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Abstract

This article describes a computer-aided procedure for approximating an arbitrary transfer function by a tapped one-multiplier
all pass lattice filter with integer coefficients. The all pass lattice has a simple stability criterion, that the lattice coefficients
have magnitude less than unity, and, in addition, has good coefficient sensitivity and round-off noise properties. The procedure
consists of finding an initial filter transfer function, performing constrained minimum-mean-squared-error optimisation of the
filter response and searching for the fixed point filter coefficients.

1 Introduction

The Infinite Impulse Response (IIR) digital filter transfer function is a rational polynomial:

F (z) = BN (z)
AN (z) = b0 + b1z−1 + · · · + bN z−N

1 + a1z−1 + · · · + aN z−N
(1)

Here z is a complex number and the response of the filter with respect to angular frequency, ω, is F (eıω), where ω = 2π
corresponds to the digital sampling frequency. This article describes a method for computer-aided design of the frequency
response of F (eıω). If the filter has AN (z) = 1 then it is a Finite Impulse Response (FIR) filter and the optimisation problem
is convex, has no constraints on the coefficients and is solved by well-known algorithms that minimise the peak error or the
least-squared-error [7, 10, 11, 12, 13, 29, 31, 32]. Otherwise, the filter is an Infinite Impulse (IIR) filter. An IIR filter is stable if
the roots, Pk, of the denominator polynomial, AN (z), lie within the unit circle, |Pk| < 1. Lang [19] applies Rouché’s theorem to
constrain the zeros of AN (z) during optimisation. Lu and Hinamoto [33] decompose F (z) into a series connection of second-
order sections and apply the “stabiliy triangle” to each section to ensure filter stability after optimisation. If the transfer function
is represented in gain-pole-zero form:

F (z) = G

∏N
k=1 (z − Zk)∏N
k=1 (z − Pk)

where G is the gain factor, the Zk are the roots of BN (z) and the Pk are the roots of AN (z), then the constraints on the
pole locations of F (z) are |Pk| < 1. Deczky [1] and Richards [18] demonstrate the optimisation of stable IIR filter transfer
functions expressed in gain-pole-zero form. Lattice filters are an alternative implementation of the IIR filter transfer function [23].
Vaidyanathan et al. [24, 22] show that a subset of the F (z) transfer functions can be factored into the parallel sum of two all pass
filters and that the resulting implementation has good coefficient sensitivity properties. They show lattice filter implementations
of these all pass sections that are “structurally bounded” meaning that the section is all pass regardless of the values of the
coefficients. Gray and Markel [2, 14] describe the implementation of F (z) as a tapped all pass lattice filter based on the Schur
polynomial decomposition algorithm [30, 8]. The Schur algorithm enables the decomposition of the denominator polynomial of
the transfer function, F (z), into a set of orthogonal polynomials. A result of this decompostion is a set of coefficients, often
called “reflection coefficients”, that have magnitude less than unity if-and-only-if the poles of the transfer function lie within the
unit circle in the complex plane. Further, the numerator polynomial of F (z) can be expressed as a weighted sum of the orthogonal
polynomials. These coefficients and orthogonal polynomials correspond to a tapped all pass lattice filter implementation of the
transfer function that has good round-off noise and coefficient sensitivity when the coefficients are truncated to integer values.
This article reviews computer-aided techniques for designing tapped Schur lattice filters with integer coefficients : finding an
initial IIR filter transfer function, constrained minimum-mean-squared-error optimisation of the filter frequency response in
terms of the lattice coefficients and searching for integer filter coefficients. As an example, I demonstrate the design of a tapped
Schur lattice implementation of a low pass differentiator filter. The coefficients and frequency response plots for this example
are created with Octave [15, 20, 21]. The source code for this article is available at https://github.com/robertgj/
DesignOfIIRFilters.
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2 Schur lattice filters

2.1 The Schur polynomial decomposition

In 1918 Issai Schur [8] published a paper entitled “On power series which are bounded in the interior of the unit circle”. From
the abstract:

The continued fraction algorithm introduced here very easily supplies an intrinsically important parametric rep-
resentation for the coefficients of the power series to be considered.

Kailath [30] reviews the impact of this algorithm on modern signal processing. Gray and Markel describe the application of a
similar algorithm to the autocorrelation analysis of speech [14] and to the synthesis of lattice digital filters [2]. In the following I
use the inner product method of Markel and Gray [14] and Parhi [16, Chapter 12 and Appendix D].

Initialise an N ’th order polynomial as:

ΦN (z) = AN (z) =
N∑

n=0
ϕnzn

and define the reverse polynomial:

Φ̂N (z) = zN ΦN

(
z−1)

The transfer function Φ̂N (z) /ΦN (z) represents an all pass filter. The Schur decomposition forms the polynomial ΦN−1 (z) as:

ΦN−1 (z) =
z−1

[
ΦN (z) − kN Φ̂N (z)

]
sN

where sN is a scaling constant and kN = ϕ0/ϕN = ΦN (0) /Φ̂N (0). The degree of ΦN−1 (z) is 1 less than that of ΦN (z)
since, by a change of variables, the numerator is:

z−1
{

ϕN ΦN (z) − ϕ0Φ̂N (z)
}

= z−1
N∑

n=0
{ϕN ϕnzn − ϕ0ϕN−iz

n}

=
N∑

n=1
{ϕN ϕn − ϕ0ϕN−i} zn−1

This degree reduction procedure is continued, resulting in the set of polynomials {ΦN (z) , ΦN−1 (z) , . . . , Φ0 (z)}:

Φn−1 (z) =
z−1

{
Φn (z) − knΦ̂n (z)

}
sn

(2)

and

Φ̂n−1 (z) =

{
Φ̂n (z) − knΦn (z)

}
sn

Markel and Gray [14, Equations 13a and 13b] define an inner product of two polynomials, P (z) and Q (z):

⟨P (z) , Q (z)⟩ = 1
2πı

‰
C

P (z) Q
(
z−1)

AN (z) AN (z−1)
dz

z

where all the zeros of AN (z) lie within the contour C. Two properties of Φn (z) under this inner product are:

1. The Φn (z) polynomials are orthogonal [16, Appendix D]:

⟨Φm (z) , Φn (z)⟩ = 0 if m ̸= n

2. For 1 ≤ n ≤ N , |kn| < 1 if-and-only-if the zeros of AN (z) lie within the unit circle [14, pages 72 and 74]

In addition, if sn =
√

1 − k2
n , then the Φn polynomials are orthonormal [16, Appendix D]:

⟨Φn (z) , Φn (z)⟩ = 1
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Figure 1: All pass Schur one multiplier lattice filter section
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Figure 2: Second-order tapped Schur one-multiplier lattice filter

2.2 The Schur one-multiplier lattice filter

In Equation 2, choose sn = 1 − ϵnkn, where ϵn = ±1, and initialise ΛN (z) = AN (z). Then:

Λn−1 (z) =
z−1

{
Λn (z) − knΛ̂n (z)

}
1 − ϵnkn

(3a)

Λ̂n−1 (z) =

{
Λ̂n (z) − knΛn (z)

}
1 − ϵnkn

(3b)

where:

kn = Λn (0)
Λ̂n (0)

= Φn (0)
Φ̂n (0)

Rearranging Equation 3b and substituting it into Equation 3a gives:

zΛn−1 (z) = (1 + ϵnkn) Λn (z) − knΛ̂n−1 (z)

Λ̂n (z) = knΛn (z) + (1 − ϵnkn) Λ̂n−1 (z)

Figure 1 shows the corresponding all pass Schur one multiplier lattice filter section.

The expansion of the numerator polynomial of the transfer function, F (z), in the orthogonal basis, Λn (z), is [16, Section 12.2.3]:

BN (z) =
N∑

n=0
cnΛn (z)

Figure 2 shows the tapped Schur one multiplier lattice filter implementation of a second order transfer function.

The relation between Λn (z) and Φn (z) is:

ΛN (z) = ΦN (z)

Λn (z) = Φn (z)

√
(1 + ϵN kN ) (1 + ϵN−1kN−1) · · · (1 + ϵn+1kn+1)
(1 − ϵN kN ) (1 − ϵN−1kN−1) · · · (1 − ϵn+1kn+1)

The Λn (z) polynomials are orthogonal but not orthonormal since:

⟨Λn (z) , Λn (z)⟩ = ⟨Λ̂n (z) , Λ̂n (z)⟩

= (1 + ϵN kN ) (1 + ϵN−1kN−1) · · · (1 + ϵn+1kn+1)
(1 − ϵN kN ) (1 − ϵN−1kN−1) · · · (1 − ϵn+1kn+1)
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Algorithm 2.1 One multiplier lattice sign assignment [2, p. 496].
Assume that kl has the largest magnitude of the kn for n = 1, 2, . . . , N . Define the quantities

Qn = ⟨Λn (z) , Λn (z)⟩
⟨Λl (z) , Λl (z)⟩

qn = 1 + |kn|
1 − |kn|

so that Ql = 1. Each Qn should be as large as possible without exceeding Ql. Successive ratios are:

Qn

Qn+1
=

{
qn if ϵn = sign (kn)
1/qn if ϵn = − sign (kn)

(4)

Now assign the ϵn:
for n = l − 1, l − 2, . . . , 1 do

if Qn+1 < 1/qn then
ϵn = − sign (kn)

else
ϵn = sign (kn)

end if
end for
for n = l + 1, l + 2, . . . , N do

if Qn < 1/qn then
ϵn = sign (kn)

else
ϵn = − sign (kn)

end if
end for

If the input signal is random and white with unit power then the average power at an internal node, xn, is ⟨Λn (z) , Λn (z)⟩.
The magnitude of ⟨Λn (z) , Λn (z)⟩ can be adjusted by choosing the sign parameters, ϵN , ϵN−1 . . . , ϵn+1. Gray and Markel [2,
p. 496] suggest that one criterion for choosing the sign parameters is to require that the node associated with the largest kn

parameter in magnitude have the largest amplitude. The sign parameters are found recursively by requiring that the amplitudes
at other nodes be as large as possible without exceeding the maximum value. If the maximum occurs for kl then the recursion
proceeds for n = l − 1, l − 2, . . . , 0 and again for n = l + 1, l + 2, . . . , N . The recursion is simple because:

⟨Λn (z) , Λn (z)⟩
⟨Λn+1 (z) , Λn+1 (z)⟩ = 1 + ϵn+1kn+1

1 − ϵn+1kn+1

By changing the sign parameter, this ratio can always be made smaller or larger than one. Algorithm 2.1 shows the method used
to assign the sign parameters described by Gray and Markel [2, p. 496].

2.3 State variable descriptions of the Schur one multiplier lattice filter

The state variable representation of a filter is: [
x′

y

]
=

[
A B
C D

] [
x
u

]
(5)

where u is the input, x is the filter state, for convenience x′ = z x, and y is the filter output. u and y may be vectors. A is called
the state transition matrix. Examination of Figure 1 and Figure 2 suggests that the calculation of the all pass output, ŷ, of the
tapped Schur lattice filter can be represented as a matrix product:



ŷ0
x1
x2
...

xN−1
u


=



1 0 · · · · · · 0

0 1
...

...
. . .

. . .
...

0 1 0
0 · · · · · · 0 1





x0
x1
x2
...

xN−1
u


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Algorithm 2.2 Construction of a state variable description of the Schur one multiplier lattice filter.
Given {k1, k2, . . . , kN }, {ϵ1, ϵ2, . . . , ϵN } and {c0, c1, . . . , cN }:

ŷ0 = x0
for n = 1, . . . , N − 1 do

x′
n−1 = −knŷn−1 + (1 + knϵn) xn

ŷn = (1 − knϵn) ŷn−1 + knxn

end for
x′

N−1 = −kN ŷN−1 + (1 + kN ϵN ) u
ŷ = (1 − kN ϵN ) ŷN−1 + kN u
y = c0x0 + c1x1 + · · · + cN−1xN−1 + cN u



x′
0

ŷ1
x2
...

xN−1
u


=



−k1 (1 + k1ϵ1) 0 · · · · · · 0

(1 − k1ϵ1) k1 0
...

0 0 1
...

. . .
...

0 1 0
0 · · · · · · 0 1





ŷ0
x1
x2
...

xN−1
u




x′
0

x′
1

ŷ2
...

xN−1
u


=



1 0 0 0 · · · 0

0 −k2 (1 + k2ϵ2) 0
...

0 (1 − k2ϵ2) k2 0
...

. . .
...

0 1 0
0 · · · · · · 0 1





x′
0

ŷ1
x2
...

xN−1
u



...



x′
0

x′
1
...

x′
N−2

ŷN−1
u


=



1 0 · · · · · · 0

0 1
...

...
. . .

...
0 −kN−1 (1 + kN−1ϵN−1) 0
0 (1 − kN−1ϵN−1) kN−1 0
0 · · · · · · 0 0 1





x′
0
...

x′
N−3

ŷN−2
xN−1

u




x′
0

x′
1

x′
2
...

x′
N−1
ŷ


=



1 0 · · · · · · 0

0 1
...

...
. . .

...
0 1 0 0
0 0 −kN (1 + kN ϵN )
0 · · · 0 (1 − kN ϵN ) kN





x′
0

x′
1
...

x′
N−2

ŷN−1
u


The construction of the state variable description of the Schur one multiplier lattice filter is summarised in Algorithm 2.2.

The state variable matrix calculations for a second order tapped Schur one muliplier lattice filter are:
x′

0
x′

1
ŷ
y

 =


−k1 1 + ϵ1k1 0

−k2 (1 − ϵ1k1) −k1k2 1 + ϵ2k2
(1 − ϵ1k1) (1 − ϵ2k2) k1 (1 − ϵ2k2) k2

c0 c1 c2


 x0

x1
u


The latency in the arithmetic calculation of y and ŷ increases with the filter order. Parhi [16, Chapter 4 and Section 12.8] describes
the retiming and pipelining of lattice filters for reduced latency. One method is to design the lattice filter with coefficients of the
denominator polynomial, AN (z), only in z−2n, where N is even and n = 1, . . . , N

2 . Deczky [1] and Richards [18] describe such
filters as R = 2. Figure 3 shows such a fourth order tapped Schur one multiplier lattice filter with and without pipelining.
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(a) Without pipelining

y
x3

z−1

u z−1
x4

z−1
x1

z−1
x0

ŷ
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(b) With pipelining

Figure 3: Fourth-order tapped Schur one-multiplier lattice filter with denominator coefficients only for z−2n

Algorithm 2.3 Construction of a state variable description of the pipelined tapped Schur one multiplier lattice filter with denom-
inator polynomial coefficients only for z−2n.
Given N even, {k2, k4 . . . , kN }, {ϵ2, ϵ4, . . . , ϵN } and {c0, c1, . . . , cN }:

x′
0 = x1

x′
1 = −k2x0 + (1 + k2ϵ2) x4

x′
2 = (1 − k2ϵ2) x0 + k2x4

x′
3 = c0x0 + c1x1 + c2x4

for n = 2, . . . , N
2 − 1 do

x′
3n−2 = −k2nx3n−4 + (1 + k2nϵ2n) x3n+1

x′
3n−1 = (1 − k2nϵ2n) x3n−4 + k2nx3n+1

x′
3n = x3n−3 + c2n−1x3n−2 + c2nx3n+1

end for
x′

3 N
2 −2 = −kN x3 N

2 −4 + (1 + kN ϵN ) u

ŷ = (1 − kN ϵN ) x3 N
2 −4 + kN u

y = x3 N
2 −3 + cN−1x3 N

2 −2 + cN u

The state variable matrix calculations for a pipelined fourth order tapped Schur one-muliplier lattice filter with denominator
polynomial coefficients only for z−2n are:



x′
0

x′
1

x′
2

x′
3

x′
4

ŷ
y


=



0 1 0 0 0 0
−k2 0 0 0 1 + ϵ2k2 0

1 − ϵ2k2 0 0 0 k2 0
c0 c1 0 0 c2 0
0 0 −k4 0 0 1 + ϵ4k4
0 0 1 − ϵ4k4 0 0 k4
0 0 0 1 c3 c4




x0
x1
x2
x3
x4
u



The construction of the state variable description of the pipelined tapped Schur one multiplier lattice filter with denominator
polynomial coefficients only for z−2n is summarised in Algorithm 2.3.

2.4 Frequency response of the tapped Schur one multiplier lattice filter

Eliminating the filter state, x, from Equation 5 gives:

F (z) = C (zI − A)−1 B + D (6)

6



Thiele [17] uses the identity:

RR−1 = I
∂R
∂χ

R−1 + R ∂R−1

∂χ
= 0

∂R
∂χ

= −R ∂R−1

∂χ
R

Theile shows the sensitivity functions of F (z) with respect to the components α, β, γ and δ of A, B, C and D respectively:

∂F
∂z

= −C (zI − A)−2 B

∂F
∂α

= C (zI − A)−1 ∂A
∂α

(zI − A)−1 B

∂F
∂β

= C (zI − A)−1

∂F
∂γ

= (zI − A)−1 B

∂F
∂δ

= I

Substituting z = eıω into Equation 6 gives the complex frequency response of the state variable filter on the unit circle. In
the following I will use R = (eıωI − A)−1. The components α of A, etc. may themselves be functions of other variables
(for example, the c and k coefficients of a tapped Schur one multiplier lattice filter) that I will represent by χ. The sensitivity
functions of the complex frequency response F (eıω) with respect to ω and χ are:

∂R
∂ω

= − ıeıωRR

∂F
∂ω

= − ıeıωCRRB

∂F
∂χ

=∂C
∂χ

RB + CR ∂A
∂χ

RB + CR ∂B
∂χ

+ ∂D
∂χ

∂2F
∂χ∂ω

= − ıeıω

[
∂C
∂χ

RRB + CRR ∂A
∂χ

RB + CR ∂A
∂χ

RRB + CRR ∂B
∂χ

]

The complex frequency response of the filter is:

F = ℜF + ıℑF

The squared-magnitude response of the filter is:

|F|2 = ℑF2 + ℜF2

The gradients of the squared-magnitude response of the filter with respect to the Schur lattice filter coefficients are:

∂ |F|2

∂χ
= 2

[
ℑFℑ∂F

∂χ
+ ℜFℜ∂F

∂χ

]

The gradient of the squared-magnitude response of the filter with respect to the angular frequency is:

∂ |F|2

∂ω
= 2

[
ℑFℑ∂F

∂ω
+ ℜFℜ∂F

∂ω

]
so that:

∂2 |F|2

∂ω∂χ
= 2

[
ℑ∂F

∂χ
ℑ∂F

∂ω
+ ℑFℑ ∂2F

∂ω∂χ
+ ℜ∂F

∂χ
ℜ∂F

∂ω
+ ℜFℜ ∂2F

∂ω∂χ

]

The phase response, P , of the filter is:

P = arctan ℑF
ℜF
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The gradients of the phase response of the filter with respect to the Schur lattice filter coefficients are given by:

|F|2 ∂P

∂χ
= ℜFℑ∂F

∂χ
− ℑFℜ∂F

∂χ

The group delay response, T , of the filter is:

T = −∂P

∂ω

so that:

|F|2 T = −
[
ℜFℑ∂F

∂ω
− ℑFℜ∂F

∂ω

]

The gradients of the group delay response with respect to the Schur lattice filter coefficients are given by:

∂ |F|2

∂χ
T + |F|2 ∂T

∂χ
= −

[
ℜ∂F

∂χ
ℑ∂F

∂ω
+ ℜFℑ ∂2F

∂χ∂ω
− ℑ∂F

∂χ
ℜ∂F

∂ω
− ℑFℜ ∂2F

∂χ∂ω

]

3 Computer-Aided-Design of Schur lattice filters

The filter design procedure commences with the specification of the required filter amplitude, phase and group delay responses.
The optimisation of an IIR frequency response with respect to the coefficients is not a convex problem. I hope to find a “good
enough” design rather than a global optimum.

One formulation of the filter optimisation problem is to minimise the weighted squared error of the frequency response of F (z):

minimise EF (χ) =
ˆ

W (ω) |F (ω) − Fd (ω)|2 dω

subject to F (ω) is stable
(7)

where χ is the coefficient vector of the filter, F (z), EF (χ) is the weighted sum of the squared error, F (ω) is the filter frequency
response, W (ω) is the frequency weighting and Fd (ω) is the desired filter complex frequency response. The integrand of
Equation 7 could be the weighted sum of one or more of the squared-magnitude, phase or group delay responses.

The filter response optimisation problem can also be expressed as a mini-max optimisation problem:

minimise max |F (ω) − Fd (ω)|
subject to F (ω) is stable

(8)

I begin by finding an initial filter design that approximates the desired response, then optimising the minimum mean-squared-
error of the calculated response and, if desired, finding a mini-max approximation to the desired response. Finally, I describe
two methods of searching for integer valued filter coefficients: a depth-first branch-and-bound search and a successive relaxation
method.

3.1 Finding an initial filter

The initial filter could be an FIR filter or a “classical” Butterworth, Chebyshev, etc. IIR filter design. Deczky [1] and Richards [18]
begin with an initial filter consisting of a “by-eye” arrangement of the filter poles and zeros. Tarczynski et al. [4] propose
minimising the filter response mean-squared-error, EF , weighted with a barrier function:

(1 − λ) EF + λ

T +M∑
t=T +1

h2 (t) (9)

where λ, T and M are suitable constants and h (t) is the impulse response of the filter H (z) = 1
AN (z) . The barrier function (the

second part of Equation 9) is intended to be small when the filter, F (z), is stable and increase rapidly when the poles approach
the unit circle. Tarczynski et al. provide heuristics for selecting λ, T and M . Typically, λ ∈

[
10−10, 10−3]

, T ∈ [100, 500] and

8



M = NR. Roberts and Mullis [25, Section 8.3] show that the state space description of the direct-form implementation of H (z)
is: [

x (t + 1)
y (t)

]
=

[
A B
C D

] [
x (t)
u (t)

]
where:

A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−aN −aN−1 · · · −a1


B =

[
0 0 · · · 0 1

]⊤

C =
[

−aN · · · −a1
]

D = 1

The corresponding impulse response is [25, Equation 8.3.21]:

h (t) =


0 t < 0
D t = 0
CAt−1B t > 0

3.2 Minimum-Mean-Squared-Error optimisation of IIR filters

Minimisation of the mean squared error of the filter response proceeds by successive solution of the following linear approxima-
tion problem for ∆χ:

minimise ϵ + β

subject to ∥EF (χ) + ∆χ∇EF (χ)∥ ≤ ϵ

∥∆χ∥ ≤ β

F (ω) is stable

(10)

After each step the new coefficient vector is χ + ∆χ.

In fact I replace EF with an approximation to the sum at discrete frequencies of the weighted squared error of the real valued
squared magnitude, phase, group delay and the gradient of the squared magnitude with respect to angular frequency. For example,
the first order approximation to the squared error of the group delay, T , is:

ĒT (χ + ∆χ) ≈
∑

ω

WT (ω) [T (χ, ω) + ∆χ∇χT (χ, ω) − Td (ω)]2

with gradient with respect to χ:

∇χĒT (χ) ≈ 2
∑

ω

WT (ω) [T (χ, ω) − Td (ω)] ∇χT (χ, ω)

The required gradients of the state variable filter frequency response were derived in Section 2.4.

3.3 Peak-Constrained-Least-Squares optimisation of IIR filters

Linear phase FIR filter design algorithms [5, 32, 10, 12] commonly employ an “exchange algorithm” that, given an initial
approximation to the desired amplitude response, finds the extremal frequencies of that response and interpolates the coefficients
to obtain a new set of filter coefficients that achieves the desired ripple values at all of those frequencies. The process repeats
until a satisfactory mini-max amplitude response is found. I have successfully solved the IIR mini-max problem of Equation 8
with a modified version of the “Peak-Constrained-Least-Squares” (PCLS) algorithm of Selesnick, Lang and Burrus [12, p.498].
They describe the exchange of amplitude response, A (ω), constraints as follows:

After each iteration, the algorithm checks the values of A (ω) over the previous constraint set frequencies. . . .
However, if it is found that A (ω) violates the constraints at some frequency belonging to the previous constraint set,
R, then i) that frequency where the violation is greatest is appended to the current constraint set, S, and ii) the same
frequency is removed from the record of previous constraint set frequencies, R.

9



Start

Initialise R to empty.
Initialise S to the
constraints violated
by the initial filter.

Solve the filter
optimisation problem
with the S constraints.

Are any R
constraints
violated?

Yes

No

Move the most violated
constraint in R to S.

Overwrite R with S.

Find the current
violated constraints, S.

Is S empty?
No

Yes

Stop

Figure 4: Modified Selesnick, Lang and Burrus exchange algorithm [12, p.498].
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Figure 4 shows a flow-chart of the modified Selesnick, Lang and Burrus exchange algorithm.

Similarly to ĒT , the PCLS constraints for the group delay response, T (χ, ω), are approximated to first order by:

Tl (ω) ≤ T (χ, ω) + ∆χ∇χT (χ, ω) ≤ Tu (ω)

where Tl (ω) and Tu (ω) are the lower and upper constraints on the group delay.

The modified PCLS mini-max optimisation is:

minimise ϵ + β

subject to ∥ĒF (χ) + ∆χ∇ĒF (χ)∥ ≤ ϵ

∥∆χ∥ ≤ β

F (ω) is stable
PCLS response constraints are satisfied

(11)

3.4 Second Order Cone Programming

Alizadeh and Goldfarb [6] describe Second Order Cone Programming (SOCP) as the solution of a class of convex optimisation
problems in which a linear function is minimised subject to a set of conic constraints. In the following example I use the
SeDuMi (Self-Dual-Minimisation) SOCP solver originally written by Jos Sturm [28]. Lu [34, Section III] provides an example
of expressing an optimisation problem of Equation 11 in the form accepted by SeDuMi. In Lu’s notation the problem is:

minimise b⊤x (12a)

subject to ∥A⊤
i x + ci∥ ≤ b⊤

i x + di for i = 1, . . . , q (12b)

D⊤x + f ≥ 0 (12c)

where x ∈ Rm×1, b ∈ Rm×1, Ai ∈ Rm×(ni−1) 1, ci ∈ R(ni−1)×1, bi ∈ Rm×1, di ∈ R for 1 ≤ i ≤ q, D ∈ Rm×p and
f ∈ Rp×1. The problem is cast into SeDuMi format by defining:

At =
[
−D A

(1)
t . . . A

(q)
t

]
A

(i)
t = − [bi Ai]
bt = −b

ct =
[
f ; c

(1)
t ; . . . c

(q)
t

]
c

(i)
t = [di; ci]

For Equation 11, x = [ϵ, β, χ], Equation 12b applies the conic constraints on the linear approximation to the minimum mean
squared error of the frequency response and Equation 12c applies the linear constraints on both the reflection coefficients, |kn| <
1, and the PCLS frequency response constraints.

4 Design of digital filters with signed-digit coefficients

4.1 The canonical signed-digit representation of filter coefficients

Parhi [16, Section 13.6] lists the following properties of the canonical binary signed-digit (CSD) representation of a binary
signed-digit number A = aW −1aW −2 · · · a1a0 where each ai ∈ {−1, 0, 1}:

• no 2 consecutive bits in a CSD number are non-zero

• the CSD representation of a number contains the miniumum possible number of non-zero bits, thus the name canonic

• the CSD representation of a number is unique
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Algorithm 4.1 Conversion of 2’s complement numbers to the canonical signed-digit representation (Parhi [16, Section 13.6.1]).
Denote the two’s complement representation of the number A as A = âW −1âW −2 · · · â1â0.
Denote the CSD representation of A as A = aW −1aW −2 · · · a1a0.

â−1 = 0
γ−1 = 0
âW = âW −1
for k = 0, . . . , W − 1 do

θi = âi ⊕ âi−1
γi = γ̄i−1θi

ai = (1 − 2âi+1) γi

end for

The first property breaks the carry chain when adding two CSD numbers. Parhi [16, Section 13.6.1] shows an algorithm that
calculates the canonical binary signed-digit representation from the two’s complement representation, reproduced here as Algo-
rithm 4.1.

Lim et al. [35] describe a method of allocating a limited number of signed power-of-two digit terms to the fixed point coefficients
of a digital filter. The method is based on the belief that “allocating the SPT terms in such a way that all the coefficient values
have the same quantisation step-size to coefficient sensitivity ratio will lead to a good design”.

Lim et al. first prove properties of the canonical signed-digit representation [35, Section II]. In particular:

Property 1: Define SQ as the set of contiguous integers that can be represented by up to Q signed digits. The largest integer in
SQ is JQ =

∑Q−1
l=0 22l+1.

Property 5: On average, 0.72Q signed-digits are required to represent the integers in SQ.

Lim et al. show that an estimate of the number of signed digits, Q, required to represent JQ is:

Q ≈ 1
2 log2 JQ + 0.31

Replacing JQ by an integer n ∈ SQ, an estimate of the average number of terms, QA, required to represent n is:

QA ≈ 0.72Q

≈ 0.36 log2 n + 0.22

Now suppose that D signed digits are available to represent two positive integers n1 and n2. If n1 ≈ n2 then each integer is
allocated D

2 bits. If n1 > n2 then Lim et al. argue that the number of additional signed-digits, QE , required to represent n1 is:

QE ≈ 0.36 log2⌊n1

n2
⌋

where ⌊ ⌋ represents the integer part. In general, QE is not an integer.

Lim et al. go on to consider the allocation of signed digits to the coefficients of a symmetric FIR filter. The change in the
frequency response, F (ω), of a filter due to a change ∆χn in coefficient χn is:

∆F (ω, n) ≈ ∂F (ω)
∂χn

∆χn

Lim et al. use the average of the coefficient sensitivity to define a cost for the n’th coefficient:

costn = 0.36 log2 |χn| + 0.36 log2

ˆ π

0

∣∣∣∣∂F (ω)
∂χ

∣∣∣∣ dω

Given a total of D signed-digits, Lim et al. assign a single signed-digit at a time to the coefficient with the largest cost. After a
coefficient is given a signed-digit, its cost is decreased by one. The process is repeated until all D digits have been allocated.

1ni − 1 to allow for the column bi in the matrix A
(i)
t and di in the column vector c

(i)
t
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4.2 Branch-and-bound search for the filter coefficients

Given the K floating point coefficients, χ, of a filter, an exhaustive search of the upper and lower bounds on the integer or
signed-digit approximations to these coefficients would require O

(
2K

)
comparisons of the corresponding filter approximation

error. Branch-and-bound [3], [26, p.627] is a heuristic for reducing the number of branches searched in a binary decision tree.
At each branch of the binary tree the solution is compared to the estimated lower bounds on the cost of the full path proceeding
from that branch. If the cost of that full path is greater than that of the best full path found so far then further search on that
path is abandoned. Figure 5 shows a flow diagram of an implementation of the algorithm using a stack. The floating point
filter coefficients, χ, are approximated by the signed-digit coefficients, χ̄. Each coefficient, χn and χ̄n, is bounded by the
corresponding signed-digit numbers un and ln so that ln ≤ χn ≤ un and ln ≤ χ̄n ≤ un. The search for the set of coefficients
with minimum cost is “depth-first”, starting at the root of the search tree and fixing successive coefficients. Ito et al. [27]
recommend choosing, at each branch, the χn with the greatest difference un − ln. The two sub-problems at that branch fix χ̄n

to ln and un. One of the two sub-problems is pushed onto a stack and the other is solved and the cost calculated. I assume that
this cost is the least possible for the remaining coefficients on the current branch. If the cost of the current sub-problem is greater
than the current minimum cost then the current branch is abandoned and a new sub-problem is popped off the problem stack.
Otherwise, if the search has reached the maximum depth of the tree then the current solution is a new signed-digit minimum cost
solution. If the current cost is less than the minimum cost and the search has not reached the maximum depth then the search
continues with a new branch.

4.3 Successive relaxation search for the filter coefficients

A successive relaxation search for the filter coefficients fixes one coefficient and optimises the filter frequency response with
respect to the remaining free coefficients. This is called a relaxation of the optimisation. The relaxation is repeated until all the
coefficients are fixed. At each coefficient relaxation step the script finds the upper and lower signed-digit approximations to the
current set of active coefficients and selects the coefficient with the largest difference in those approximations.

5 An example : design of a low pass differentiator filter

This section describes the design of a low pass differentiator filter implemented as F0 (z) = 1 − z−1 in series with a tapped
Schur one-multiplier lattice correction filter, C (z), having denominator polynomial coefficients only for terms in z−2n. In the
pass band, the desired complex frequency response of a differentiator filter is:

Fd (ω) = −ı
ω

2 e−ıωtp

where tp is the nominal filter pass band group delay in samples. The squared-magnitude response of the correction filter is:

|C (ω)|2 = |Fd (ω)|2

|F0 (ω)|2

where:

|Fd (ω)| = ω

2

|Fd (ω)|2 = ω2

4
d|Fd (ω)|2

dω
= ω

2 = |Fd (ω)|

and the response of the zero at z = 1 is:

F0 (ω) = 1 − eıω

= 2ıeı ω
2 sin ω

2
|F0 (ω)| = 2 sin ω

2
d|F0 (ω)|2

dω
= 2|F0 (ω)|d|F0 (ω)|

dω
= 2 sin ω

13



Start

Initialise Costmin

and stack

Create two
sub-problems and push

one onto the stack

Find Cost of
current sub-problem

Cost < Costmin ?
Yes

No

At maximum
depth of stack ?

No

Yes

Set Costmin = Cost and
update problem solution

Sub-problems
on stack ?

Yes

No

Pop sub-problem
off stack

Stop

Figure 5: Branch-and-bound depth-first search algorithm
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Figure 6: Amplitude, phase and group delay responses of an initial low pass differentiator filter composed of a Schur one-
multiplier lattice correction filter with a denominator polynomial having terms only in z−2 in series with 1 − z−1.

By the chain rule for differentiation, the gradient of |F (ω)|2 is:

d|Fd (ω)|2

dω
= |F0 (ω)|2 d|C (ω)|2

dω
+ |Fd (ω)|2

|F0 (ω)|2
d|F0 (ω)|2

dω

Substituting and rearranging to obtain the desired gradient of |C (ω)|2 in terms of the desired overall squared amplitude response,
|Fd (ω)|2, and the squared magnitude response of the zero at z = 1, |F0 (ω)|2:

d|C (ω)|2

dω
= |Fd (ω)|

[1 − |Fd (ω)| cot ω
2

|F0 (ω)|2

]

5.1 Initial R=2 low pass differentiator filter

Figure 6 shows the frequency response of the initial R=2 low pass differentiator filter found by the method of Tarczynski et al.,
described in Section 3.1. The correction filter order is N = 10, filter pass band and stop band edge frequencies are 0.2 and
0.4 (normalised to the digital sample rate), the nominal pass band phase is 1.5π radians (adjusted for delay) and the nominal pass
band group delay is 9 samples.

The coefficients of the numerator and denominator polynomials of the initial correction filter transfer function are:

N0 = [ -0.0023668408, 0.0007550252, 0.0057495588, -0.0017253427, ...
-0.0145883151, 0.0048775476, 0.0447167151, -0.0377320271, ...
-0.2353842769, -0.2685554589, -0.1040317225 ]';

D0R = [ 1.0000000000, 0.0000000000, 0.2381495222, -0.0000000000, ...
-0.0287006727, 0.0000000000, 0.0076755310, -0.0000000000, ...
-0.0017192596, -0.0000000000, -0.0001444401 ]';

The corresponding Schur one-multiplier lattice coefficients of the initial correction filter are:
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k0 = [ 0.0000000000, 0.2459545571, 0.0000000000, -0.0306726072, ...
0.0000000000, 0.0080726571, 0.0000000000, -0.0016848613, ...
0.0000000000, -0.0001444401 ]';

epsilon0 = [ -0.0000000000, 1.0000000000, -0.0000000000, 1.0000000000, ...
-0.0000000000, -1.0000000000, -0.0000000000, 1.0000000000, ...
-0.0000000000, 1.0000000000 ];

c0 = [ -0.0347172234, -0.2163958123, -0.2579098535, -0.0407075228, ...
0.0492516660, 0.0054064057, -0.0161893453, -0.0019086425, ...
0.0063141328, 0.0007551343, -0.0023668408 ]';

5.2 PCLS design of the R=2 low pass differentiator filter

The low pass differentiator correction filter was PCLS optimised with amplitude pass band error peak-to-peak ripple of 0.0009,
amplitude stop band peak ripple of 0.007, phase pass band peak-to-peak ripple of 0.0002π radians, group delay pass band
peak-to-peak ripple of 0.006 samples and correction filter gradient of amplitude-squared pass band error peak-to-peak ripple of
0.02.

The Schur one-multiplier lattice coefficients of the PCLS SOCP optimised correction filter are:

k2 = [ 0.0000000000, 0.2121142204, 0.0000000000, -0.0278338389, ...
0.0000000000, 0.0088868901, 0.0000000000, -0.0027840982, ...
0.0000000000, 0.0006508060 ]';

epsilon2 = [ -0.0000000000, 1.0000000000, -0.0000000000, 1.0000000000, ...
-0.0000000000, -1.0000000000, -0.0000000000, 1.0000000000, ...
-0.0000000000, -1.0000000000 ]';

c2 = [ -0.0239787197, -0.2178066678, -0.2812228475, -0.0333478668, ...
0.0688993344, -0.0122266744, -0.0222524634, 0.0133139681, ...
0.0026772016, -0.0047851184, 0.0011355492 ]';

The corresponding correction filter numerator and denominator polynomial coefficients are:

N2 = [ 0.0011355492, -0.0047820042, 0.0029093102, 0.0122834628, ...
-0.0216545268, -0.0092196535, 0.0634251998, -0.0348962744, ...
-0.2554064681, -0.2598288504, -0.0872850176 ];

D2 = [ 1.0000000000, 0.0000000000, 0.2059363572, 0.0000000000, ...
-0.0259234704, 0.0000000000, 0.0082965945, 0.0000000000, ...
-0.0026500724, 0.0000000000, 0.0006508060 ];

Figure 7 shows the amplitude error, phase and group delay response errors of the R = 2 low pass differentiator filter after
PCLS SOCP optimisation. Figure 8 shows the error in the gradient of the squared-magnitude response of the R = 2 correction
filter after PCLS SOCP optimisation. Figure 9 shows the pole-zero plot of the R = 2 low pass differentiator filter. Figure 10
shows the gradients of the correction filter squared-magnitude, phase and delay with respect to the coefficients of the direct form
implementation of the filter. Figure 11 shows the gradients of the correction filter squared-magnitude, phase and delay with
respect to the coefficients of the Schur lattice implementation of the filter.
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Figure 7: PCLS optimised amplitude error, phase and group delay responses of a low pass differentiator filter composed of a
Schur one-multiplier lattice correction filter with a denominator polynomial having terms only in z−2 in series with 1 − z−1.
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SOCP optimisation.
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Figure 9: Pole-zero plot of the PCLS optimised low pass differentiator filter composed of a Schur one-multiplier lattice correction
filter with a denominator polynomial having terms only in z−2 in series with 1 − z−1.
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Figure 10: Gradients of the pass band response with respect to the coefficients of the direct form implementation of the PCLS
optimised low pass differentiator correction filter.
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Figure 11: Gradients of the pass band response with respect to the coefficients of the tapped Schur lattice implementation of the
PCLS optimised low pass differentiator correction filter.

5.3 Search for the signed-digit coefficients of the R=2 low pass differentiator filter

When truncated to 12 bits and 3 signed-digits the Schur one-multiplier lattice coefficients of the PCLS optimised correction filter
are:

k0_sd_no_alloc = [ 0, 432, 0, -57, ...
0, 18, 0, -6, ...
0, 1 ]'/2048;

c0_sd_no_alloc = [ -49, -446, -576, -68, ...
140, -25, -46, 27, ...
5, -10, 2 ]'/2048;

The numbers of signed-digits that the heuristic of Lim et al. allocates to each cofficient of the PCLS optimised correction filter
are:

k_allocsd_digits = [ 0, 3, 0, 3, ...
0, 2, 0, 2, ...
0, 3 ]';

c_allocsd_digits = [ 3, 5, 5, 3, ...
3, 2, 3, 3, ...
2, 3, 3 ]';

The signed-digit coefficients of the PCLS optimised filter with the numbers of signed-digits allocated by the heuristic of Lim et
al. are:

k0_sd = [ 0, 432, 0, -57, ...
0, 18, 0, -6, ...
0, 1 ]'/2048;
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c0_sd = [ -49, -446, -576, -68, ...
140, -24, -46, 27, ...
5, -10, 2 ]'/2048;

The signed-digit coefficients of the PCLS optimised filter with the numbers of signed-digits allocated by the heuristic of Lim et
al. and found with branch-and-bound search are:

k_min = [ 0, 432, 0, -57, ...
0, 18, 0, -6, ...
0, 1 ]'/2048;

c_min = [ -49, -446, -576, -69, ...
142, -25, -46, 27, ...

6, -10, 2 ]'/2048;

The corresponding correction filter transfer function polynomials found with branch-and-bound search are:

N_min = [ 0.0009765625, -0.0048804283, 0.0031282520, 0.0121390578, ...
-0.0218098438, -0.0092406746, 0.0638389413, -0.0352096459, ...
-0.2554439267, -0.2596084600, -0.0869071984 ];

D_min = [ 1.0000000000, 0.0000000000, 0.2047948837, 0.0000000000, ...
-0.0259494300, 0.0000000000, 0.0081763253, 0.0000000000, ...
-0.0028296893, 0.0000000000, 0.0004882812 ];

The signed-digit coefficients of the PCLS optimised filter with the numbers of signed-digits allocated by the heuristic of Lim et
al. and found with SOCP relaxation search are:

k_min = [ 0, 432, 0, -57, ...
0, 18, 0, -6, ...
0, 1 ]'/2048;

c_min = [ -49, -446, -576, -68, ...
140, -24, -46, 27, ...

6, -10, 2 ]'/2048;

The corresponding correction filter transfer function polynomials found with SOCP relaxation search are:

N_min = [ 0.0009765625, -0.0048804283, 0.0031282520, 0.0121390578, ...
-0.0218098438, -0.0087583384, 0.0628742691, -0.0346418230, ...
-0.2556417489, -0.2595229733, -0.0868803496 ];

D_min = [ 1.0000000000, 0.0000000000, 0.2047948837, 0.0000000000, ...
-0.0259494300, 0.0000000000, 0.0081763253, 0.0000000000, ...
-0.0028296893, 0.0000000000, 0.0004882812 ];

Table 1 compares, for each filter, a cost function, the maximum pass band and stop band response errors, the total number of
signed-digits required by the 12-bit coefficients and the number of shift-and-add operations required to implement the correction
filter coefficient multiplications of the correction filter.

Figure 12 compares the pass band amplitude response of each filter for 12-bit 3-signed-digit coefficients and 12-bit coefficients
with an average of 3-signed-digits allocated by the method of Lim et al. found with branch-and-bound search and SOCP re-
laxation search. Figure 13 compares the pass band relative amplitude response of each filter. Figure 14 compares the stop
band amplitude response of each filter. Figure 15 shows the pass band phase reslonse of each filter. 16 shows the pass band
group-delay response of each filter. Figure 17 shows the gradient of the squared magnitude response of the correction filter.
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Correction Max. pass Max. pass Max. stop Max. pass Max. pass 12-bit Shift-
filter amplitude amplitude amplitude phase error delay error signed and-
cost error rel. error error (rad./π) (samples) digits adds

Floating-point 3.55e-05 4.50e-04 1.33e-03 3.50e-03 9.78e-05 3.00e-03
Signed-Digit 7.05e-05 1.61e-03 3.08e-03 3.83e-03 5.54e-04 1.18e-02 38 22
Signed-Digit(Lim) 6.94e-05 9.72e-04 3.08e-03 3.81e-03 6.06e-04 1.25e-02 39 23
Branch-and-bound 4.44e-05 7.74e-04 1.53e-03 3.70e-03 2.24e-04 4.93e-03 39 23
SOCP-relaxation 4.52e-05 1.26e-03 2.22e-03 4.26e-03 1.48e-04 4.18e-03 37 21

Table 1: Comparison of the response errors and the total number of signed digits in the 12-bit coefficients, each having an
average of 3-signed digits, allocated by the method of Lim et al., required for a tapped Schur one-multiplier lattice, R=2, low
pass differentiator correction filter found by branch-and-bound and SOCP relaxation search.
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Figure 12: Comparison of the pass band response error of a tapped Schur one-multiplier, R=2, lattice lowpass differentiator
correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit signed-digit coefficients each having
an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-bound and SOCP relaxation search.
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Figure 13: Comparison of the pass band relative response error of a tapped Schur one-multiplier, R=2, lattice lowpass differen-
tiator correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit signed-digit coefficients each
having an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-bound and SOCP relaxation
search.
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Figure 14: Comparison of the stop band response error of a tapped Schur one-multiplier, R=2, lattice lowpass differentiator
correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit signed-digit coefficients each having
an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-bound and SOCP relaxation search.
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Figure 15: Comparison of the pass band phase response errors of a tapped Schur one-multiplier, R=2, lattice low pass differen-
tiator correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit signed-digit coefficients each
having an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-bound and SOCP relaxation
search.
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Figure 16: Comparison of the pass band group delay response errors of a tapped Schur one-multiplier, R=2, lattice low pass
differentiator correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit signed-digit coeffi-
cients each having an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-bound and SOCP
relaxation search.
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Figure 17: Comparison of the error in the pass band gradient of the squared magnitude response of a tapped Schur one-multiplier,
R=2, lattice low pass differentiator correction filter with floating point coefficients, 12-bit 3-signed-digit coefficients, and 12-bit
signed-digit coefficients each having an average of 3-signed-digits allocated by the method of Lim et al., found by branch-and-
bound and SOCP relaxation search.

5.4 Comparison with a maximally-linear FIR low pass differentiator filter

Selesnick [9] describes the design of maximally linear low pass FIR differentiator filters:

F (z) =
(

1 − z−1

2

) (
1 + z−1

2

)K

z−L
L∑

n=0
cn

[
−z + 2 − z−1

4

]n

where the cn are defined recursively:

c0 = 2

c1 = K + 1
3

. . .

cn =
(
8n2 + 4Kn − 10n − K + 3

)
cn−1 − (2n + K − 3)2

cn−2

2n (2n + 1)

The length of the impulse response is N = K + 2L + 2. The coefficients of the maximally linear anti-symmetric FIR low pass
differentiator with L = 20 and K = 21 are2:

h0 = [ 4.44123104e-12, -1.00819208e-10, 9.98318771e-10, -5.37355090e-09, ...
1.45106234e-08, 2.11140874e-09, -1.59534008e-07, 5.02508288e-07, ...

-2.24613061e-07, -2.77778936e-06, 7.71252673e-06, -1.42216678e-06, ...
-3.42080941e-05, 6.70749003e-05, 2.54344919e-05, -2.85994600e-04, ...
3.30723255e-04, 4.48110681e-04, -1.56125819e-03, 7.03922889e-04, ...
3.22471722e-03, -5.40528563e-03, -1.60677482e-03, 1.37599771e-02, ...

-1.06624797e-02, -1.80520188e-02, 3.95606279e-02, -7.55804092e-04, ...
-8.53239242e-02, 8.45169514e-02, 2.52194920e-01 ]';

2For odd length, N = 63, h0 (32) = 0.

24



Low pass Max. pass Max. pass Max. stop 12-bit Shift-
differentiator amplitude amplitude amplitude signed and-

cost error rel. error error digits adds

Floating-point FIR 1.08e-05 8.16e-05 1.30e-04 1.79e-04
Truncated floating-point FIR 1.08e-05 1.74e-04 9.38e-04 1.46e-04
SOCP-relaxation truncated FIR 1.09e-05 9.67e-04 5.13e-03 5.24e-04 39 23
Branch-and-bound truncated FIR 1.09e-05 8.94e-04 1.76e-02 9.98e-04 40 24

Table 2: Comparison of the response errors and the total number of signed digits in the 12-bit coefficients, each having an
average of 3-signed digits, allocated by the method of Lim et al., required for a low pass differentiator filter implemented as an
anti-symmetric FIR filter found by SOCP relaxation search and branch-and-bound search.

Low pass Max. pass Max. pass Max. stop 12-bit Shift-
differentiator amplitude amplitude amplitude signed and-

cost error rel. error error digits adds

Floating-point Schur lattice 3.55e-05 4.50e-04 1.33e-03 3.50e-03
Truncated floating-point FIR 1.08e-05 1.74e-04 9.38e-04 1.46e-04
SOCP-relaxation Schur lattice 4.52e-05 1.26e-03 2.22e-03 4.26e-03 37 21
SOCP-relaxation truncated FIR 1.09e-05 9.67e-04 5.13e-03 5.24e-04 39 23
Branch-and-bound Schur lattice 4.44e-05 7.74e-04 1.53e-03 3.70e-03 39 23
Branch-and-bound truncated FIR 1.09e-05 8.94e-04 1.76e-02 9.98e-04 40 24

Table 3: Comparison of the response errors and the total number of signed digits in the 12-bit coefficients, each having an
average of 3-signed digits, allocated by the method of Lim et al., required for a low pass differentiator filter implemented as an
anti-symmetric FIR filter and a tapped Schur one-multiplier lattice, R=2, correction filter found by SOCP relaxation search and
branch-and-bound search.

By construction, the phase response of the anti-symmetric FIR low pass differentiator filter is π
2 radians. This FIR filter was

truncated to 16 distinct coefficients, the same number as the Schur lattice, and a group delay of 16 samples. After SOCP-
relaxation optimisation to 12-bits with an average of 3 signed-digits allocated by the heuristic of Lim et al. the distinct coefficients
of the filter are:

hM_min = [ -1, 1, 2, -6, ...
3, 14, -22, -7, ...
56, -44, -74, 162, ...
-3, -350, 346, 1033 ]'/4096;

Table 2 compares a cost function, the maximum pass band and stop band response errors, the total number of signed-digits
required by the 12-bit coefficients and the number of shift-and-add operations required to implement the coefficient multipli-
cations of the floating point FIR, floating point truncated FIR and the SOCP-relaxation optimised truncated FIR and the the
SOCP-relaxation optimised truncated FIR and the branch-and-bound optimised truncated FIR filter.

Figure 18 compares the pass band error amplitude responses of a low pass differentiator filter implemented as a maximally linear
FIR filter with floating point coefficients, that FIR filter truncated to 16 distinct coefficients and the truncated filter coefficients
SOCP-relaxation optimised for 12-bit 3-signed-digit coefficients and 12-bit coefficients with an average of 3-signed-digits allo-
cated by the method of Lim et al.. Similarly, Figure 19 compares the pass band relative error amplitude responses and Figure 20
compares the stop band error amplitude responses.

Table 3 compares a cost function, the maximum pass band and stop band response errors, the total number of signed-digits re-
quired by the 12-bit coefficients and the number of shift-and-add operations required to implement the coefficient multiplications
of the SOCP-relaxation optimised truncated FIR and Schur lattice filters and the branch-and-bound optimised truncated FIR and
Schur lattice filters.

Figure 21 compares the pass band amplitude error responses of a low pass differentiator filter implemented as a maximally linear
FIR filter truncated to 16 distinct coefficients and a tapped Schur one-multiplier lattice, R=2, correction filter. The coefficients
are SOCP-relaxation and branch-and-bound optimised for 12-bit coefficients with an average of 3-signed-digits each, allocated
by the method of Lim et al. . Similarly, Figure 22 compares the pass band relative error amplitude responses and Figure 23
compares the stop band error amplitude responses.
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Figure 18: Comparison of the pass band error amplitude responses of a low pass differentiator filter implemented as a maximally
linear FIR filter with floating point coefficients, that FIR filter truncated to 16 distinct coefficients and the truncated filter coeffi-
cients SOCP-relaxation optimised for 12-bit 3-signed-digit coefficients and 12-bit coefficients with an average of 3-signed-digits
allocated by the method of Lim et al..
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Figure 19: Comparison of the pass band relative error responses of a low pass differentiator filter implemented as a maximally
linear FIR filter with floating point coefficients, that FIR filter truncated to 16 distinct coefficients and the truncated filter coeffi-
cients SOCP-relaxation optimised for 12-bit 3-signed-digit coefficients and 12-bit coefficients with an average of 3-signed-digits
allocated by the method of Lim et al..
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Figure 20: Comparison of the stop band error amplitude responses of a low pass differentiator filter implemented as a maximally
linear FIR filter with floating point coefficients, that FIR filter truncated to 16 distinct coefficients and the truncated filter coeffi-
cients SOCP-relaxation optimised for 12-bit 3-signed-digit coefficients and 12-bit coefficients with an average of 3-signed-digits
allocated by the method of Lim et al..
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Figure 21: Comparison of the pass band amplitude error responses of a low pass differentiator filter implemented as a maximally
linear FIR filter truncated to 16 distinct coefficients and a tapped Schur one-multiplier lattice, R=2, correction filter. The co-
efficients are SOCP-relaxation and branch-and-bound optimised for 12-bit coefficients with an average of 3-signed-digits each,
allocated by the method of Lim et al. .
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Figure 22: Comparison of the pass band amplitude relative error responses of a low pass differentiator filter implemented as a
maximally linear FIR filter truncated to 16 distinct coefficients and a tapped Schur one-multiplier lattice, R=2, correction filter.
The coefficients are SOCP-relaxation and branch-and-bound optimised for 12-bit coefficients with an average of 3-signed-digits
each, allocated by the method of Lim et al. .
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Figure 23: Comparison of the stop band amplitude responses of a low pass differentiator filter implemented as a maximally linear
FIR filter truncated to 16 distinct coefficients and a tapped Schur one-multiplier lattice, R=2, correction filter. The coefficients
are SOCP-relaxation and branch-and-bound optimised for 12-bit coefficients with an average of 3-signed-digits each, allocated
by the method of Lim et al. .
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6 Summary

The Schur lattice digital filter has a simple stability constraint. This article demonstrates the realisation of an IIR digital filter
transfer function with stability and frequency response constraints by optimising the floating point and fixed point coefficients of
a tapped one-multiplier Schur lattice digital filter. The performance of the tapped, R=2, Schur lattice filter is compared to that
of a maximally-flat anti-symmetric FIR low pass differentiator filter. The tapped, R=2, Schur lattice filter has lower group delay
and better pass band relative amplitude error. The truncated anti-symmetric FIR filter has better stop band amplitude suppression
and, by construction, constant phase and group delay.
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