048–2051, 2007.
491

[249] William Schelter. Maxima, a Computer Algebra System. http://maxima.sourceforge.net/. 580, 589

[250] Wolfram. Mathematica. http://functions.wolfram.com/EllipticIntegrals/JacobiZeta/02. 573

[251] Wu-Sheng Lu. Use SeDuMi to Solve LP, SDP and SCOP Problems: Remarks and Examples. http://www.ece.
uvic.ca/~wslu/Talk/SeDuMi-Remarks.pdf. 217, 500

[252] Wu-Sheng Lu. Design of FIR Filters with Discrete Coefficients: A Semidefinite Programming Relaxation Approach.
Proceedings of the IEEE International Symposium on Circuits and Systems, II:297–300, 2001. 499, 500

[253] Wu-Sheng Lu. An Argument-Principle Based Stability Criterion and Application to the Design of IIR Digital Filters.
Proceedings of the IEEE International Symposium on Circuits and Systems, pages 4431–4434, 2006. 147

[254] Xiangkun Chen and T. W. Parks. Equiripple Approximation of Low-Pass FIR Filters. IEEE Transactions on Circuits and
Systems, 33(11):1065–1071, November 1986. 787, 788, 812

[255] Xu Zhong. On Inverses and Generalized Inverses of Hessenberg Matrices. Linear Algebra and its Applications, 101:167–
180, 1988. 291

[256] Y. C. Lim. Frequency-Response Masking Approach for the Synthesis of Sharp Linear Phase Digital Filters. IEEE Trans-
actions on Circuits and Systems, 33(24):357–364, April 1986. 20, 330

897

http://user.it.uu.se/~ts/sysidbook.pdf
http://user.it.uu.se/~ts/sysidbook.pdf
http://mathworks.com
https://people.kth.se/~uj/5B5746/Lecture.ps
http://maxima.sourceforge.net/
http://functions.wolfram.com/EllipticIntegrals/JacobiZeta/02
http://www.ece.uvic.ca/~wslu/Talk/SeDuMi-Remarks.pdf
http://www.ece.uvic.ca/~wslu/Talk/SeDuMi-Remarks.pdf

[257] Y. C. Lim and B. Liu. Design of Cascade Form FIR Filters with Discrete Valued Coefficients. IEEE Transactions on
Acoustics, Speech and Signal Processing, 36(11):1735–1739, November 1988. 800, 814

[258] Y. C. Lim, R. Yang, D. Li and J. Song. Signed Power-of-Two Term Allocation Scheme for the Design of Digital Filters.
IEEE Transactions on Circuits and Systems-II:Analog and Digital Signal Processing, 46(5):577–584, May 1999. 19, 20,
375

[259] Y. Genin, Yu. Nesterov and P. Van Dooren. Optimization over positive polynomial matrices. In Math. Theory Network
Syst. Conf., Perpignan, France, 2000. Paper SI27-7. 676

[260] Y. Nuevo, Dong Chengu-Yu and S. K. Mitra. Interpolated Finite Impulse Response Filters. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 32(3):563–570, June 1984. 749, 752

[261] Z. Doğonata and P. P. Vaidyanathan. On One-Multiplier Implementations of FIR Lattice Structures. IEEE Transactions
on Circuits and Systems, 34(12):1608–1609, December 1987. 404

898

	I State Variable description of digital filters
	A review of the State Variable description of digital filters
	The z-transform
	Filter difference equation
	Filter transfer function
	Filter signal flow graph
	State variable description of a signal flow graph
	Controllability
	Observability
	Coordinate Transformations
	State variable descriptions and the transfer function
	Transformation of a transfer function to a state variable description
	Transformation of a transfer function to a state variable description by continued fraction expansion
	Transformation of a state variable description to a transfer function
	Sensitivity of the state variable description of a transfer function

	Time domain description
	Unit Pulse Response
	Factored state variable descriptions
	Factored state variable filters with fractional delays
	Construction of the factored state variable description

	Block processing and decimation filters

	Frequency transformations of Digital Filters
	Frequency Transformation of the Transfer Function
	Frequency Transformations of State Variable Filters
	An example: frequency transformations of a 5-th order elliptic filter

	Round-off noise in state variable filters
	Quantisation noise in digital filters
	Limit-cycle oscillations in digital filters
	State variable filters and wide sense stationary inputs
	The filter state covariance matrix
	The output response to white noise in a state variable
	Scaling State Variable Filters To Avoid Overflow

	Estimation of output round-off noise in state variable filters
	Rounding-to-minus-infinity quantisation noise

	Minimization of round-off noise in the calculation of the state vector
	Coefficient sensitivity
	Factored state variable filters and wide sense stationary inputs
	Frequency transformations and round-off noise

	State variable filter realisation as a cascade of second order sections
	Second Order State Variable Filters Optimised for Overflow and Round-Off Noise
	Design equations for optimised second order state variable filters
	Block optimal second order cascade filter realisations
	An example of a second-order state-variable cascade filter
	Comparison of calculated noise gains
	Simulation results
	Comparison with an N=10 example

	Coefficient sensitivity and round-off noise of first-order and second-order all-pass filter sections
	Searching for realisations of all-pass filter transfer functions
	Maximum phase gradient and round-off noise of some first-order all-pass filter sections
	Maximum phase gradient and round-off noise of some second-order all-pass filter sections

	Filter synthesis by the Schur decomposition
	The Schur algorithm
	Computation of Schur polynomials
	Orthonormality of Schur Polynomials
	Polynomial Expansion Algorithm
	Power calculation using the Schur algorithm

	Derivation of Digital Lattice Filters
	Derivation of FIR, All-Pole and All-Pass Lattice Filters

	Derivation of the One-Multiplier IIR Lattice Filter
	Derivation of the Normalised Lattice Filter
	Derivation of the Scaled Normalised Lattice Filter
	Example: synthesis of a 3rd order Butterworth lattice filter

	State Variable Descriptions for Schur Lattice Filters
	State variable description of the Schur FIR lattice filter
	State variable description of the one-multiplier IIR lattice filter
	State variable description of a pipelined one-multiplier Schur lattice filter
	State variable description of a doubly-pipelined one-multiplier Schur lattice filter
	State variable description of an all-pass doubly-pipelined one-multiplier Schur lattice filter
	State variable description of the scaled-normalised IIR lattice filter

	Roundoff Noise Calculation in Schur Lattice Filters
	Round-off noise of the normalised-scaled lattice filter
	Round-off noise of the one multiplier lattice filter
	Round-off noise of the pipelined one multiplier lattice filter

	Examples of pipelining Schur lattice filters
	Pipelining a 4th order Schur normalised-scaled lattice filter
	Pipelining a 6th-order Schur one-multiplier lattice filter
	Frequency transformations of pipelined Schur lattice filters

	Summary

	Orthogonal state variable filters
	Definition of orthogonal state variable filters
	The Lattice Orthogonal All-Pass Filter Section
	Noise gain of orthogonal filters
	Realisation of arbitrary filters from orthogonal sub-filters
	An example of structural variations

	Feedforward and feedback of state quantisation error in state variable filters
	Problem formulation
	Minimisation of round-off noise with d=I and n=0

	II Constrained optimisation of the IIR filter frequency response
	IIR filter design using Sequential Quadratic Programming with the transfer function defined by pole and zero locations
	Problem statement
	Solution of the constrained quasi-Newton optimisation problem
	Choice of active constraints
	Linearisation of peak constraints
	Ensuring the stability of the IIR filter
	Selecting an initial filter design

	Examples of IIR filter design with SQP and constrained pole and zero locations
	Introductory comments on the IIR filter design examples
	Tarczynski et al. Example 2
	Deczky's Example 3
	Deczky's Example 1
	Low-pass R=2 decimation filter
	Band-pass R=2 decimation filter
	Hilbert transform R=2 decimation filter
	R=2 differentiator filter
	Low-pass differentiator filter
	Pink noise filter
	Minimum phase R=2 low-pass filter
	Non-linear phase FIR low-pass filter
	Minimum phase FIR bandpass filter

	IIR filter design using Second Order Cone Programming
	Second Order Cone Programming
	Design of IIR filters with SOCP
	Using the SeDuMi SOCP solver
	An example of SOCP design of an IIR filter expressed in gain-zero-pole format with SeDuMi
	SOCP design of a non-linear phase FIR low-pass filter
	Comparison of FIR and IIR low-pass filters having approximately flat pass-band group delay with symmetric FIR filters
	SOCP MMSE design of a bandpass R=2 filter expressed in gain-zero-pole format with SeDuMi
	SOCP MMSE design of a multi-band-pass filter expressed in gain-zero-pole format with SeDuMi

	IIR filter design with a pre-defined structure
	Design of an IIR filter composed of second-order sections
	Linear constraints on the stability of second-order filter sections
	Linear constraints on limit-cycle oscillations in second-order filter sections
	Design of an IIR filter composed of second order sections with SeDuMi
	Some notes on the design of an IIR filter composed of second order sections with SeDuMi

	Design of an IIR filter as the sum of two all-pass filters
	Design of an IIR filter as the sum of two all-pass filters each composed of second-order sections
	Design of an IIR filter as the sum of an all-pass filter composed of second-order sections and a delay
	Design of an IIR filter as the sum of two all-pass filters each represented in pole-zero form
	Design of an IIR filter as the sum of a delay and an all-pass filter represented in pole-zero form
	Design of an IIR filter as the polyphase decomposition into two all-pass filters each represented in pole-zero form

	Design of an IIR Schur lattice filter
	Design of an IIR one-multiplier Schur lattice low-pass filter using SOCP
	Design of an IIR one-multiplier Schur lattice low-pass filter using SQP
	Design of an IIR Schur normalised-scaled lattice low-pass filter using SQP
	Design of an IIR low-pass differentiator filter with a Schur one-multiplier lattice correction filter using SOCP
	Design of an IIR low-pass filter with parallel Schur one-multiplier all-pass lattice filters using SOCP
	Design of an IIR low-pass filter with a delay in parallel with a Schur one-multiplier all-pass lattice filter using SOCP
	Design of a parallel IIR Schur approximately normalised scaled all-pass lattice low-pass filter using SOCP
	Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass filter using SOCP
	Design of an IIR one-multiplier Schur lattice band-pass filter using SQP
	Design of an IIR normalised-scaled Schur lattice band-pass filter using SQP
	Design of an IIR one-multiplier Schur lattice Hilbert filter using SOCP
	Design of an IIR one-multiplier Schur lattice Hilbert filter using SQP
	Design of a parallel IIR Schur one-multiplier all-pass lattice band-pass Hilbert filter using SOCP
	Design of a parallel IIR Schur approximately normalised scaled all-pass lattice band-pass Hilbert filter using SOCP
	Design of a parallel IIR Schur one-multiplier all-pass lattice multi-band-pass filter using SOCP

	Design of IIR filters with a sharp transition band by frequency response masking
	Review of Frequency Response Masking digital filters
	Design of an FRM digital filter with an IIR model filter consisting of a cascade of second-order sections using SOCP
	Design of an FRM digital filter with an IIR model filter represented in gain-pole-zero form using SOCP and PCLS optimisation
	Design of an FRM digital filter with an allpass model filter represented in gain-pole-zero form using SOCP and PCLS optimisation
	Design of an FRM digital filter with an IIR model filter consisting of parallel allpass filters
	Design of an FRM low-pass digital filter with an all-pass Schur lattice model filter in parallel with a delay using SOCP and PCLS optimisation
	Design of an FRM half-band digital filter with an allpass Schur lattice model filter using SOCP and PCLS optimisation
	Design of an FRM Hilbert digital filter with an allpass Schur lattice model filter using SOCP and PCLS optimisation

	III Design of IIR filters with integer coefficients
	Signed-digit representation of filter coefficients
	Lim's method for allocating signed-digits to filter coefficients
	Ito's method for allocating signed-digits to filter coefficients
	Signed-digit allocation of the coefficients of a Schur one-multiplier lattice filter
	Signed-digit allocation of the coefficients of a symmetric FIR band-pass filter

	Exhaustive search for integer and signed-digit filter coefficients
	Searching for integer and signed-digit filter coefficients with the bit-flipping algorithm
	Bit-flipping search for the signed-digit coefficients of a direct-form bandpass IIR filter
	Bit-flipping search for the signed-digit coefficients of a normalised-scaled lattice bandpass IIR filter
	Bit-flipping search for the signed-digit coefficients of a one-multiplier lattice bandpass IIR filter
	Bit-flipping search for the signed-digit coefficients of a one-multiplier parallel-allpass lattice bandpass IIR filter
	Bitflipping search for the signed-digit coefficients of a minimum-phase bandpass FIR filter
	Bit-flipping search for the signed-digit coefficients of a direct-form symmetric bandpass FIR filter

	Branch-and-bound search for signed-digit coefficients
	Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a direct-form symmetric bandpass FIR filter
	Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a lattice band-pass IIR filter
	Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a lattice band-pass IIR filter
	Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a one-multiplier pipelined lattice band-pass filter
	Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a one-multiplier pipelined lattice low-pass filter
	Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass one-multiplier lattice low-pass IIR filter
	Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass normalised-scaled lattice low-pass IIR filter
	Branch-and-bound search for the 8-bit 3-signed-digit coefficients of a parallel all-pass lattice IIR elliptic low-pass filter
	Branch-and-bound search for the 16-bit 4-signed-digit coefficients of a parallel all-pass lattice IIR elliptic low-pass filter
	Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass IIR filter
	Branch-and-bound search for the 10-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass Hilbert IIR filter
	Branch-and-bound search for the 12-bit 3-signed-digit coefficients of a parallel all-pass lattice band-pass Hilbert IIR filter
	Branch-and-bound search for the coefficients of an FRM low-pass filter implemented with 12-bits and an average of 3-signed-digits
	Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FRM Hilbert filter
	Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR Hilbert filter
	Branch-and-bound search for the 12-bit 2-signed-digit coefficients of a FIR Hilbert band-pass filter

	Successive coefficient relaxation search for signed-digit filter coefficients
	SOCP-relaxation search for the signed-digit coefficients of a direct-form symmetric bandpass FIR filter
	SQP-relaxation search for the signed-digit coefficients of a lattice bandpass IIR filter
	SQP-relaxation search for the signed-digit coefficients of a lattice lowpass IIR filter
	SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass lattice low-pass IIR filter
	SOCP-relaxation search for the signed-digit coefficients of a parallel all-pass lattice band-pass IIR filter
	SOCP-relaxation search for the signed-digit coefficients of a lattice Hilbert IIR filter
	SOCP-relaxation search for the signed-digit coefficients of a one-multiplier lattice low-pass differentiator IIR filter
	SOCP relaxation search for the 12-bit, 3-signed-digit coefficients of an FRM low-pass filter
	SOCP relaxation search for the 16-bit, 3-signed-digit coefficients of an FRM low-pass filter
	SOCP-relaxation search for the signed-digit coefficients of an FRM Hilbert IIR filter with an all-pass lattice model filter
	SOCP-relaxation search for the signed-digit coefficients of a direct-form FIR Hilbert filter
	POP relaxation search for the signed-digit coefficients of a one-multiplier lattice bandpass filter
	SOCP-relaxation search for the signed-digit coefficients of a lattice FIR filter

	Semi-definite programming search for integer and signed-digit filter coefficients
	SDP optimisation of the signed-digit coefficients of a direct-form symmetric FIR filter
	SDP optimisation of the signed-digit coefficients of an FIR Hilbert filter
	SDP optimisation of the signed-digit coefficients of an FIR Hilbert band-pass filter
	SDP-relaxation search for the signed-digit coefficients of a lattice bandpass IIR filter
	SDP-relaxation search for the signed-digit coefficients of a parallel allpass lattice elliptic low-pass IIR filter
	SDP-relaxation search for the signed-digit coefficients of a parallel allpass lattice bandpass Hilbert IIR filter

	Comparison of filter coefficient search methods for a 5th order elliptic filter with 6-bit integer and 2-signed-digit coefficients
	Searching with the bit-flipping algorithm
	Searching with the Nelder-Mead simplex algorithm
	Searching with the simulated annealing algorithm
	Searching with the differential evolution algorithm
	Summary of the search algorithm comparison

	IV Appendixes
	Review of Complex Variables
	Complex Functions
	Limit
	The Cauchy-Riemann Equations
	Line integrals in the complex plane
	Cauchy's Integral Theorem
	Cauchy's Integral Formula
	Derivatives of an analytic function
	Laurent's Theorem
	Residues
	Cauchy's Argument Principle
	Rouché's Theorem

	Review of selected results from linear algebra
	Norm of a matrix
	Trace of a matrix
	Rank, range, span and null-space of a matrix
	Matrix determinants
	Definitions
	Matrix exponential

	Positive-definite matrixes
	Schur complement
	Schur complement of a matrix
	Schur complement of a positive definite matrix

	Convex vector spaces
	Definitions on convex sets
	The separating hyperplane theorem
	The S-procedure
	The log det A penalty function

	Review of Chebyshev's polynomials
	Recurrence relations
	Differentiation and integration of the Chebyshev polynomials
	Chebyshev differential equations
	Orthogonality of the Chebyshev polynomials
	Approximation of functions by Clenshaw's recurrence

	Review of Legendre's elliptic integrals and Jacobi's elliptic functions
	Doubly periodic functions
	Legendre's elliptic integrals
	Computation of Legendre's elliptic integrals
	Jacobi's theta functions
	Computation of Jacobi's theta functions
	Jacobi's elliptic functions
	Inverses of Jacobi's elliptic functions
	Elementary identities for the elliptic integrals and elliptic functions
	Related functions
	Octave implementations

	Review of Lanczos tridiagonalisation of an unsymmetric matrix
	Review of Lagrange Interpolation
	The barycentric Lagrange polynomial
	Node distributions

	IIR filter amplitude, phase and group-delay frequency responses
	IIR filter responses
	IIR filter amplitude response
	IIR filter phase response
	IIR filter group-delay response

	Partial derivatives of the IIR filter responses
	Partial derivatives of the IIR filter amplitude response
	Partial derivatives of the IIR filter phase response
	Partial derivatives of the IIR filter group-delay response

	Second partial derivatives of the IIR filter response
	Second partial derivatives of the IIR filter amplitude response
	Second partial derivatives of the IIR filter phase response
	Second partial derivatives of the IIR filter group-delay response

	Octave implementations

	Gradient of the IIR filter amplitude response with respect to frequency
	Allpass filter frequency response
	Allpass filter phase response
	Allpass filter group delay response

	Gradients of the state variable filter frequency response
	Gradients of the state variable filter complex frequency response
	State variable filter squared-magnitude response
	State variable filter phase response
	State variable filter group-delay response

	Constrained non-linear optimisation
	Newton's method for a quadratic function
	Lagrange multipliers
	The dual problem
	Karush-Kuhn-Tucker conditions for constrained optimisation
	Constrained optimisation using Newton's method
	Local convergence
	Quasi-Newton methods
	Updating the Hessian approximation with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula
	A modified Cholesky factorisation of the Hessian
	Wright's modification for degenerate constraints
	Bertsekas' modification to the Hessian

	Penalty and barrier methods
	Penalty functions
	Barrier functions

	Finding the step size
	Line search with the Golden-Section
	Inexact step-size selection
	Lanczos step-size selection

	Initial solution with the Goldfarb-Idnani algorithm
	Implementation examples

	Fourier transform of the Gaussian function
	Preliminary results
	Integral of the Gaussian function
	Fourier transform of the derivative of a function

	Derivation of the Fourier transform of the Gaussian function in the frequency domain

	Design of IIR digital filter transfer functions
	Design of discrete time filters with the bilinear transform
	Design of Butterworth IIR filters

	Low passband sensitivity IIR filters
	Structural Boundedness
	Filter realisation as the sum of all-pass functions
	A note on the numerical calculation of the spectral factor
	Examples of parallel all-pass filter synthesis

	Design of Elliptic IIR filters with a reduced number of multipliers
	Elliptic filter design with the Landen transformation
	Design of elliptic filters with minimal-Q

	Saramäki's method for the design of IIR filters with zeros on the unit circle
	Optimisation of a low-pass filter with denominator order higher
	Optimisation of a low-pass filter with denominator order lower
	Surma-aho and Saramäki method of unconstrained optimisation of an initial IIR filter

	Johansson and Saramäki design of all-pass complementary IIR filters

	Design of FIR digital filter transfer functions
	Low passband sensitivity FIR lattice filters
	Lattice decomposition of an FIR digital filter
	Finite-wordlength properties of the lattice FIR filter
	State variable description of the complementary FIR lattice filter
	Design of the complementary FIR digital filter
	Example: the minium-phase complementary filter of an FIR bandpass filter
	Estimating the MA coefficients of a filtered noise sequence
	Design of a complementary FIR lattice band-pass Hilbert filter

	Design of FIR digital filters with unconstrained optimisation of the piece-wise mean-squared error of the response
	Zero-phase transfer functions of symmetric FIR filters
	Piece-wise mean-squared-error of the response of an FIR filter
	Examples of the design of FIR filters with unconstrained optimisation

	PCLS design of symmetric FIR digital filters with Lagrange multipliers
	Examples of the design of constrained least-squared error symmetric FIR filters with optimisation by the method of Lagrange multipliers

	PCLS design of non-symmetric FIR filters with SOCP
	Frequency response and gradients of a non-symmetric FIR filter
	Examples of the PCLS design of non-symmetric FIR filters with SOCP optimisation

	Constrained mini-max error optimisation of FIR digital filters
	The alternation theorem
	Hofstetter's algorithm for mini-max FIR filter approximation
	Parks-McClellan algorithm for mini-max FIR filter approximation

	Design of FIR filters with maximally-linear pass-bands and equi-ripple stop-bands using the Parks-McClellan algorithm
	Design of FIR low-pass filters with maximally-flat pass-bands and equi-ripple stop-bands
	Design of FIR band-pass filters with maximally-flat pass-bands and equi-ripple stop-bands
	Design of maximally-linear FIR low-pass differentiators with equi-ripple stop-bands

	Closed-form design of maximally-linear FIR filters
	Closed-form design of maximally-flat low-pass FIR filters
	Closed-form design of maximally-flat FIR half-band filters
	Closed-form design of maximally-flat FIR Hilbert filters
	Closed-form design of maximally-linear FIR low-pass differentiators

	Linear Matrix Inequality(LMI) design of symmetric FIR filters
	The Markov-Lukacs theorem
	Trigonometric curves
	Moment matrix of trigonometric curves
	A Markov-Lukacs theorem for trigonometric curves
	The conic hull of Cab
	Optimisation of the dual of a convex quadratic objective function
	Example of LMI design of a low pass symmetric FIR filter
	Example of LMI design of a band-pass symmetric FIR filter

	Design of half-band FIR filters
	Vaidyanathan's ``TRICK'' for the design of FIR half-band filters
	Design of equi-ripple FIR half-band filters

	Design of equi-ripple FIR filters with Zolotarev polynomials
	The Zolotarev polynomials
	Narrow-band FIR filter design with the Zolotarev polynomials
	Almost equi-ripple low-pass FIR filter design with the Zolotarev polynomials

	Design of FIR filters as a tapped cascade of sub-filters
	Transformations of linear-phase FIR filters
	Frequency-domain constraints on the prototype and sub-filter
	Filter design
	Filter design examples

	Application of the Kalman-Yakubovic̆-Popov lemma to digital filter design
	The continuous-time KYP lemma
	A generalised S-procedure
	A finite-frequency continuous-time KYP lemma

	Iwasaki and Hara's generalised KYP lemma for discrete-time systems
	Frequency transformations in the complex plane
	A generalised discrete-time KYP lemma
	Examples of FIR filter design with the generalised KYP lemma
	Rantzer's transformation of the KYP lemma from discrete-time to continuous-time
	Finsler's lemma transformation of the generalised KYP lemma
	The dual of the KYP lemma

	Generalisation of the KYP lemma to the union of disjoint frequency intervals
	Union of frequency intervals
	Generalised KYP lemma over a union of frequency intervals
	Examples of FIR filter design with the generalised KYP lemma extended to the union of disjoint frequency bands

	Design of one-multiplier Schur lattice filters with the KYP lemma
	Preliminaries
	Sequential approximation of BMI constraints
	Design of Schur lattice filters with BMI constraints derived from the KYP lemma

	Colophon
	Requirements
	Makefile
	Octave
	Building Octave
	Benchmarking Octave

	Profiling Octave
	Solvers
	SeDuMi
	SparsePOP
	SDPT3
	YALMIP
	LMIRank
	gloptipoly3
	SDPA
	SCS

	QEMU emulation
	Testing
	Aegis
	Monochrome printing

	Bibliography

